DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2016-2017 Intel Corporation
 */

#include <rte_malloc.h>
#include <rte_cycles.h>
#include <rte_crypto.h>
#include <rte_cryptodev.h>

#include "cperf_test_verify.h"
#include "cperf_ops.h"
#include "cperf_test_common.h"

struct cperf_verify_ctx {
	uint8_t dev_id;
	uint16_t qp_id;
	uint8_t lcore_id;

	struct rte_mempool *pool;

	struct rte_cryptodev_sym_session *sess;

	cperf_populate_ops_t populate_ops;

	uint32_t src_buf_offset;
	uint32_t dst_buf_offset;

	const struct cperf_options *options;
	const struct cperf_test_vector *test_vector;
};

struct cperf_op_result {
	enum rte_crypto_op_status status;
};

static void
cperf_verify_test_free(struct cperf_verify_ctx *ctx)
{
	if (ctx) {
		if (ctx->sess) {
			rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
			rte_cryptodev_sym_session_free(ctx->sess);
		}

		if (ctx->pool)
			rte_mempool_free(ctx->pool);

		rte_free(ctx);
	}
}

void *
cperf_verify_test_constructor(struct rte_mempool *sess_mp,
		struct rte_mempool *sess_priv_mp,
		uint8_t dev_id, uint16_t qp_id,
		const struct cperf_options *options,
		const struct cperf_test_vector *test_vector,
		const struct cperf_op_fns *op_fns)
{
	struct cperf_verify_ctx *ctx = NULL;

	ctx = rte_malloc(NULL, sizeof(struct cperf_verify_ctx), 0);
	if (ctx == NULL)
		goto err;

	ctx->dev_id = dev_id;
	ctx->qp_id = qp_id;

	ctx->populate_ops = op_fns->populate_ops;
	ctx->options = options;
	ctx->test_vector = test_vector;

	/* IV goes at the end of the crypto operation */
	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
		sizeof(struct rte_crypto_sym_op);

	ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options,
			test_vector, iv_offset);
	if (ctx->sess == NULL)
		goto err;

	if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
			&ctx->src_buf_offset, &ctx->dst_buf_offset,
			&ctx->pool) < 0)
		goto err;

	return ctx;
err:
	cperf_verify_test_free(ctx);

	return NULL;
}

static int
cperf_verify_op(struct rte_crypto_op *op,
		const struct cperf_options *options,
		const struct cperf_test_vector *vector)
{
	const struct rte_mbuf *m;
	uint32_t len;
	uint16_t nb_segs;
	uint8_t *data;
	uint32_t cipher_offset, auth_offset;
	uint8_t	cipher, auth;
	int res = 0;

	if (op->status != RTE_CRYPTO_OP_STATUS_SUCCESS)
		return 1;

	if (op->sym->m_dst)
		m = op->sym->m_dst;
	else
		m = op->sym->m_src;
	nb_segs = m->nb_segs;
	len = 0;
	while (m && nb_segs != 0) {
		len += m->data_len;
		m = m->next;
		nb_segs--;
	}

	data = rte_malloc(NULL, len, 0);
	if (data == NULL)
		return 1;

	if (op->sym->m_dst)
		m = op->sym->m_dst;
	else
		m = op->sym->m_src;
	nb_segs = m->nb_segs;
	len = 0;
	while (m && nb_segs != 0) {
		memcpy(data + len, rte_pktmbuf_mtod(m, uint8_t *),
				m->data_len);
		len += m->data_len;
		m = m->next;
		nb_segs--;
	}

	switch (options->op_type) {
	case CPERF_CIPHER_ONLY:
		cipher = 1;
		cipher_offset = 0;
		auth = 0;
		auth_offset = 0;
		break;
	case CPERF_CIPHER_THEN_AUTH:
		cipher = 1;
		cipher_offset = 0;
		auth = 1;
		auth_offset = options->test_buffer_size;
		break;
	case CPERF_AUTH_ONLY:
		cipher = 0;
		cipher_offset = 0;
		auth = 1;
		auth_offset = options->test_buffer_size;
		break;
	case CPERF_AUTH_THEN_CIPHER:
		cipher = 1;
		cipher_offset = 0;
		auth = 1;
		auth_offset = options->test_buffer_size;
		break;
	case CPERF_AEAD:
		cipher = 1;
		cipher_offset = 0;
		auth = 1;
		auth_offset = options->test_buffer_size;
		break;
	default:
		res = 1;
		goto out;
	}

	if (cipher == 1) {
		if (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
			res += memcmp(data + cipher_offset,
					vector->ciphertext.data,
					options->test_buffer_size);
		else
			res += memcmp(data + cipher_offset,
					vector->plaintext.data,
					options->test_buffer_size);
	}

	if (auth == 1) {
		if (options->auth_op == RTE_CRYPTO_AUTH_OP_GENERATE)
			res += memcmp(data + auth_offset,
					vector->digest.data,
					options->digest_sz);
	}

out:
	rte_free(data);
	return !!res;
}

static void
cperf_mbuf_set(struct rte_mbuf *mbuf,
		const struct cperf_options *options,
		const struct cperf_test_vector *test_vector)
{
	uint32_t segment_sz = options->segment_sz;
	uint8_t *mbuf_data;
	uint8_t *test_data;
	uint32_t remaining_bytes = options->max_buffer_size;

	if (options->op_type == CPERF_AEAD) {
		test_data = (options->aead_op == RTE_CRYPTO_AEAD_OP_ENCRYPT) ?
					test_vector->plaintext.data :
					test_vector->ciphertext.data;
	} else {
		test_data =
			(options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
				test_vector->plaintext.data :
				test_vector->ciphertext.data;
	}

	while (remaining_bytes) {
		mbuf_data = rte_pktmbuf_mtod(mbuf, uint8_t *);

		if (remaining_bytes <= segment_sz) {
			memcpy(mbuf_data, test_data, remaining_bytes);
			return;
		}

		memcpy(mbuf_data, test_data, segment_sz);
		remaining_bytes -= segment_sz;
		test_data += segment_sz;
		mbuf = mbuf->next;
	}
}

int
cperf_verify_test_runner(void *test_ctx)
{
	struct cperf_verify_ctx *ctx = test_ctx;

	uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
	uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
	uint64_t ops_failed = 0;

	static rte_atomic16_t display_once = RTE_ATOMIC16_INIT(0);

	uint64_t i;
	uint16_t ops_unused = 0;
	uint32_t imix_idx = 0;

	struct rte_crypto_op *ops[ctx->options->max_burst_size];
	struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];

	uint32_t lcore = rte_lcore_id();

#ifdef CPERF_LINEARIZATION_ENABLE
	struct rte_cryptodev_info dev_info;
	int linearize = 0;

	/* Check if source mbufs require coalescing */
	if (ctx->options->segment_sz < ctx->options->max_buffer_size) {
		rte_cryptodev_info_get(ctx->dev_id, &dev_info);
		if ((dev_info.feature_flags &
				RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
			linearize = 1;
	}
#endif /* CPERF_LINEARIZATION_ENABLE */

	ctx->lcore_id = lcore;

	if (!ctx->options->csv)
		printf("\n# Running verify test on device: %u, lcore: %u\n",
			ctx->dev_id, lcore);

	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
		sizeof(struct rte_crypto_sym_op);

	while (ops_enqd_total < ctx->options->total_ops) {

		uint16_t burst_size = ((ops_enqd_total + ctx->options->max_burst_size)
				<= ctx->options->total_ops) ?
						ctx->options->max_burst_size :
						ctx->options->total_ops -
						ops_enqd_total;

		uint16_t ops_needed = burst_size - ops_unused;

		/* Allocate objects containing crypto operations and mbufs */
		if (rte_mempool_get_bulk(ctx->pool, (void **)ops,
					ops_needed) != 0) {
			RTE_LOG(ERR, USER1,
				"Failed to allocate more crypto operations "
				"from the crypto operation pool.\n"
				"Consider increasing the pool size "
				"with --pool-sz\n");
			return -1;
		}

		/* Setup crypto op, attach mbuf etc */
		(ctx->populate_ops)(ops, ctx->src_buf_offset,
				ctx->dst_buf_offset,
				ops_needed, ctx->sess, ctx->options,
				ctx->test_vector, iv_offset, &imix_idx);


		/* Populate the mbuf with the test vector, for verification */
		for (i = 0; i < ops_needed; i++)
			cperf_mbuf_set(ops[i]->sym->m_src,
					ctx->options,
					ctx->test_vector);

#ifdef CPERF_LINEARIZATION_ENABLE
		if (linearize) {
			/* PMD doesn't support scatter-gather and source buffer
			 * is segmented.
			 * We need to linearize it before enqueuing.
			 */
			for (i = 0; i < burst_size; i++)
				rte_pktmbuf_linearize(ops[i]->sym->m_src);
		}
#endif /* CPERF_LINEARIZATION_ENABLE */

		/* Enqueue burst of ops on crypto device */
		ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
				ops, burst_size);
		if (ops_enqd < burst_size)
			ops_enqd_failed++;

		/**
		 * Calculate number of ops not enqueued (mainly for hw
		 * accelerators whose ingress queue can fill up).
		 */
		ops_unused = burst_size - ops_enqd;
		ops_enqd_total += ops_enqd;


		/* Dequeue processed burst of ops from crypto device */
		ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
				ops_processed, ctx->options->max_burst_size);

		if (ops_deqd == 0) {
			/**
			 * Count dequeue polls which didn't return any
			 * processed operations. This statistic is mainly
			 * relevant to hw accelerators.
			 */
			ops_deqd_failed++;
			continue;
		}

		for (i = 0; i < ops_deqd; i++) {
			if (cperf_verify_op(ops_processed[i], ctx->options,
						ctx->test_vector))
				ops_failed++;
		}
		/* Free crypto ops so they can be reused. */
		rte_mempool_put_bulk(ctx->pool,
					(void **)ops_processed, ops_deqd);
		ops_deqd_total += ops_deqd;
	}

	/* Dequeue any operations still in the crypto device */

	while (ops_deqd_total < ctx->options->total_ops) {
		/* Sending 0 length burst to flush sw crypto device */
		rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);

		/* dequeue burst */
		ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
				ops_processed, ctx->options->max_burst_size);
		if (ops_deqd == 0) {
			ops_deqd_failed++;
			continue;
		}

		for (i = 0; i < ops_deqd; i++) {
			if (cperf_verify_op(ops_processed[i], ctx->options,
						ctx->test_vector))
				ops_failed++;
		}
		/* Free crypto ops so they can be reused. */
		rte_mempool_put_bulk(ctx->pool,
					(void **)ops_processed, ops_deqd);
		ops_deqd_total += ops_deqd;
	}

	if (!ctx->options->csv) {
		if (rte_atomic16_test_and_set(&display_once))
			printf("%12s%12s%12s%12s%12s%12s%12s%12s\n\n",
				"lcore id", "Buf Size", "Burst size",
				"Enqueued", "Dequeued", "Failed Enq",
				"Failed Deq", "Failed Ops");

		printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64
				"%12"PRIu64"%12"PRIu64"\n",
				ctx->lcore_id,
				ctx->options->max_buffer_size,
				ctx->options->max_burst_size,
				ops_enqd_total,
				ops_deqd_total,
				ops_enqd_failed,
				ops_deqd_failed,
				ops_failed);
	} else {
		if (rte_atomic16_test_and_set(&display_once))
			printf("\n# lcore id, Buffer Size(B), "
				"Burst Size,Enqueued,Dequeued,Failed Enq,"
				"Failed Deq,Failed Ops\n");

		printf("%10u;%10u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";"
				"%"PRIu64"\n",
				ctx->lcore_id,
				ctx->options->max_buffer_size,
				ctx->options->max_burst_size,
				ops_enqd_total,
				ops_deqd_total,
				ops_enqd_failed,
				ops_deqd_failed,
				ops_failed);
	}

	return 0;
}



void
cperf_verify_test_destructor(void *arg)
{
	struct cperf_verify_ctx *ctx = arg;

	if (ctx == NULL)
		return;

	cperf_verify_test_free(ctx);
}