DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2010-2014 Intel Corporation
 * Copyright(c) 2019 Arm Limited
 */

#include <stdio.h>
#include <stdint.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/queue.h>

#include <rte_memory.h>
#include <rte_per_lcore.h>
#include <rte_launch.h>
#include <rte_atomic.h>
#include <rte_eal.h>
#include <rte_lcore.h>
#include <rte_random.h>
#include <rte_hash_crc.h>

#include "test.h"

/*
 * Atomic Variables
 * ================
 *
 * - The main test function performs several subtests. The first
 *   checks that the usual inc/dec/add/sub functions are working
 *   correctly:
 *
 *   - Initialize 16-bit, 32-bit and 64-bit atomic variables to specific
 *     values.
 *
 *   - These variables are incremented and decremented on each core at
 *     the same time in ``test_atomic_usual()``.
 *
 *   - The function checks that once all lcores finish their function,
 *     the value of the atomic variables are still the same.
 *
 * - Test "test and set" functions.
 *
 *   - Initialize 16-bit, 32-bit and 64-bit atomic variables to zero.
 *
 *   - Invoke ``test_atomic_tas()`` on each lcore: before doing anything
 *     else. The cores are waiting a synchro using ``while
 *     (rte_atomic32_read(&val) == 0)`` which is triggered by the main test
 *     function. Then all cores do a
 *     ``rte_atomicXX_test_and_set()`` at the same time. If it is successful,
 *     it increments another atomic counter.
 *
 *   - The main function checks that the atomic counter was incremented
 *     twice only (one for 16-bit, one for 32-bit and one for 64-bit values).
 *
 * - Test "add/sub and return" functions
 *
 *   - Initialize 16-bit, 32-bit and 64-bit atomic variables to zero.
 *
 *   - Invoke ``test_atomic_addsub_return()`` on each lcore. Before doing
 *     anything else, the cores are waiting a synchro. Each lcore does
 *     this operation several times::
 *
 *       tmp = rte_atomicXX_add_return(&a, 1);
 *       atomic_add(&count, tmp);
 *       tmp = rte_atomicXX_sub_return(&a, 1);
 *       atomic_sub(&count, tmp+1);
 *
 *   - At the end of the test, the *count* value must be 0.
 *
 * - Test "128-bit compare and swap" (aarch64 and x86_64 only)
 *
 *   - Initialize 128-bit atomic variables to zero.
 *
 *   - Invoke ``test_atomic128_cmp_exchange()`` on each lcore. Before doing
 *     anything else, the cores are waiting a synchro. Each lcore does
 *     these compare and swap (CAS) operations several times::
 *
 *       Acquired CAS update counter.val[0] + 2; counter.val[1] + 1;
 *       Released CAS update counter.val[0] + 2; counter.val[1] + 1;
 *       Acquired_Released CAS update counter.val[0] + 2; counter.val[1] + 1;
 *       Relaxed CAS update counter.val[0] + 2; counter.val[1] + 1;
 *
 *   - At the end of the test, the *count128* first 64-bit value and
 *     second 64-bit value differ by the total iterations.
 *
 * - Test "atomic exchange" functions
 *
 *   - Create a 64 bit token that can be tested for data integrity
 *
 *   - Invoke ``test_atomic_exchange`` on each lcore.  Before doing
 *     anything else, the cores wait for a synchronization event.
 *     Each core then does the follwoing for N iterations:
 *
 *       Generate a new token with a data integrity check
 *       Exchange the new token for previously generated token
 *       Increment a counter if a corrupt token was received
 *
 *   - At the end of the test, the number of corrupted tokens must be 0.
 */

#define NUM_ATOMIC_TYPES 3

#define N 1000000

static rte_atomic16_t a16;
static rte_atomic32_t a32;
static rte_atomic64_t a64;
static rte_atomic64_t count;
static rte_atomic32_t synchro;

static int
test_atomic_usual(__rte_unused void *arg)
{
	unsigned i;

	while (rte_atomic32_read(&synchro) == 0)
		;

	for (i = 0; i < N; i++)
		rte_atomic16_inc(&a16);
	for (i = 0; i < N; i++)
		rte_atomic16_dec(&a16);
	for (i = 0; i < (N / 5); i++)
		rte_atomic16_add(&a16, 5);
	for (i = 0; i < (N / 5); i++)
		rte_atomic16_sub(&a16, 5);

	for (i = 0; i < N; i++)
		rte_atomic32_inc(&a32);
	for (i = 0; i < N; i++)
		rte_atomic32_dec(&a32);
	for (i = 0; i < (N / 5); i++)
		rte_atomic32_add(&a32, 5);
	for (i = 0; i < (N / 5); i++)
		rte_atomic32_sub(&a32, 5);

	for (i = 0; i < N; i++)
		rte_atomic64_inc(&a64);
	for (i = 0; i < N; i++)
		rte_atomic64_dec(&a64);
	for (i = 0; i < (N / 5); i++)
		rte_atomic64_add(&a64, 5);
	for (i = 0; i < (N / 5); i++)
		rte_atomic64_sub(&a64, 5);

	return 0;
}

static int
test_atomic_tas(__rte_unused void *arg)
{
	while (rte_atomic32_read(&synchro) == 0)
		;

	if (rte_atomic16_test_and_set(&a16))
		rte_atomic64_inc(&count);
	if (rte_atomic32_test_and_set(&a32))
		rte_atomic64_inc(&count);
	if (rte_atomic64_test_and_set(&a64))
		rte_atomic64_inc(&count);

	return 0;
}

static int
test_atomic_addsub_and_return(__rte_unused void *arg)
{
	uint32_t tmp16;
	uint32_t tmp32;
	uint64_t tmp64;
	unsigned i;

	while (rte_atomic32_read(&synchro) == 0)
		;

	for (i = 0; i < N; i++) {
		tmp16 = rte_atomic16_add_return(&a16, 1);
		rte_atomic64_add(&count, tmp16);

		tmp16 = rte_atomic16_sub_return(&a16, 1);
		rte_atomic64_sub(&count, tmp16+1);

		tmp32 = rte_atomic32_add_return(&a32, 1);
		rte_atomic64_add(&count, tmp32);

		tmp32 = rte_atomic32_sub_return(&a32, 1);
		rte_atomic64_sub(&count, tmp32+1);

		tmp64 = rte_atomic64_add_return(&a64, 1);
		rte_atomic64_add(&count, tmp64);

		tmp64 = rte_atomic64_sub_return(&a64, 1);
		rte_atomic64_sub(&count, tmp64+1);
	}

	return 0;
}

/*
 * rte_atomic32_inc_and_test() would increase a 32 bits counter by one and then
 * test if that counter is equal to 0. It would return true if the counter is 0
 * and false if the counter is not 0. rte_atomic64_inc_and_test() could do the
 * same thing but for a 64 bits counter.
 * Here checks that if the 32/64 bits counter is equal to 0 after being atomically
 * increased by one. If it is, increase the variable of "count" by one which would
 * be checked as the result later.
 *
 */
static int
test_atomic_inc_and_test(__rte_unused void *arg)
{
	while (rte_atomic32_read(&synchro) == 0)
		;

	if (rte_atomic16_inc_and_test(&a16)) {
		rte_atomic64_inc(&count);
	}
	if (rte_atomic32_inc_and_test(&a32)) {
		rte_atomic64_inc(&count);
	}
	if (rte_atomic64_inc_and_test(&a64)) {
		rte_atomic64_inc(&count);
	}

	return 0;
}

/*
 * rte_atomicXX_dec_and_test() should decrease a 32 bits counter by one and then
 * test if that counter is equal to 0. It should return true if the counter is 0
 * and false if the counter is not 0.
 * This test checks if the counter is equal to 0 after being atomically
 * decreased by one. If it is, increase the value of "count" by one which is to
 * be checked as the result later.
 */
static int
test_atomic_dec_and_test(__rte_unused void *arg)
{
	while (rte_atomic32_read(&synchro) == 0)
		;

	if (rte_atomic16_dec_and_test(&a16))
		rte_atomic64_inc(&count);

	if (rte_atomic32_dec_and_test(&a32))
		rte_atomic64_inc(&count);

	if (rte_atomic64_dec_and_test(&a64))
		rte_atomic64_inc(&count);

	return 0;
}

#if defined(RTE_ARCH_X86_64) || defined(RTE_ARCH_ARM64)
static rte_int128_t count128;

/*
 * rte_atomic128_cmp_exchange() should update a 128 bits counter's first 64
 * bits by 2 and the second 64 bits by 1 in this test. It should return true
 * if the compare exchange operation is successful.
 * This test repeats 128 bits compare and swap operations N rounds. In each
 * iteration it runs compare and swap operation with different memory models.
 */
static int
test_atomic128_cmp_exchange(__rte_unused void *arg)
{
	rte_int128_t expected;
	int success;
	unsigned int i;

	while (rte_atomic32_read(&synchro) == 0)
		;

	expected = count128;

	for (i = 0; i < N; i++) {
		do {
			rte_int128_t desired;

			desired.val[0] = expected.val[0] + 2;
			desired.val[1] = expected.val[1] + 1;

			success = rte_atomic128_cmp_exchange(&count128,
				&expected, &desired, 1,
				__ATOMIC_ACQUIRE, __ATOMIC_RELAXED);
		} while (success == 0);

		do {
			rte_int128_t desired;

			desired.val[0] = expected.val[0] + 2;
			desired.val[1] = expected.val[1] + 1;

			success = rte_atomic128_cmp_exchange(&count128,
					&expected, &desired, 1,
					__ATOMIC_RELEASE, __ATOMIC_RELAXED);
		} while (success == 0);

		do {
			rte_int128_t desired;

			desired.val[0] = expected.val[0] + 2;
			desired.val[1] = expected.val[1] + 1;

			success = rte_atomic128_cmp_exchange(&count128,
					&expected, &desired, 1,
					__ATOMIC_ACQ_REL, __ATOMIC_RELAXED);
		} while (success == 0);

		do {
			rte_int128_t desired;

			desired.val[0] = expected.val[0] + 2;
			desired.val[1] = expected.val[1] + 1;

			success = rte_atomic128_cmp_exchange(&count128,
					&expected, &desired, 1,
					__ATOMIC_RELAXED, __ATOMIC_RELAXED);
		} while (success == 0);
	}

	return 0;
}
#endif

/*
 * Helper definitions/variables/functions for
 * atomic exchange tests
 */
typedef union {
	uint16_t u16;
	uint8_t  u8[2];
} test16_t;

typedef union {
	uint32_t u32;
	uint16_t u16[2];
	uint8_t  u8[4];
} test32_t;

typedef union {
	uint64_t u64;
	uint32_t u32[2];
	uint16_t u16[4];
	uint8_t  u8[8];
} test64_t;

const uint8_t CRC8_POLY = 0x91;
uint8_t crc8_table[256];

volatile uint16_t token16;
volatile uint32_t token32;
volatile uint64_t token64;

static void
build_crc8_table(void)
{
	uint8_t val;
	int i, j;

	for (i = 0; i < 256; i++) {
		val = i;
		for (j = 0; j < 8; j++) {
			if (val & 1)
				val ^= CRC8_POLY;
			val >>= 1;
		}
		crc8_table[i] = val;
	}
}

static uint8_t
get_crc8(uint8_t *message, int length)
{
	uint8_t crc = 0;
	int i;

	for (i = 0; i < length; i++)
		crc = crc8_table[crc ^ message[i]];
	return crc;
}

/*
 * The atomic exchange test sets up a token in memory and
 * then spins up multiple lcores whose job is to generate
 * new tokens, exchange that new token for the old one held
 * in memory, and then verify that the old token is still
 * valid (i.e. the exchange did not corrupt the token).
 *
 * A token is made up of random data and 8 bits of crc
 * covering that random data.  The following is an example
 * of a 64bit token.
 *
 * +------------+------------+
 * | 63      56 | 55       0 |
 * +------------+------------+
 * |    CRC8    |    Data    |
 * +------------+------------+
 */
static int
test_atomic_exchange(__rte_unused void *arg)
{
	int i;
	test16_t nt16, ot16; /* new token, old token */
	test32_t nt32, ot32;
	test64_t nt64, ot64;

	/* Wait until all of the other threads have been dispatched */
	while (rte_atomic32_read(&synchro) == 0)
		;

	/*
	 * Let the battle begin! Every thread attempts to steal the current
	 * token with an atomic exchange operation and install its own newly
	 * generated token. If the old token is valid (i.e. it has the
	 * appropriate crc32 hash for the data) then the test iteration has
	 * passed.  If the token is invalid, increment the counter.
	 */
	for (i = 0; i < N; i++) {

		/* Test 64bit Atomic Exchange */
		nt64.u64 = rte_rand();
		nt64.u8[7] = get_crc8(&nt64.u8[0], sizeof(nt64) - 1);
		ot64.u64 = rte_atomic64_exchange(&token64, nt64.u64);
		if (ot64.u8[7] != get_crc8(&ot64.u8[0], sizeof(ot64) - 1))
			rte_atomic64_inc(&count);

		/* Test 32bit Atomic Exchange */
		nt32.u32 = (uint32_t)rte_rand();
		nt32.u8[3] = get_crc8(&nt32.u8[0], sizeof(nt32) - 1);
		ot32.u32 = rte_atomic32_exchange(&token32, nt32.u32);
		if (ot32.u8[3] != get_crc8(&ot32.u8[0], sizeof(ot32) - 1))
			rte_atomic64_inc(&count);

		/* Test 16bit Atomic Exchange */
		nt16.u16 = (uint16_t)rte_rand();
		nt16.u8[1] = get_crc8(&nt16.u8[0], sizeof(nt16) - 1);
		ot16.u16 = rte_atomic16_exchange(&token16, nt16.u16);
		if (ot16.u8[1] != get_crc8(&ot16.u8[0], sizeof(ot16) - 1))
			rte_atomic64_inc(&count);
	}

	return 0;
}
static int
test_atomic(void)
{
	rte_atomic16_init(&a16);
	rte_atomic32_init(&a32);
	rte_atomic64_init(&a64);
	rte_atomic64_init(&count);
	rte_atomic32_init(&synchro);

	rte_atomic16_set(&a16, 1UL << 10);
	rte_atomic32_set(&a32, 1UL << 10);
	rte_atomic64_set(&a64, 1ULL << 33);

	printf("usual inc/dec/add/sub functions\n");

	rte_eal_mp_remote_launch(test_atomic_usual, NULL, SKIP_MAIN);
	rte_atomic32_set(&synchro, 1);
	rte_eal_mp_wait_lcore();
	rte_atomic32_set(&synchro, 0);

	if (rte_atomic16_read(&a16) != 1UL << 10) {
		printf("Atomic16 usual functions failed\n");
		return -1;
	}

	if (rte_atomic32_read(&a32) != 1UL << 10) {
		printf("Atomic32 usual functions failed\n");
		return -1;
	}

	if (rte_atomic64_read(&a64) != 1ULL << 33) {
		printf("Atomic64 usual functions failed\n");
		return -1;
	}

	printf("test and set\n");

	rte_atomic64_set(&a64, 0);
	rte_atomic32_set(&a32, 0);
	rte_atomic16_set(&a16, 0);
	rte_atomic64_set(&count, 0);
	rte_eal_mp_remote_launch(test_atomic_tas, NULL, SKIP_MAIN);
	rte_atomic32_set(&synchro, 1);
	rte_eal_mp_wait_lcore();
	rte_atomic32_set(&synchro, 0);

	if (rte_atomic64_read(&count) != NUM_ATOMIC_TYPES) {
		printf("Atomic test and set failed\n");
		return -1;
	}

	printf("add/sub and return\n");

	rte_atomic64_set(&a64, 0);
	rte_atomic32_set(&a32, 0);
	rte_atomic16_set(&a16, 0);
	rte_atomic64_set(&count, 0);
	rte_eal_mp_remote_launch(test_atomic_addsub_and_return, NULL,
				 SKIP_MAIN);
	rte_atomic32_set(&synchro, 1);
	rte_eal_mp_wait_lcore();
	rte_atomic32_set(&synchro, 0);

	if (rte_atomic64_read(&count) != 0) {
		printf("Atomic add/sub+return failed\n");
		return -1;
	}

	/*
	 * Set a64, a32 and a16 with the same value of minus "number of worker
	 * lcores", launch all worker lcores to atomically increase by one and
	 * test them respectively.
	 * Each lcore should have only one chance to increase a64 by one and
	 * then check if it is equal to 0, but there should be only one lcore
	 * that finds that it is 0. It is similar for a32 and a16.
	 * Then a variable of "count", initialized to zero, is increased by
	 * one if a64, a32 or a16 is 0 after being increased and tested
	 * atomically.
	 * We can check if "count" is finally equal to 3 to see if all worker
	 * lcores performed "atomic inc and test" right.
	 */
	printf("inc and test\n");

	rte_atomic64_clear(&a64);
	rte_atomic32_clear(&a32);
	rte_atomic16_clear(&a16);
	rte_atomic32_clear(&synchro);
	rte_atomic64_clear(&count);

	rte_atomic64_set(&a64, (int64_t)(1 - (int64_t)rte_lcore_count()));
	rte_atomic32_set(&a32, (int32_t)(1 - (int32_t)rte_lcore_count()));
	rte_atomic16_set(&a16, (int16_t)(1 - (int16_t)rte_lcore_count()));
	rte_eal_mp_remote_launch(test_atomic_inc_and_test, NULL, SKIP_MAIN);
	rte_atomic32_set(&synchro, 1);
	rte_eal_mp_wait_lcore();
	rte_atomic32_clear(&synchro);

	if (rte_atomic64_read(&count) != NUM_ATOMIC_TYPES) {
		printf("Atomic inc and test failed %d\n", (int)count.cnt);
		return -1;
	}

	/*
	 * Same as above, but this time we set the values to "number of worker
	 * lcores", and decrement instead of increment.
	 */
	printf("dec and test\n");

	rte_atomic32_clear(&synchro);
	rte_atomic64_clear(&count);

	rte_atomic64_set(&a64, (int64_t)(rte_lcore_count() - 1));
	rte_atomic32_set(&a32, (int32_t)(rte_lcore_count() - 1));
	rte_atomic16_set(&a16, (int16_t)(rte_lcore_count() - 1));
	rte_eal_mp_remote_launch(test_atomic_dec_and_test, NULL, SKIP_MAIN);
	rte_atomic32_set(&synchro, 1);
	rte_eal_mp_wait_lcore();
	rte_atomic32_clear(&synchro);

	if (rte_atomic64_read(&count) != NUM_ATOMIC_TYPES) {
		printf("Atomic dec and test failed\n");
		return -1;
	}

#if defined(RTE_ARCH_X86_64) || defined(RTE_ARCH_ARM64)
	/*
	 * This case tests the functionality of rte_atomic128_cmp_exchange
	 * API. It calls rte_atomic128_cmp_exchange with four kinds of memory
	 * models successively on each worker core. Once each 128-bit atomic
	 * compare and swap operation is successful, it updates the global
	 * 128-bit counter by 2 for the first 64-bit and 1 for the second
	 * 64-bit. Each worker core iterates this test N times.
	 * At the end of test, verify whether the first 64-bits of the 128-bit
	 * counter and the second 64bits is differ by the total iterations. If
	 * it is, the test passes.
	 */
	printf("128-bit compare and swap test\n");
	uint64_t iterations = 0;

	rte_atomic32_clear(&synchro);
	count128.val[0] = 0;
	count128.val[1] = 0;

	rte_eal_mp_remote_launch(test_atomic128_cmp_exchange, NULL,
				 SKIP_MAIN);
	rte_atomic32_set(&synchro, 1);
	rte_eal_mp_wait_lcore();
	rte_atomic32_clear(&synchro);

	iterations = count128.val[0] - count128.val[1];
	if (iterations != 4*N*(rte_lcore_count()-1)) {
		printf("128-bit compare and swap failed\n");
		return -1;
	}
#endif

	/*
	 * Test 16/32/64bit atomic exchange.
	 */
	test64_t t;

	printf("exchange test\n");

	rte_atomic32_clear(&synchro);
	rte_atomic64_clear(&count);

	/* Generate the CRC8 lookup table */
	build_crc8_table();

	/* Create the initial tokens used by the test */
	t.u64 = rte_rand();
	token16 = (get_crc8(&t.u8[0], sizeof(token16) - 1) << 8)
		| (t.u16[0] & 0x00ff);
	token32 = ((uint32_t)get_crc8(&t.u8[0], sizeof(token32) - 1) << 24)
		| (t.u32[0] & 0x00ffffff);
	token64 = ((uint64_t)get_crc8(&t.u8[0], sizeof(token64) - 1) << 56)
		| (t.u64 & 0x00ffffffffffffff);

	rte_eal_mp_remote_launch(test_atomic_exchange, NULL, SKIP_MAIN);
	rte_atomic32_set(&synchro, 1);
	rte_eal_mp_wait_lcore();
	rte_atomic32_clear(&synchro);

	if (rte_atomic64_read(&count) > 0) {
		printf("Atomic exchange test failed\n");
		return -1;
	}

	return 0;
}
REGISTER_TEST_COMMAND(atomic_autotest, test_atomic);