DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2020 Intel Corporation
 */

#include <stdio.h>
#include <rte_ip.h>
#include <rte_malloc.h>
#include <rte_ring.h>
#include <rte_mbuf.h>
#include <rte_cycles.h>
#include <rte_ipsec.h>
#include <rte_random.h>

#include "test.h"
#include "test_cryptodev.h"

#define RING_SIZE	4096
#define BURST_SIZE	64
#define NUM_MBUF	4095
#define DEFAULT_SPI     7

struct ipsec_test_cfg {
	uint32_t replay_win_sz;
	uint32_t esn;
	uint64_t flags;
	enum rte_crypto_sym_xform_type type;
};

struct rte_mempool *mbuf_pool, *cop_pool;

struct stats_counter {
	uint64_t nb_prepare_call;
	uint64_t nb_prepare_pkt;
	uint64_t nb_process_call;
	uint64_t nb_process_pkt;
	uint64_t prepare_ticks_elapsed;
	uint64_t process_ticks_elapsed;
};

struct ipsec_sa {
	struct rte_ipsec_session ss[2];
	struct rte_ipsec_sa_prm sa_prm;
	struct rte_security_ipsec_xform ipsec_xform;
	struct rte_crypto_sym_xform cipher_xform;
	struct rte_crypto_sym_xform auth_xform;
	struct rte_crypto_sym_xform aead_xform;
	struct rte_crypto_sym_xform *crypto_xforms;
	struct rte_crypto_op *cop[BURST_SIZE];
	enum rte_crypto_sym_xform_type type;
	struct stats_counter cnt;
	uint32_t replay_win_sz;
	uint32_t sa_flags;
};

static const struct ipsec_test_cfg test_cfg[] = {
	{0, 0, 0, RTE_CRYPTO_SYM_XFORM_AEAD},
	{0, 0, 0, RTE_CRYPTO_SYM_XFORM_CIPHER},
	{128, 1, 0, RTE_CRYPTO_SYM_XFORM_AEAD},
	{128, 1, 0, RTE_CRYPTO_SYM_XFORM_CIPHER},

};

static struct rte_ipv4_hdr ipv4_outer  = {
	.version_ihl = IPVERSION << 4 |
		sizeof(ipv4_outer) / RTE_IPV4_IHL_MULTIPLIER,
	.time_to_live = IPDEFTTL,
	.next_proto_id = IPPROTO_ESP,
	.src_addr = RTE_IPV4(192, 168, 1, 100),
	.dst_addr = RTE_IPV4(192, 168, 2, 100),
};

static struct rte_ring *ring_inb_prepare;
static struct rte_ring *ring_inb_process;
static struct rte_ring *ring_outb_prepare;
static struct rte_ring *ring_outb_process;

struct supported_cipher_algo {
	const char *keyword;
	enum rte_crypto_cipher_algorithm algo;
	uint16_t iv_len;
	uint16_t block_size;
	uint16_t key_len;
};

struct supported_auth_algo {
	const char *keyword;
	enum rte_crypto_auth_algorithm algo;
	uint16_t digest_len;
	uint16_t key_len;
	uint8_t key_not_req;
};

struct supported_aead_algo {
	const char *keyword;
	enum rte_crypto_aead_algorithm algo;
	uint16_t iv_len;
	uint16_t block_size;
	uint16_t digest_len;
	uint16_t key_len;
	uint8_t aad_len;
};

const struct supported_cipher_algo cipher_algo[] = {
	{
		.keyword = "aes-128-cbc",
		.algo = RTE_CRYPTO_CIPHER_AES_CBC,
		.iv_len = 16,
		.block_size = 16,
		.key_len = 16
	}
};

const struct supported_auth_algo auth_algo[] = {
	{
		.keyword = "sha1-hmac",
		.algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
		.digest_len = 12,
		.key_len = 20
	}
};

const struct supported_aead_algo aead_algo[] = {
	{
		.keyword = "aes-128-gcm",
		.algo = RTE_CRYPTO_AEAD_AES_GCM,
		.iv_len = 8,
		.block_size = 4,
		.key_len = 20,
		.digest_len = 16,
		.aad_len = 8,
	}
};

static struct rte_mbuf *generate_mbuf_data(struct rte_mempool *mpool)
{
	struct rte_mbuf *mbuf = rte_pktmbuf_alloc(mpool);

	if (mbuf) {
		mbuf->data_len = 64;
		mbuf->pkt_len  = 64;
	}

	return mbuf;
}

static int
fill_ipsec_param(struct ipsec_sa *sa)
{
	struct rte_ipsec_sa_prm *prm = &sa->sa_prm;

	memset(prm, 0, sizeof(*prm));

	prm->flags = sa->sa_flags;

	/* setup ipsec xform */
	prm->ipsec_xform = sa->ipsec_xform;
	prm->ipsec_xform.salt = (uint32_t)rte_rand();
	prm->ipsec_xform.replay_win_sz = sa->replay_win_sz;

	/* setup tunnel related fields */
	prm->tun.hdr_len = sizeof(ipv4_outer);
	prm->tun.next_proto = IPPROTO_IPIP;
	prm->tun.hdr = &ipv4_outer;

	if (sa->type == RTE_CRYPTO_SYM_XFORM_AEAD) {
		sa->aead_xform.type = sa->type;
		sa->aead_xform.aead.algo = aead_algo->algo;
		sa->aead_xform.next = NULL;
		sa->aead_xform.aead.digest_length = aead_algo->digest_len;
		sa->aead_xform.aead.iv.offset = IV_OFFSET;
		sa->aead_xform.aead.iv.length = 12;

		if (sa->ipsec_xform.direction ==
				RTE_SECURITY_IPSEC_SA_DIR_INGRESS) {
			sa->aead_xform.aead.op = RTE_CRYPTO_AEAD_OP_DECRYPT;
		} else {
			sa->aead_xform.aead.op = RTE_CRYPTO_AEAD_OP_ENCRYPT;
		}

		sa->crypto_xforms = &sa->aead_xform;
	} else {
		sa->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
		sa->cipher_xform.cipher.algo = cipher_algo->algo;
		sa->cipher_xform.cipher.iv.offset = IV_OFFSET;
		sa->cipher_xform.cipher.iv.length = 12;
		sa->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH;
		sa->auth_xform.auth.algo = auth_algo->algo;
		sa->auth_xform.auth.digest_length = auth_algo->digest_len;


		if (sa->ipsec_xform.direction ==
				RTE_SECURITY_IPSEC_SA_DIR_INGRESS) {
			sa->cipher_xform.cipher.op =
				RTE_CRYPTO_CIPHER_OP_DECRYPT;
			sa->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_VERIFY;
			sa->cipher_xform.next = NULL;
			sa->auth_xform.next = &sa->cipher_xform;
			sa->crypto_xforms = &sa->auth_xform;
		} else {
			sa->cipher_xform.cipher.op =
				RTE_CRYPTO_CIPHER_OP_ENCRYPT;
			sa->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE;
			sa->auth_xform.next = NULL;
			sa->cipher_xform.next = &sa->auth_xform;
			sa->crypto_xforms = &sa->cipher_xform;
		}
	}

	prm->crypto_xform = sa->crypto_xforms;

	return TEST_SUCCESS;
}

static int
create_sa(enum rte_security_session_action_type action_type,
	  struct ipsec_sa *sa)
{
	static struct rte_cryptodev_sym_session dummy_ses;
	size_t sz;
	int rc;

	memset(&sa->ss[0], 0, sizeof(sa->ss[0]));

	rc = fill_ipsec_param(sa);
	if (rc != 0) {
		printf("failed to fill ipsec param\n");
		return TEST_FAILED;
	}

	sz = rte_ipsec_sa_size(&sa->sa_prm);
	TEST_ASSERT(sz > 0, "rte_ipsec_sa_size() failed\n");

	sa->ss[0].sa = rte_zmalloc(NULL, sz, RTE_CACHE_LINE_SIZE);
	TEST_ASSERT_NOT_NULL(sa->ss[0].sa,
		"failed to allocate memory for rte_ipsec_sa\n");

	sa->ss[0].type = action_type;
	sa->ss[0].crypto.ses = &dummy_ses;

	rc = rte_ipsec_sa_init(sa->ss[0].sa, &sa->sa_prm, sz);
	rc = (rc > 0 && (uint32_t)rc <= sz) ? 0 : -EINVAL;

	if (rc == 0)
		rc = rte_ipsec_session_prepare(&sa->ss[0]);
	else
		return TEST_FAILED;

	return TEST_SUCCESS;
}

static int
packet_prepare(struct rte_mbuf **buf, struct ipsec_sa *sa,
	       uint16_t num_pkts)
{
	uint64_t time_stamp;
	uint16_t k = 0, i;

	for (i = 0; i < num_pkts; i++) {

		sa->cop[i] = rte_crypto_op_alloc(cop_pool,
				RTE_CRYPTO_OP_TYPE_SYMMETRIC);

		if (sa->cop[i] == NULL) {

			RTE_LOG(ERR, USER1,
			"Failed to allocate symmetric crypto op\n");

			return k;
		}
	}

	time_stamp = rte_rdtsc_precise();

	k = rte_ipsec_pkt_crypto_prepare(&sa->ss[0], buf,
		sa->cop, num_pkts);

	time_stamp = rte_rdtsc_precise() - time_stamp;

	if (k != num_pkts) {
		RTE_LOG(ERR, USER1, "rte_ipsec_pkt_crypto_prepare fail\n");
		return k;
	}

	sa->cnt.prepare_ticks_elapsed += time_stamp;
	sa->cnt.nb_prepare_call++;
	sa->cnt.nb_prepare_pkt += k;

	for (i = 0; i < num_pkts; i++)
		rte_crypto_op_free(sa->cop[i]);

	return k;
}

static int
packet_process(struct rte_mbuf **buf, struct ipsec_sa *sa,
	       uint16_t num_pkts)
{
	uint64_t time_stamp;
	uint16_t k = 0;

	time_stamp = rte_rdtsc_precise();

	k = rte_ipsec_pkt_process(&sa->ss[0], buf, num_pkts);

	time_stamp = rte_rdtsc_precise() - time_stamp;

	if (k != num_pkts) {
		RTE_LOG(ERR, USER1, "rte_ipsec_pkt_process fail\n");
		return k;
	}

	sa->cnt.process_ticks_elapsed += time_stamp;
	sa->cnt.nb_process_call++;
	sa->cnt.nb_process_pkt += k;

	return k;
}

static int
create_traffic(struct ipsec_sa *sa, struct rte_ring *deq_ring,
	       struct rte_ring *enq_ring, struct rte_ring *ring)
{
	struct rte_mbuf *mbuf[BURST_SIZE];
	uint16_t num_pkts, n;

	while (rte_ring_empty(deq_ring) == 0) {

		num_pkts = rte_ring_sc_dequeue_burst(deq_ring, (void **)mbuf,
						     RTE_DIM(mbuf), NULL);

		if (num_pkts == 0)
			return TEST_FAILED;

		n = packet_prepare(mbuf, sa, num_pkts);
		if (n != num_pkts)
			return TEST_FAILED;

		num_pkts = rte_ring_sp_enqueue_burst(enq_ring, (void **)mbuf,
						     num_pkts, NULL);
		if (num_pkts == 0)
			return TEST_FAILED;
	}

	deq_ring = enq_ring;
	enq_ring = ring;

	while (rte_ring_empty(deq_ring) == 0) {

		num_pkts = rte_ring_sc_dequeue_burst(deq_ring, (void **)mbuf,
					       RTE_DIM(mbuf), NULL);
		if (num_pkts == 0)
			return TEST_FAILED;

		n = packet_process(mbuf, sa, num_pkts);
		if (n != num_pkts)
			return TEST_FAILED;

		num_pkts = rte_ring_sp_enqueue_burst(enq_ring, (void **)mbuf,
					       num_pkts, NULL);
		if (num_pkts == 0)
			return TEST_FAILED;
	}

	return TEST_SUCCESS;
}

static void
fill_ipsec_sa_out(const struct ipsec_test_cfg *test_cfg,
		  struct ipsec_sa *sa)
{
	sa->ipsec_xform.spi = DEFAULT_SPI;
	sa->ipsec_xform.direction = RTE_SECURITY_IPSEC_SA_DIR_EGRESS;
	sa->ipsec_xform.proto = RTE_SECURITY_IPSEC_SA_PROTO_ESP;
	sa->ipsec_xform.mode = RTE_SECURITY_IPSEC_SA_MODE_TUNNEL;
	sa->ipsec_xform.tunnel.type = RTE_SECURITY_IPSEC_TUNNEL_IPV4;
	sa->ipsec_xform.options.esn = test_cfg->esn;
	sa->type = test_cfg->type;
	sa->replay_win_sz = test_cfg->replay_win_sz;
	sa->sa_flags = test_cfg->flags;
	sa->cnt.nb_prepare_call = 0;
	sa->cnt.nb_prepare_pkt = 0;
	sa->cnt.nb_process_call = 0;
	sa->cnt.nb_process_pkt = 0;
	sa->cnt.process_ticks_elapsed = 0;
	sa->cnt.prepare_ticks_elapsed = 0;

}

static void
fill_ipsec_sa_in(const struct ipsec_test_cfg *test_cfg,
		  struct ipsec_sa *sa)
{
	sa->ipsec_xform.spi = DEFAULT_SPI;
	sa->ipsec_xform.direction = RTE_SECURITY_IPSEC_SA_DIR_INGRESS;
	sa->ipsec_xform.proto = RTE_SECURITY_IPSEC_SA_PROTO_ESP;
	sa->ipsec_xform.mode = RTE_SECURITY_IPSEC_SA_MODE_TUNNEL;
	sa->ipsec_xform.tunnel.type = RTE_SECURITY_IPSEC_TUNNEL_IPV4;
	sa->ipsec_xform.options.esn = test_cfg->esn;
	sa->type = test_cfg->type;
	sa->replay_win_sz = test_cfg->replay_win_sz;
	sa->sa_flags = test_cfg->flags;
	sa->cnt.nb_prepare_call = 0;
	sa->cnt.nb_prepare_pkt = 0;
	sa->cnt.nb_process_call = 0;
	sa->cnt.nb_process_pkt = 0;
	sa->cnt.process_ticks_elapsed = 0;
	sa->cnt.prepare_ticks_elapsed = 0;
}

static int
init_sa_session(const struct ipsec_test_cfg *test_cfg,
		struct ipsec_sa *sa_out, struct ipsec_sa *sa_in)
{

	int rc;

	fill_ipsec_sa_in(test_cfg, sa_in);
	fill_ipsec_sa_out(test_cfg, sa_out);

	rc = create_sa(RTE_SECURITY_ACTION_TYPE_NONE, sa_out);
	if (rc != 0) {
		RTE_LOG(ERR, USER1, "out bound create_sa failed, cfg\n");
		return TEST_FAILED;
	}

	rc = create_sa(RTE_SECURITY_ACTION_TYPE_NONE, sa_in);
	if (rc != 0) {
		RTE_LOG(ERR, USER1, "out bound create_sa failed, cfg\n");
		return TEST_FAILED;
	}

	return TEST_SUCCESS;
}

static int
testsuite_setup(void)
{
	struct rte_mbuf *mbuf;
	int i;

	mbuf_pool = rte_pktmbuf_pool_create("IPSEC_PERF_MBUFPOOL",
			NUM_MBUFS, MBUF_CACHE_SIZE, 0, MBUF_SIZE,
			rte_socket_id());
	if (mbuf_pool == NULL) {
		RTE_LOG(ERR, USER1, "Can't create MBUFPOOL\n");
		return TEST_FAILED;
	}

	cop_pool = rte_crypto_op_pool_create(
			"MBUF_CRYPTO_SYM_OP_POOL",
			RTE_CRYPTO_OP_TYPE_SYMMETRIC,
			NUM_MBUFS, MBUF_CACHE_SIZE,
			DEFAULT_NUM_XFORMS *
			sizeof(struct rte_crypto_sym_xform) +
			MAXIMUM_IV_LENGTH,
			rte_socket_id());
	if (cop_pool == NULL) {
		RTE_LOG(ERR, USER1, "Can't create CRYPTO_OP_POOL\n");
		return TEST_FAILED;
	}

	ring_inb_prepare = rte_ring_create("ipsec_test_ring_inb_prepare",
					   RING_SIZE, SOCKET_ID_ANY, 0);
	if (ring_inb_prepare == NULL)
		return TEST_FAILED;

	ring_inb_process = rte_ring_create("ipsec_test_ring_inb_process",
					   RING_SIZE, SOCKET_ID_ANY, 0);
	if (ring_inb_process == NULL)
		return TEST_FAILED;

	ring_outb_prepare = rte_ring_create("ipsec_test_ring_outb_prepare",
					    RING_SIZE, SOCKET_ID_ANY, 0);
	if (ring_outb_prepare == NULL)
		return TEST_FAILED;

	ring_outb_process = rte_ring_create("ipsec_test_ring_outb_process",
					    RING_SIZE, SOCKET_ID_ANY, 0);
	if (ring_outb_process == NULL)
		return TEST_FAILED;

	for (i = 0; i < NUM_MBUF; i++) {
		mbuf = generate_mbuf_data(mbuf_pool);

		if (mbuf && rte_ring_sp_enqueue_bulk(ring_inb_prepare,
			   (void **)&mbuf, 1, NULL))
			continue;
		else
			return TEST_FAILED;
	}

	return TEST_SUCCESS;
}

static int
measure_performance(struct ipsec_sa *sa_out, struct ipsec_sa *sa_in)
{
	uint64_t time_diff = 0;
	uint64_t begin = 0;
	uint64_t hz = rte_get_timer_hz();

	begin = rte_get_timer_cycles();

	do {
		if (create_traffic(sa_out, ring_inb_prepare, ring_inb_process,
				   ring_outb_prepare) < 0)
			return TEST_FAILED;

		if (create_traffic(sa_in, ring_outb_prepare, ring_outb_process,
				   ring_inb_prepare) < 0)
			return TEST_FAILED;

		time_diff = rte_get_timer_cycles() - begin;

	} while (time_diff < (hz * 10));

	return TEST_SUCCESS;
}

static void
print_metrics(const struct ipsec_test_cfg *test_cfg,
	      struct ipsec_sa *sa_out, struct ipsec_sa *sa_in)
{
	printf("\nMetrics of libipsec prepare/process api:\n");

	printf("replay window size = %u\n", test_cfg->replay_win_sz);
	if (test_cfg->esn)
		printf("replay esn is enabled\n");
	else
		printf("replay esn is disabled\n");
	if (test_cfg->type == RTE_CRYPTO_SYM_XFORM_AEAD)
		printf("AEAD algo is AES_GCM\n");
	else
		printf("CIPHER/AUTH algo is AES_CBC/SHA1\n");


	printf("avg cycles for a pkt prepare in outbound is = %.2Lf\n",
	(long double)sa_out->cnt.prepare_ticks_elapsed
		    / sa_out->cnt.nb_prepare_pkt);
	printf("avg cycles for a pkt process in outbound is = %.2Lf\n",
	(long double)sa_out->cnt.process_ticks_elapsed
		     / sa_out->cnt.nb_process_pkt);
	printf("avg cycles for a pkt prepare in inbound is = %.2Lf\n",
	(long double)sa_in->cnt.prepare_ticks_elapsed
		     / sa_in->cnt.nb_prepare_pkt);
	printf("avg cycles for a pkt process in inbound is = %.2Lf\n",
	(long double)sa_in->cnt.process_ticks_elapsed
		     / sa_in->cnt.nb_process_pkt);

}

static void
testsuite_teardown(void)
{
	if (mbuf_pool != NULL) {
		RTE_LOG(DEBUG, USER1, "MBUFPOOL count %u\n",
		rte_mempool_avail_count(mbuf_pool));
		rte_mempool_free(mbuf_pool);
		mbuf_pool = NULL;
	}

	if (cop_pool != NULL) {
		RTE_LOG(DEBUG, USER1, "CRYPTO_OP_POOL count %u\n",
		rte_mempool_avail_count(cop_pool));
		rte_mempool_free(cop_pool);
		cop_pool = NULL;
	}

	rte_ring_free(ring_inb_prepare);
	rte_ring_free(ring_inb_process);
	rte_ring_free(ring_outb_prepare);
	rte_ring_free(ring_outb_process);

	ring_inb_prepare = NULL;
	ring_inb_process = NULL;
	ring_outb_prepare = NULL;
	ring_outb_process = NULL;
}

static int
test_libipsec_perf(void)
{
	struct ipsec_sa sa_out;
	struct ipsec_sa sa_in;
	uint32_t i;
	int ret;

	if (testsuite_setup() < 0) {
		testsuite_teardown();
		return TEST_FAILED;
	}

	for (i = 0; i < RTE_DIM(test_cfg) ; i++) {

		ret = init_sa_session(&test_cfg[i], &sa_out, &sa_in);
		if (ret != 0) {
			testsuite_teardown();
			return TEST_FAILED;
		}

		if (measure_performance(&sa_out, &sa_in) < 0) {
			testsuite_teardown();
			return TEST_FAILED;
		}

		print_metrics(&test_cfg[i], &sa_out, &sa_in);
	}

	testsuite_teardown();

	return TEST_SUCCESS;
}

REGISTER_TEST_COMMAND(ipsec_perf_autotest, test_libipsec_perf);