DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
/*   SPDX-License-Identifier: BSD-3-Clause
 *   Copyright(c) 2018 Advanced Micro Devices, Inc. All rights reserved.
 */

#include <dirent.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/queue.h>
#include <sys/types.h>
#include <sys/file.h>
#include <unistd.h>

#include <rte_hexdump.h>
#include <rte_memzone.h>
#include <rte_malloc.h>
#include <rte_memory.h>
#include <rte_spinlock.h>
#include <rte_string_fns.h>

#include "ccp_dev.h"
#include "ccp_pci.h"
#include "ccp_pmd_private.h"

struct ccp_list ccp_list = TAILQ_HEAD_INITIALIZER(ccp_list);
static int ccp_dev_id;

int
ccp_dev_start(struct rte_cryptodev *dev)
{
	struct ccp_private *priv = dev->data->dev_private;

	priv->last_dev = TAILQ_FIRST(&ccp_list);
	return 0;
}

struct ccp_queue *
ccp_allot_queue(struct rte_cryptodev *cdev, int slot_req)
{
	int i, ret = 0;
	struct ccp_device *dev;
	struct ccp_private *priv = cdev->data->dev_private;

	dev = TAILQ_NEXT(priv->last_dev, next);
	if (unlikely(dev == NULL))
		dev = TAILQ_FIRST(&ccp_list);
	priv->last_dev = dev;
	if (dev->qidx >= dev->cmd_q_count)
		dev->qidx = 0;
	ret = rte_atomic64_read(&dev->cmd_q[dev->qidx].free_slots);
	if (ret >= slot_req)
		return &dev->cmd_q[dev->qidx];
	for (i = 0; i < dev->cmd_q_count; i++) {
		dev->qidx++;
		if (dev->qidx >= dev->cmd_q_count)
			dev->qidx = 0;
		ret = rte_atomic64_read(&dev->cmd_q[dev->qidx].free_slots);
		if (ret >= slot_req)
			return &dev->cmd_q[dev->qidx];
	}
	return NULL;
}

int
ccp_read_hwrng(uint32_t *value)
{
	struct ccp_device *dev;

	TAILQ_FOREACH(dev, &ccp_list, next) {
		void *vaddr = (void *)(dev->pci.mem_resource[2].addr);

		while (dev->hwrng_retries++ < CCP_MAX_TRNG_RETRIES) {
			*value = CCP_READ_REG(vaddr, TRNG_OUT_REG);
			if (*value) {
				dev->hwrng_retries = 0;
				return 0;
			}
		}
		dev->hwrng_retries = 0;
	}
	return -1;
}

static const struct rte_memzone *
ccp_queue_dma_zone_reserve(const char *queue_name,
			   uint32_t queue_size,
			   int socket_id)
{
	const struct rte_memzone *mz;

	mz = rte_memzone_lookup(queue_name);
	if (mz != 0) {
		if (((size_t)queue_size <= mz->len) &&
		    ((socket_id == SOCKET_ID_ANY) ||
		     (socket_id == mz->socket_id))) {
			CCP_LOG_INFO("re-use memzone already "
				     "allocated for %s", queue_name);
			return mz;
		}
		CCP_LOG_ERR("Incompatible memzone already "
			    "allocated %s, size %u, socket %d. "
			    "Requested size %u, socket %u",
			    queue_name, (uint32_t)mz->len,
			    mz->socket_id, queue_size, socket_id);
		return NULL;
	}

	CCP_LOG_INFO("Allocate memzone for %s, size %u on socket %u",
		     queue_name, queue_size, socket_id);

	return rte_memzone_reserve_aligned(queue_name, queue_size,
			socket_id, RTE_MEMZONE_IOVA_CONTIG, queue_size);
}

/* bitmap support apis */
static inline void
ccp_set_bit(unsigned long *bitmap, int n)
{
	__sync_fetch_and_or(&bitmap[WORD_OFFSET(n)], (1UL << BIT_OFFSET(n)));
}

static inline void
ccp_clear_bit(unsigned long *bitmap, int n)
{
	__sync_fetch_and_and(&bitmap[WORD_OFFSET(n)], ~(1UL << BIT_OFFSET(n)));
}

static inline uint32_t
ccp_get_bit(unsigned long *bitmap, int n)
{
	return ((bitmap[WORD_OFFSET(n)] & (1 << BIT_OFFSET(n))) != 0);
}


static inline uint32_t
ccp_ffz(unsigned long word)
{
	unsigned long first_zero;

	first_zero = __builtin_ffsl(~word);
	return first_zero ? (first_zero - 1) :
		BITS_PER_WORD;
}

static inline uint32_t
ccp_find_first_zero_bit(unsigned long *addr, uint32_t limit)
{
	uint32_t i;
	uint32_t nwords = 0;

	nwords = (limit - 1) / BITS_PER_WORD + 1;
	for (i = 0; i < nwords; i++) {
		if (addr[i] == 0UL)
			return i * BITS_PER_WORD;
		if (addr[i] < ~(0UL))
			break;
	}
	return (i == nwords) ? limit : i * BITS_PER_WORD + ccp_ffz(addr[i]);
}

static void
ccp_bitmap_set(unsigned long *map, unsigned int start, int len)
{
	unsigned long *p = map + WORD_OFFSET(start);
	const unsigned int size = start + len;
	int bits_to_set = BITS_PER_WORD - (start % BITS_PER_WORD);
	unsigned long mask_to_set = CCP_BITMAP_FIRST_WORD_MASK(start);

	while (len - bits_to_set >= 0) {
		*p |= mask_to_set;
		len -= bits_to_set;
		bits_to_set = BITS_PER_WORD;
		mask_to_set = ~0UL;
		p++;
	}
	if (len) {
		mask_to_set &= CCP_BITMAP_LAST_WORD_MASK(size);
		*p |= mask_to_set;
	}
}

static void
ccp_bitmap_clear(unsigned long *map, unsigned int start, int len)
{
	unsigned long *p = map + WORD_OFFSET(start);
	const unsigned int size = start + len;
	int bits_to_clear = BITS_PER_WORD - (start % BITS_PER_WORD);
	unsigned long mask_to_clear = CCP_BITMAP_FIRST_WORD_MASK(start);

	while (len - bits_to_clear >= 0) {
		*p &= ~mask_to_clear;
		len -= bits_to_clear;
		bits_to_clear = BITS_PER_WORD;
		mask_to_clear = ~0UL;
		p++;
	}
	if (len) {
		mask_to_clear &= CCP_BITMAP_LAST_WORD_MASK(size);
		*p &= ~mask_to_clear;
	}
}


static unsigned long
_ccp_find_next_bit(const unsigned long *addr,
		   unsigned long nbits,
		   unsigned long start,
		   unsigned long invert)
{
	unsigned long tmp;

	if (!nbits || start >= nbits)
		return nbits;

	tmp = addr[start / BITS_PER_WORD] ^ invert;

	/* Handle 1st word. */
	tmp &= CCP_BITMAP_FIRST_WORD_MASK(start);
	start = ccp_round_down(start, BITS_PER_WORD);

	while (!tmp) {
		start += BITS_PER_WORD;
		if (start >= nbits)
			return nbits;

		tmp = addr[start / BITS_PER_WORD] ^ invert;
	}

	return RTE_MIN(start + (ffs(tmp) - 1), nbits);
}

static unsigned long
ccp_find_next_bit(const unsigned long *addr,
		  unsigned long size,
		  unsigned long offset)
{
	return _ccp_find_next_bit(addr, size, offset, 0UL);
}

static unsigned long
ccp_find_next_zero_bit(const unsigned long *addr,
		       unsigned long size,
		       unsigned long offset)
{
	return _ccp_find_next_bit(addr, size, offset, ~0UL);
}

/**
 * bitmap_find_next_zero_area - find a contiguous aligned zero area
 * @map: The address to base the search on
 * @size: The bitmap size in bits
 * @start: The bitnumber to start searching at
 * @nr: The number of zeroed bits we're looking for
 */
static unsigned long
ccp_bitmap_find_next_zero_area(unsigned long *map,
			       unsigned long size,
			       unsigned long start,
			       unsigned int nr)
{
	unsigned long index, end, i;

again:
	index = ccp_find_next_zero_bit(map, size, start);

	end = index + nr;
	if (end > size)
		return end;
	i = ccp_find_next_bit(map, end, index);
	if (i < end) {
		start = i + 1;
		goto again;
	}
	return index;
}

static uint32_t
ccp_lsb_alloc(struct ccp_queue *cmd_q, unsigned int count)
{
	struct ccp_device *ccp;
	int start;

	/* First look at the map for the queue */
	if (cmd_q->lsb >= 0) {
		start = (uint32_t)ccp_bitmap_find_next_zero_area(cmd_q->lsbmap,
								 LSB_SIZE, 0,
								 count);
		if (start < LSB_SIZE) {
			ccp_bitmap_set(cmd_q->lsbmap, start, count);
			return start + cmd_q->lsb * LSB_SIZE;
		}
	}

	/* try to get an entry from the shared blocks */
	ccp = cmd_q->dev;

	rte_spinlock_lock(&ccp->lsb_lock);

	start = (uint32_t)ccp_bitmap_find_next_zero_area(ccp->lsbmap,
						    MAX_LSB_CNT * LSB_SIZE,
						    0, count);
	if (start <= MAX_LSB_CNT * LSB_SIZE) {
		ccp_bitmap_set(ccp->lsbmap, start, count);
		rte_spinlock_unlock(&ccp->lsb_lock);
		return start * LSB_ITEM_SIZE;
	}
	CCP_LOG_ERR("NO LSBs available");

	rte_spinlock_unlock(&ccp->lsb_lock);

	return 0;
}

static void __rte_unused
ccp_lsb_free(struct ccp_queue *cmd_q,
	     unsigned int start,
	     unsigned int count)
{
	int lsbno = start / LSB_SIZE;

	if (!start)
		return;

	if (cmd_q->lsb == lsbno) {
		/* An entry from the private LSB */
		ccp_bitmap_clear(cmd_q->lsbmap, start % LSB_SIZE, count);
	} else {
		/* From the shared LSBs */
		struct ccp_device *ccp = cmd_q->dev;

		rte_spinlock_lock(&ccp->lsb_lock);
		ccp_bitmap_clear(ccp->lsbmap, start, count);
		rte_spinlock_unlock(&ccp->lsb_lock);
	}
}

static int
ccp_find_lsb_regions(struct ccp_queue *cmd_q, uint64_t status)
{
	int q_mask = 1 << cmd_q->id;
	int weight = 0;
	int j;

	/* Build a bit mask to know which LSBs
	 * this queue has access to.
	 * Don't bother with segment 0
	 * as it has special
	 * privileges.
	 */
	cmd_q->lsbmask = 0;
	status >>= LSB_REGION_WIDTH;
	for (j = 1; j < MAX_LSB_CNT; j++) {
		if (status & q_mask)
			ccp_set_bit(&cmd_q->lsbmask, j);

		status >>= LSB_REGION_WIDTH;
	}

	for (j = 0; j < MAX_LSB_CNT; j++)
		if (ccp_get_bit(&cmd_q->lsbmask, j))
			weight++;

	printf("Queue %d can access %d LSB regions  of mask  %lu\n",
	       (int)cmd_q->id, weight, cmd_q->lsbmask);

	return weight ? 0 : -EINVAL;
}

static int
ccp_find_and_assign_lsb_to_q(struct ccp_device *ccp,
			     int lsb_cnt, int n_lsbs,
			     unsigned long *lsb_pub)
{
	unsigned long qlsb = 0;
	int bitno = 0;
	int qlsb_wgt = 0;
	int i, j;

	/* For each queue:
	 * If the count of potential LSBs available to a queue matches the
	 * ordinal given to us in lsb_cnt:
	 * Copy the mask of possible LSBs for this queue into "qlsb";
	 * For each bit in qlsb, see if the corresponding bit in the
	 * aggregation mask is set; if so, we have a match.
	 *     If we have a match, clear the bit in the aggregation to
	 *     mark it as no longer available.
	 *     If there is no match, clear the bit in qlsb and keep looking.
	 */
	for (i = 0; i < ccp->cmd_q_count; i++) {
		struct ccp_queue *cmd_q = &ccp->cmd_q[i];

		qlsb_wgt = 0;
		for (j = 0; j < MAX_LSB_CNT; j++)
			if (ccp_get_bit(&cmd_q->lsbmask, j))
				qlsb_wgt++;

		if (qlsb_wgt == lsb_cnt) {
			qlsb = cmd_q->lsbmask;

			bitno = ffs(qlsb) - 1;
			while (bitno < MAX_LSB_CNT) {
				if (ccp_get_bit(lsb_pub, bitno)) {
					/* We found an available LSB
					 * that this queue can access
					 */
					cmd_q->lsb = bitno;
					ccp_clear_bit(lsb_pub, bitno);
					break;
				}
				ccp_clear_bit(&qlsb, bitno);
				bitno = ffs(qlsb) - 1;
			}
			if (bitno >= MAX_LSB_CNT)
				return -EINVAL;
			n_lsbs--;
		}
	}
	return n_lsbs;
}

/* For each queue, from the most- to least-constrained:
 * find an LSB that can be assigned to the queue. If there are N queues that
 * can only use M LSBs, where N > M, fail; otherwise, every queue will get a
 * dedicated LSB. Remaining LSB regions become a shared resource.
 * If we have fewer LSBs than queues, all LSB regions become shared
 * resources.
 */
static int
ccp_assign_lsbs(struct ccp_device *ccp)
{
	unsigned long lsb_pub = 0, qlsb = 0;
	int n_lsbs = 0;
	int bitno;
	int i, lsb_cnt;
	int rc = 0;

	rte_spinlock_init(&ccp->lsb_lock);

	/* Create an aggregate bitmap to get a total count of available LSBs */
	for (i = 0; i < ccp->cmd_q_count; i++)
		lsb_pub |= ccp->cmd_q[i].lsbmask;

	for (i = 0; i < MAX_LSB_CNT; i++)
		if (ccp_get_bit(&lsb_pub, i))
			n_lsbs++;

	if (n_lsbs >= ccp->cmd_q_count) {
		/* We have enough LSBS to give every queue a private LSB.
		 * Brute force search to start with the queues that are more
		 * constrained in LSB choice. When an LSB is privately
		 * assigned, it is removed from the public mask.
		 * This is an ugly N squared algorithm with some optimization.
		 */
		for (lsb_cnt = 1; n_lsbs && (lsb_cnt <= MAX_LSB_CNT);
		     lsb_cnt++) {
			rc = ccp_find_and_assign_lsb_to_q(ccp, lsb_cnt, n_lsbs,
							  &lsb_pub);
			if (rc < 0)
				return -EINVAL;
			n_lsbs = rc;
		}
	}

	rc = 0;
	/* What's left of the LSBs, according to the public mask, now become
	 * shared. Any zero bits in the lsb_pub mask represent an LSB region
	 * that can't be used as a shared resource, so mark the LSB slots for
	 * them as "in use".
	 */
	qlsb = lsb_pub;
	bitno = ccp_find_first_zero_bit(&qlsb, MAX_LSB_CNT);
	while (bitno < MAX_LSB_CNT) {
		ccp_bitmap_set(ccp->lsbmap, bitno * LSB_SIZE, LSB_SIZE);
		ccp_set_bit(&qlsb, bitno);
		bitno = ccp_find_first_zero_bit(&qlsb, MAX_LSB_CNT);
	}

	return rc;
}

static int
ccp_add_device(struct ccp_device *dev, int type)
{
	int i;
	uint32_t qmr, status_lo, status_hi, dma_addr_lo, dma_addr_hi;
	uint64_t status;
	struct ccp_queue *cmd_q;
	const struct rte_memzone *q_mz;
	void *vaddr;

	if (dev == NULL)
		return -1;

	dev->id = ccp_dev_id++;
	dev->qidx = 0;
	vaddr = (void *)(dev->pci.mem_resource[2].addr);

	if (type == CCP_VERSION_5B) {
		CCP_WRITE_REG(vaddr, CMD_TRNG_CTL_OFFSET, 0x00012D57);
		CCP_WRITE_REG(vaddr, CMD_CONFIG_0_OFFSET, 0x00000003);
		for (i = 0; i < 12; i++) {
			CCP_WRITE_REG(vaddr, CMD_AES_MASK_OFFSET,
				      CCP_READ_REG(vaddr, TRNG_OUT_REG));
		}
		CCP_WRITE_REG(vaddr, CMD_QUEUE_MASK_OFFSET, 0x0000001F);
		CCP_WRITE_REG(vaddr, CMD_QUEUE_PRIO_OFFSET, 0x00005B6D);
		CCP_WRITE_REG(vaddr, CMD_CMD_TIMEOUT_OFFSET, 0x00000000);

		CCP_WRITE_REG(vaddr, LSB_PRIVATE_MASK_LO_OFFSET, 0x3FFFFFFF);
		CCP_WRITE_REG(vaddr, LSB_PRIVATE_MASK_HI_OFFSET, 0x000003FF);

		CCP_WRITE_REG(vaddr, CMD_CLK_GATE_CTL_OFFSET, 0x00108823);
	}
	CCP_WRITE_REG(vaddr, CMD_REQID_CONFIG_OFFSET, 0x00001249);

	/* Copy the private LSB mask to the public registers */
	status_lo = CCP_READ_REG(vaddr, LSB_PRIVATE_MASK_LO_OFFSET);
	status_hi = CCP_READ_REG(vaddr, LSB_PRIVATE_MASK_HI_OFFSET);
	CCP_WRITE_REG(vaddr, LSB_PUBLIC_MASK_LO_OFFSET, status_lo);
	CCP_WRITE_REG(vaddr, LSB_PUBLIC_MASK_HI_OFFSET, status_hi);
	status = ((uint64_t)status_hi<<30) | ((uint64_t)status_lo);

	dev->cmd_q_count = 0;
	/* Find available queues */
	qmr = CCP_READ_REG(vaddr, Q_MASK_REG);
	for (i = 0; i < MAX_HW_QUEUES; i++) {
		if (!(qmr & (1 << i)))
			continue;
		cmd_q = &dev->cmd_q[dev->cmd_q_count++];
		cmd_q->dev = dev;
		cmd_q->id = i;
		cmd_q->qidx = 0;
		cmd_q->qsize = Q_SIZE(Q_DESC_SIZE);

		cmd_q->reg_base = (uint8_t *)vaddr +
			CMD_Q_STATUS_INCR * (i + 1);

		/* CCP queue memory */
		snprintf(cmd_q->memz_name, sizeof(cmd_q->memz_name),
			 "%s_%d_%s_%d_%s",
			 "ccp_dev",
			 (int)dev->id, "queue",
			 (int)cmd_q->id, "mem");
		q_mz = ccp_queue_dma_zone_reserve(cmd_q->memz_name,
						  cmd_q->qsize, SOCKET_ID_ANY);
		cmd_q->qbase_addr = (void *)q_mz->addr;
		cmd_q->qbase_desc = (void *)q_mz->addr;
		cmd_q->qbase_phys_addr =  q_mz->iova;

		cmd_q->qcontrol = 0;
		/* init control reg to zero */
		CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_CONTROL_BASE,
			      cmd_q->qcontrol);

		/* Disable the interrupts */
		CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_INT_ENABLE_BASE, 0x00);
		CCP_READ_REG(cmd_q->reg_base, CMD_Q_INT_STATUS_BASE);
		CCP_READ_REG(cmd_q->reg_base, CMD_Q_STATUS_BASE);

		/* Clear the interrupts */
		CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_INTERRUPT_STATUS_BASE,
			      ALL_INTERRUPTS);

		/* Configure size of each virtual queue accessible to host */
		cmd_q->qcontrol &= ~(CMD_Q_SIZE << CMD_Q_SHIFT);
		cmd_q->qcontrol |= QUEUE_SIZE_VAL << CMD_Q_SHIFT;

		dma_addr_lo = low32_value(cmd_q->qbase_phys_addr);
		CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_TAIL_LO_BASE,
			      (uint32_t)dma_addr_lo);
		CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_HEAD_LO_BASE,
			      (uint32_t)dma_addr_lo);

		dma_addr_hi = high32_value(cmd_q->qbase_phys_addr);
		cmd_q->qcontrol |= (dma_addr_hi << 16);
		CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_CONTROL_BASE,
			      cmd_q->qcontrol);

		/* create LSB Mask map */
		if (ccp_find_lsb_regions(cmd_q, status))
			CCP_LOG_ERR("queue doesn't have lsb regions");
		cmd_q->lsb = -1;

		rte_atomic64_init(&cmd_q->free_slots);
		rte_atomic64_set(&cmd_q->free_slots, (COMMANDS_PER_QUEUE - 1));
		/* unused slot barrier b/w H&T */
	}

	if (ccp_assign_lsbs(dev))
		CCP_LOG_ERR("Unable to assign lsb region");

	/* pre-allocate LSB slots */
	for (i = 0; i < dev->cmd_q_count; i++) {
		dev->cmd_q[i].sb_key =
			ccp_lsb_alloc(&dev->cmd_q[i], 1);
		dev->cmd_q[i].sb_iv =
			ccp_lsb_alloc(&dev->cmd_q[i], 1);
		dev->cmd_q[i].sb_sha =
			ccp_lsb_alloc(&dev->cmd_q[i], 2);
		dev->cmd_q[i].sb_hmac =
			ccp_lsb_alloc(&dev->cmd_q[i], 2);
	}

	TAILQ_INSERT_TAIL(&ccp_list, dev, next);
	return 0;
}

static void
ccp_remove_device(struct ccp_device *dev)
{
	if (dev == NULL)
		return;

	TAILQ_REMOVE(&ccp_list, dev, next);
}

static int
is_ccp_device(const char *dirname,
	      const struct rte_pci_id *ccp_id,
	      int *type)
{
	char filename[PATH_MAX];
	const struct rte_pci_id *id;
	uint16_t vendor, device_id;
	int i;
	unsigned long tmp;

	/* get vendor id */
	snprintf(filename, sizeof(filename), "%s/vendor", dirname);
	if (ccp_pci_parse_sysfs_value(filename, &tmp) < 0)
		return 0;
	vendor = (uint16_t)tmp;

	/* get device id */
	snprintf(filename, sizeof(filename), "%s/device", dirname);
	if (ccp_pci_parse_sysfs_value(filename, &tmp) < 0)
		return 0;
	device_id = (uint16_t)tmp;

	for (id = ccp_id, i = 0; id->vendor_id != 0; id++, i++) {
		if (vendor == id->vendor_id &&
		    device_id == id->device_id) {
			*type = i;
			return 1; /* Matched device */
		}
	}
	return 0;
}

static int
ccp_probe_device(const char *dirname, uint16_t domain,
		 uint8_t bus, uint8_t devid,
		 uint8_t function, int ccp_type)
{
	struct ccp_device *ccp_dev = NULL;
	struct rte_pci_device *pci;
	char filename[PATH_MAX];
	unsigned long tmp;
	int uio_fd = -1, i, uio_num;
	char uio_devname[PATH_MAX];
	void *map_addr;

	ccp_dev = rte_zmalloc("ccp_device", sizeof(*ccp_dev),
			      RTE_CACHE_LINE_SIZE);
	if (ccp_dev == NULL)
		goto fail;
	pci = &(ccp_dev->pci);

	pci->addr.domain = domain;
	pci->addr.bus = bus;
	pci->addr.devid = devid;
	pci->addr.function = function;

	/* get vendor id */
	snprintf(filename, sizeof(filename), "%s/vendor", dirname);
	if (ccp_pci_parse_sysfs_value(filename, &tmp) < 0)
		goto fail;
	pci->id.vendor_id = (uint16_t)tmp;

	/* get device id */
	snprintf(filename, sizeof(filename), "%s/device", dirname);
	if (ccp_pci_parse_sysfs_value(filename, &tmp) < 0)
		goto fail;
	pci->id.device_id = (uint16_t)tmp;

	/* get subsystem_vendor id */
	snprintf(filename, sizeof(filename), "%s/subsystem_vendor",
			dirname);
	if (ccp_pci_parse_sysfs_value(filename, &tmp) < 0)
		goto fail;
	pci->id.subsystem_vendor_id = (uint16_t)tmp;

	/* get subsystem_device id */
	snprintf(filename, sizeof(filename), "%s/subsystem_device",
			dirname);
	if (ccp_pci_parse_sysfs_value(filename, &tmp) < 0)
		goto fail;
	pci->id.subsystem_device_id = (uint16_t)tmp;

	/* get class_id */
	snprintf(filename, sizeof(filename), "%s/class",
			dirname);
	if (ccp_pci_parse_sysfs_value(filename, &tmp) < 0)
		goto fail;
	/* the least 24 bits are valid: class, subclass, program interface */
	pci->id.class_id = (uint32_t)tmp & RTE_CLASS_ANY_ID;

	/* parse resources */
	snprintf(filename, sizeof(filename), "%s/resource", dirname);
	if (ccp_pci_parse_sysfs_resource(filename, pci) < 0)
		goto fail;

	uio_num = ccp_find_uio_devname(dirname);
	if (uio_num < 0) {
		/*
		 * It may take time for uio device to appear,
		 * wait  here and try again
		 */
		usleep(100000);
		uio_num = ccp_find_uio_devname(dirname);
		if (uio_num < 0)
			goto fail;
	}
	snprintf(uio_devname, sizeof(uio_devname), "/dev/uio%u", uio_num);

	uio_fd = open(uio_devname, O_RDWR | O_NONBLOCK);
	if (uio_fd < 0)
		goto fail;
	if (flock(uio_fd, LOCK_EX | LOCK_NB))
		goto fail;

	/* Map the PCI memory resource of device */
	for (i = 0; i < PCI_MAX_RESOURCE; i++) {

		char devname[PATH_MAX];
		int res_fd;

		if (pci->mem_resource[i].phys_addr == 0)
			continue;
		snprintf(devname, sizeof(devname), "%s/resource%d", dirname, i);
		res_fd = open(devname, O_RDWR);
		if (res_fd < 0)
			goto fail;
		map_addr = mmap(NULL, pci->mem_resource[i].len,
				PROT_READ | PROT_WRITE,
				MAP_SHARED, res_fd, 0);
		if (map_addr == MAP_FAILED)
			goto fail;

		pci->mem_resource[i].addr = map_addr;
	}

	/* device is valid, add in list */
	if (ccp_add_device(ccp_dev, ccp_type)) {
		ccp_remove_device(ccp_dev);
		goto fail;
	}

	return 0;
fail:
	CCP_LOG_ERR("CCP Device probe failed");
	if (uio_fd >= 0)
		close(uio_fd);
	if (ccp_dev)
		rte_free(ccp_dev);
	return -1;
}

int
ccp_probe_devices(const struct rte_pci_id *ccp_id)
{
	int dev_cnt = 0;
	int ccp_type = 0;
	struct dirent *d;
	DIR *dir;
	int ret = 0;
	int module_idx = 0;
	uint16_t domain;
	uint8_t bus, devid, function;
	char dirname[PATH_MAX];

	module_idx = ccp_check_pci_uio_module();
	if (module_idx < 0)
		return -1;

	TAILQ_INIT(&ccp_list);
	dir = opendir(SYSFS_PCI_DEVICES);
	if (dir == NULL)
		return -1;
	while ((d = readdir(dir)) != NULL) {
		if (d->d_name[0] == '.')
			continue;
		if (ccp_parse_pci_addr_format(d->d_name, sizeof(d->d_name),
					&domain, &bus, &devid, &function) != 0)
			continue;
		snprintf(dirname, sizeof(dirname), "%s/%s",
			     SYSFS_PCI_DEVICES, d->d_name);
		if (is_ccp_device(dirname, ccp_id, &ccp_type)) {
			printf("CCP : Detected CCP device with ID = 0x%x\n",
			       ccp_id[ccp_type].device_id);
			ret = ccp_probe_device(dirname, domain, bus, devid,
					       function, ccp_type);
			if (ret == 0)
				dev_cnt++;
		}
	}
	closedir(dir);
	return dev_cnt;
}