DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2018 Cavium, Inc
 */
#include <assert.h>
#include <string.h>
#include <unistd.h>

#include <rte_branch_prediction.h>
#include <rte_common.h>
#include <rte_cryptodev.h>
#include <rte_errno.h>
#include <rte_mempool.h>
#include <rte_memzone.h>
#include <rte_string_fns.h>

#include "otx_cryptodev_hw_access.h"
#include "otx_cryptodev_mbox.h"

#include "cpt_pmd_logs.h"
#include "cpt_pmd_ops_helper.h"
#include "cpt_hw_types.h"

#define METABUF_POOL_CACHE_SIZE	512

/*
 * VF HAL functions
 * Access its own BAR0/4 registers by passing VF number as 0.
 * OS/PCI maps them accordingly.
 */

static int
otx_cpt_vf_init(struct cpt_vf *cptvf)
{
	int ret = 0;

	/* Check ready with PF */
	/* Gets chip ID / device Id from PF if ready */
	ret = otx_cpt_check_pf_ready(cptvf);
	if (ret) {
		CPT_LOG_ERR("%s: PF not responding to READY msg",
				cptvf->dev_name);
		ret = -EBUSY;
		goto exit;
	}

	CPT_LOG_DP_DEBUG("%s: %s done", cptvf->dev_name, __func__);

exit:
	return ret;
}

/*
 * Read Interrupt status of the VF
 *
 * @param   cptvf	cptvf structure
 */
static uint64_t
otx_cpt_read_vf_misc_intr_status(struct cpt_vf *cptvf)
{
	return CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf), CPTX_VQX_MISC_INT(0, 0));
}

/*
 * Clear mailbox interrupt of the VF
 *
 * @param   cptvf	cptvf structure
 */
static void
otx_cpt_clear_mbox_intr(struct cpt_vf *cptvf)
{
	cptx_vqx_misc_int_t vqx_misc_int;

	vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
				      CPTX_VQX_MISC_INT(0, 0));
	/* W1C for the VF */
	vqx_misc_int.s.mbox = 1;
	CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
		      CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}

/*
 * Clear instruction NCB read error interrupt of the VF
 *
 * @param   cptvf	cptvf structure
 */
static void
otx_cpt_clear_irde_intr(struct cpt_vf *cptvf)
{
	cptx_vqx_misc_int_t vqx_misc_int;

	vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
				      CPTX_VQX_MISC_INT(0, 0));
	/* W1C for the VF */
	vqx_misc_int.s.irde = 1;
	CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
		      CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}

/*
 * Clear NCB result write response error interrupt of the VF
 *
 * @param   cptvf	cptvf structure
 */
static void
otx_cpt_clear_nwrp_intr(struct cpt_vf *cptvf)
{
	cptx_vqx_misc_int_t vqx_misc_int;

	vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
				      CPTX_VQX_MISC_INT(0, 0));
	/* W1C for the VF */
	vqx_misc_int.s.nwrp = 1;
	CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
		      CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}

/*
 * Clear swerr interrupt of the VF
 *
 * @param   cptvf	cptvf structure
 */
static void
otx_cpt_clear_swerr_intr(struct cpt_vf *cptvf)
{
	cptx_vqx_misc_int_t vqx_misc_int;

	vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
				      CPTX_VQX_MISC_INT(0, 0));
	/* W1C for the VF */
	vqx_misc_int.s.swerr = 1;
	CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
		      CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}

/*
 * Clear hwerr interrupt of the VF
 *
 * @param   cptvf	cptvf structure
 */
static void
otx_cpt_clear_hwerr_intr(struct cpt_vf *cptvf)
{
	cptx_vqx_misc_int_t vqx_misc_int;

	vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
				      CPTX_VQX_MISC_INT(0, 0));
	/* W1C for the VF */
	vqx_misc_int.s.hwerr = 1;
	CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
		      CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}

/*
 * Clear translation fault interrupt of the VF
 *
 * @param   cptvf	cptvf structure
 */
static void
otx_cpt_clear_fault_intr(struct cpt_vf *cptvf)
{
	cptx_vqx_misc_int_t vqx_misc_int;

	vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
				CPTX_VQX_MISC_INT(0, 0));
	/* W1C for the VF */
	vqx_misc_int.s.fault = 1;
	CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
		CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}

/*
 * Clear doorbell overflow interrupt of the VF
 *
 * @param   cptvf	cptvf structure
 */
static void
otx_cpt_clear_dovf_intr(struct cpt_vf *cptvf)
{
	cptx_vqx_misc_int_t vqx_misc_int;

	vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
				      CPTX_VQX_MISC_INT(0, 0));
	/* W1C for the VF */
	vqx_misc_int.s.dovf = 1;
	CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
		      CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}

/* Write to VQX_CTL register
 */
static void
otx_cpt_write_vq_ctl(struct cpt_vf *cptvf, bool val)
{
	cptx_vqx_ctl_t vqx_ctl;

	vqx_ctl.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
				 CPTX_VQX_CTL(0, 0));
	vqx_ctl.s.ena = val;
	CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
		      CPTX_VQX_CTL(0, 0), vqx_ctl.u);
}

/* Write to VQX_INPROG register
 */
static void
otx_cpt_write_vq_inprog(struct cpt_vf *cptvf, uint8_t val)
{
	cptx_vqx_inprog_t vqx_inprg;

	vqx_inprg.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
				   CPTX_VQX_INPROG(0, 0));
	vqx_inprg.s.inflight = val;
	CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
		      CPTX_VQX_INPROG(0, 0), vqx_inprg.u);
}

/* Write to VQX_DONE_WAIT NUMWAIT register
 */
static void
otx_cpt_write_vq_done_numwait(struct cpt_vf *cptvf, uint32_t val)
{
	cptx_vqx_done_wait_t vqx_dwait;

	vqx_dwait.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
				   CPTX_VQX_DONE_WAIT(0, 0));
	vqx_dwait.s.num_wait = val;
	CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
		      CPTX_VQX_DONE_WAIT(0, 0), vqx_dwait.u);
}

/* Write to VQX_DONE_WAIT NUM_WAIT register
 */
static void
otx_cpt_write_vq_done_timewait(struct cpt_vf *cptvf, uint16_t val)
{
	cptx_vqx_done_wait_t vqx_dwait;

	vqx_dwait.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
				   CPTX_VQX_DONE_WAIT(0, 0));
	vqx_dwait.s.time_wait = val;
	CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
		      CPTX_VQX_DONE_WAIT(0, 0), vqx_dwait.u);
}

/* Write to VQX_SADDR register
 */
static void
otx_cpt_write_vq_saddr(struct cpt_vf *cptvf, uint64_t val)
{
	cptx_vqx_saddr_t vqx_saddr;

	vqx_saddr.u = val;
	CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
		      CPTX_VQX_SADDR(0, 0), vqx_saddr.u);
}

static void
otx_cpt_vfvq_init(struct cpt_vf *cptvf)
{
	uint64_t base_addr = 0;

	/* Disable the VQ */
	otx_cpt_write_vq_ctl(cptvf, 0);

	/* Reset the doorbell */
	otx_cpt_write_vq_doorbell(cptvf, 0);
	/* Clear inflight */
	otx_cpt_write_vq_inprog(cptvf, 0);

	/* Write VQ SADDR */
	base_addr = (uint64_t)(cptvf->cqueue.chead[0].dma_addr);
	otx_cpt_write_vq_saddr(cptvf, base_addr);

	/* Configure timerhold / coalescence */
	otx_cpt_write_vq_done_timewait(cptvf, CPT_TIMER_THOLD);
	otx_cpt_write_vq_done_numwait(cptvf, CPT_COUNT_THOLD);

	/* Enable the VQ */
	otx_cpt_write_vq_ctl(cptvf, 1);
}

static int
cpt_vq_init(struct cpt_vf *cptvf, uint8_t group)
{
	int err;

	/* Convey VQ LEN to PF */
	err = otx_cpt_send_vq_size_msg(cptvf);
	if (err) {
		CPT_LOG_ERR("%s: PF not responding to QLEN msg",
			    cptvf->dev_name);
		err = -EBUSY;
		goto cleanup;
	}

	/* CPT VF device initialization */
	otx_cpt_vfvq_init(cptvf);

	/* Send msg to PF to assign currnet Q to required group */
	cptvf->vfgrp = group;
	err = otx_cpt_send_vf_grp_msg(cptvf, group);
	if (err) {
		CPT_LOG_ERR("%s: PF not responding to VF_GRP msg",
			    cptvf->dev_name);
		err = -EBUSY;
		goto cleanup;
	}

	CPT_LOG_DP_DEBUG("%s: %s done", cptvf->dev_name, __func__);
	return 0;

cleanup:
	return err;
}

void
otx_cpt_poll_misc(struct cpt_vf *cptvf)
{
	uint64_t intr;

	intr = otx_cpt_read_vf_misc_intr_status(cptvf);

	if (!intr)
		return;

	/* Check for MISC interrupt types */
	if (likely(intr & CPT_VF_INTR_MBOX_MASK)) {
		CPT_LOG_DP_DEBUG("%s: Mailbox interrupt 0x%lx on CPT VF %d",
			cptvf->dev_name, (unsigned int long)intr, cptvf->vfid);
		otx_cpt_handle_mbox_intr(cptvf);
		otx_cpt_clear_mbox_intr(cptvf);
	} else if (unlikely(intr & CPT_VF_INTR_IRDE_MASK)) {
		otx_cpt_clear_irde_intr(cptvf);
		CPT_LOG_DP_DEBUG("%s: Instruction NCB read error interrupt "
				"0x%lx on CPT VF %d", cptvf->dev_name,
				(unsigned int long)intr, cptvf->vfid);
	} else if (unlikely(intr & CPT_VF_INTR_NWRP_MASK)) {
		otx_cpt_clear_nwrp_intr(cptvf);
		CPT_LOG_DP_DEBUG("%s: NCB response write error interrupt 0x%lx"
				" on CPT VF %d", cptvf->dev_name,
				(unsigned int long)intr, cptvf->vfid);
	} else if (unlikely(intr & CPT_VF_INTR_SWERR_MASK)) {
		otx_cpt_clear_swerr_intr(cptvf);
		CPT_LOG_DP_DEBUG("%s: Software error interrupt 0x%lx on CPT VF "
				"%d", cptvf->dev_name, (unsigned int long)intr,
				cptvf->vfid);
	} else if (unlikely(intr & CPT_VF_INTR_HWERR_MASK)) {
		otx_cpt_clear_hwerr_intr(cptvf);
		CPT_LOG_DP_DEBUG("%s: Hardware error interrupt 0x%lx on CPT VF "
				"%d", cptvf->dev_name, (unsigned int long)intr,
				cptvf->vfid);
	} else if (unlikely(intr & CPT_VF_INTR_FAULT_MASK)) {
		otx_cpt_clear_fault_intr(cptvf);
		CPT_LOG_DP_DEBUG("%s: Translation fault interrupt 0x%lx on CPT VF "
				"%d", cptvf->dev_name, (unsigned int long)intr,
				cptvf->vfid);
	} else if (unlikely(intr & CPT_VF_INTR_DOVF_MASK)) {
		otx_cpt_clear_dovf_intr(cptvf);
		CPT_LOG_DP_DEBUG("%s: Doorbell overflow interrupt 0x%lx on CPT VF "
				"%d", cptvf->dev_name, (unsigned int long)intr,
				cptvf->vfid);
	} else
		CPT_LOG_DP_ERR("%s: Unhandled interrupt 0x%lx in CPT VF %d",
				cptvf->dev_name, (unsigned int long)intr,
				cptvf->vfid);
}

int
otx_cpt_hw_init(struct cpt_vf *cptvf, void *pdev, void *reg_base, char *name)
{
	memset(cptvf, 0, sizeof(struct cpt_vf));

	/* Bar0 base address */
	cptvf->reg_base = reg_base;

	/* Save device name */
	strlcpy(cptvf->dev_name, name, (sizeof(cptvf->dev_name)));

	cptvf->pdev = pdev;

	/* To clear if there are any pending mbox msgs */
	otx_cpt_poll_misc(cptvf);

	if (otx_cpt_vf_init(cptvf)) {
		CPT_LOG_ERR("Failed to initialize CPT VF device");
		return -1;
	}

	/* Gets device type */
	if (otx_cpt_get_dev_type(cptvf)) {
		CPT_LOG_ERR("Failed to get device type");
		return -1;
	}

	return 0;
}

int
otx_cpt_deinit_device(void *dev)
{
	struct cpt_vf *cptvf = (struct cpt_vf *)dev;

	/* Do misc work one last time */
	otx_cpt_poll_misc(cptvf);

	return 0;
}

static int
otx_cpt_metabuf_mempool_create(const struct rte_cryptodev *dev,
			       struct cpt_instance *instance, uint8_t qp_id,
			       int nb_elements)
{
	char mempool_name[RTE_MEMPOOL_NAMESIZE];
	struct cpt_qp_meta_info *meta_info;
	struct rte_mempool *pool;
	int max_mlen = 0;
	int sg_mlen = 0;
	int lb_mlen = 0;
	int ret;

	/*
	 * Calculate metabuf length required. The 'crypto_octeontx' device
	 * would be either SYMMETRIC or ASYMMETRIC.
	 */

	if (dev->feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) {

		/* Get meta len for scatter gather mode */
		sg_mlen = cpt_pmd_ops_helper_get_mlen_sg_mode();

		/* Extra 32B saved for future considerations */
		sg_mlen += 4 * sizeof(uint64_t);

		/* Get meta len for linear buffer (direct) mode */
		lb_mlen = cpt_pmd_ops_helper_get_mlen_direct_mode();

		/* Extra 32B saved for future considerations */
		lb_mlen += 4 * sizeof(uint64_t);

		/* Check max requirement for meta buffer */
		max_mlen = RTE_MAX(lb_mlen, sg_mlen);
	} else {

		/* Asymmetric device */

		/* Get meta len for asymmetric operations */
		max_mlen = cpt_pmd_ops_helper_asym_get_mlen();
	}

	/* Allocate mempool */

	snprintf(mempool_name, RTE_MEMPOOL_NAMESIZE, "otx_cpt_mb_%u:%u",
		 dev->data->dev_id, qp_id);

	pool = rte_mempool_create_empty(mempool_name, nb_elements, max_mlen,
					METABUF_POOL_CACHE_SIZE, 0,
					rte_socket_id(), 0);

	if (pool == NULL) {
		CPT_LOG_ERR("Could not create mempool for metabuf");
		return rte_errno;
	}

	ret = rte_mempool_set_ops_byname(pool, RTE_MBUF_DEFAULT_MEMPOOL_OPS,
					 NULL);
	if (ret) {
		CPT_LOG_ERR("Could not set mempool ops");
		goto mempool_free;
	}

	ret = rte_mempool_populate_default(pool);
	if (ret <= 0) {
		CPT_LOG_ERR("Could not populate metabuf pool");
		goto mempool_free;
	}

	meta_info = &instance->meta_info;

	meta_info->pool = pool;
	meta_info->lb_mlen = lb_mlen;
	meta_info->sg_mlen = sg_mlen;

	return 0;

mempool_free:
	rte_mempool_free(pool);
	return ret;
}

static void
otx_cpt_metabuf_mempool_destroy(struct cpt_instance *instance)
{
	struct cpt_qp_meta_info *meta_info = &instance->meta_info;

	rte_mempool_free(meta_info->pool);

	meta_info->pool = NULL;
	meta_info->lb_mlen = 0;
	meta_info->sg_mlen = 0;
}

int
otx_cpt_get_resource(const struct rte_cryptodev *dev, uint8_t group,
		     struct cpt_instance **instance, uint16_t qp_id)
{
	int ret = -ENOENT, len, qlen, i;
	int chunk_len, chunks, chunk_size;
	struct cpt_vf *cptvf = dev->data->dev_private;
	struct cpt_instance *cpt_instance;
	struct command_chunk *chunk_head = NULL, *chunk_prev = NULL;
	struct command_chunk *chunk = NULL;
	uint8_t *mem;
	const struct rte_memzone *rz;
	uint64_t dma_addr = 0, alloc_len, used_len;
	uint64_t *next_ptr;
	uint64_t pg_sz = sysconf(_SC_PAGESIZE);

	CPT_LOG_DP_DEBUG("Initializing cpt resource %s", cptvf->dev_name);

	cpt_instance = &cptvf->instance;

	memset(&cptvf->cqueue, 0, sizeof(cptvf->cqueue));
	memset(&cptvf->pqueue, 0, sizeof(cptvf->pqueue));

	/* Chunks are of fixed size buffers */
	chunks = DEFAULT_CMD_QCHUNKS;
	chunk_len = DEFAULT_CMD_QCHUNK_SIZE;

	qlen = chunks * chunk_len;
	/* Chunk size includes 8 bytes of next chunk ptr */
	chunk_size = chunk_len * CPT_INST_SIZE + CPT_NEXT_CHUNK_PTR_SIZE;

	/* For command chunk structures */
	len = chunks * RTE_ALIGN(sizeof(struct command_chunk), 8);

	/* For pending queue */
	len += qlen * RTE_ALIGN(sizeof(struct rid), 8);

	/* So that instruction queues start as pg size aligned */
	len = RTE_ALIGN(len, pg_sz);

	/* For Instruction queues */
	len += chunks * RTE_ALIGN(chunk_size, 128);

	/* Wastage after instruction queues */
	len = RTE_ALIGN(len, pg_sz);

	rz = rte_memzone_reserve_aligned(cptvf->dev_name, len, cptvf->node,
					 RTE_MEMZONE_SIZE_HINT_ONLY |
					 RTE_MEMZONE_256MB,
					 RTE_CACHE_LINE_SIZE);
	if (!rz) {
		ret = rte_errno;
		goto exit;
	}

	mem = rz->addr;
	dma_addr = rz->phys_addr;
	alloc_len = len;

	memset(mem, 0, len);

	cpt_instance->rsvd = (uintptr_t)rz;

	ret = otx_cpt_metabuf_mempool_create(dev, cpt_instance, qp_id, qlen);
	if (ret) {
		CPT_LOG_ERR("Could not create mempool for metabuf");
		goto memzone_free;
	}

	/* Pending queue setup */
	cptvf->pqueue.rid_queue = (struct rid *)mem;
	cptvf->pqueue.enq_tail = 0;
	cptvf->pqueue.deq_head = 0;
	cptvf->pqueue.pending_count = 0;

	mem +=  qlen * RTE_ALIGN(sizeof(struct rid), 8);
	len -=  qlen * RTE_ALIGN(sizeof(struct rid), 8);
	dma_addr += qlen * RTE_ALIGN(sizeof(struct rid), 8);

	/* Alignment wastage */
	used_len = alloc_len - len;
	mem += RTE_ALIGN(used_len, pg_sz) - used_len;
	len -= RTE_ALIGN(used_len, pg_sz) - used_len;
	dma_addr += RTE_ALIGN(used_len, pg_sz) - used_len;

	/* Init instruction queues */
	chunk_head = &cptvf->cqueue.chead[0];
	i = qlen;

	chunk_prev = NULL;
	for (i = 0; i < DEFAULT_CMD_QCHUNKS; i++) {
		int csize;

		chunk = &cptvf->cqueue.chead[i];
		chunk->head = mem;
		chunk->dma_addr = dma_addr;

		csize = RTE_ALIGN(chunk_size, 128);
		mem += csize;
		dma_addr += csize;
		len -= csize;

		if (chunk_prev) {
			next_ptr = (uint64_t *)(chunk_prev->head +
						chunk_size - 8);
			*next_ptr = (uint64_t)chunk->dma_addr;
		}
		chunk_prev = chunk;
	}
	/* Circular loop */
	next_ptr = (uint64_t *)(chunk_prev->head + chunk_size - 8);
	*next_ptr = (uint64_t)chunk_head->dma_addr;

	assert(!len);

	/* This is used for CPT(0)_PF_Q(0..15)_CTL.size config */
	cptvf->qsize = chunk_size / 8;
	cptvf->cqueue.qhead = chunk_head->head;
	cptvf->cqueue.idx = 0;
	cptvf->cqueue.cchunk = 0;

	if (cpt_vq_init(cptvf, group)) {
		CPT_LOG_ERR("Failed to initialize CPT VQ of device %s",
			    cptvf->dev_name);
		ret = -EBUSY;
		goto mempool_destroy;
	}

	*instance = cpt_instance;

	CPT_LOG_DP_DEBUG("Crypto device (%s) initialized", cptvf->dev_name);

	return 0;

mempool_destroy:
	otx_cpt_metabuf_mempool_destroy(cpt_instance);
memzone_free:
	rte_memzone_free(rz);
exit:
	*instance = NULL;
	return ret;
}

int
otx_cpt_put_resource(struct cpt_instance *instance)
{
	struct cpt_vf *cptvf = (struct cpt_vf *)instance;
	struct rte_memzone *rz;

	if (!cptvf) {
		CPT_LOG_ERR("Invalid CPTVF handle");
		return -EINVAL;
	}

	CPT_LOG_DP_DEBUG("Releasing cpt device %s", cptvf->dev_name);

	otx_cpt_metabuf_mempool_destroy(instance);

	rz = (struct rte_memzone *)instance->rsvd;
	rte_memzone_free(rz);
	return 0;
}

int
otx_cpt_start_device(void *dev)
{
	int rc;
	struct cpt_vf *cptvf = (struct cpt_vf *)dev;

	rc = otx_cpt_send_vf_up(cptvf);
	if (rc) {
		CPT_LOG_ERR("Failed to mark CPT VF device %s UP, rc = %d",
			    cptvf->dev_name, rc);
		return -EFAULT;
	}

	return 0;
}

void
otx_cpt_stop_device(void *dev)
{
	int rc;
	uint32_t pending, retries = 5;
	struct cpt_vf *cptvf = (struct cpt_vf *)dev;

	/* Wait for pending entries to complete */
	pending = otx_cpt_read_vq_doorbell(cptvf);
	while (pending) {
		CPT_LOG_DP_DEBUG("%s: Waiting for pending %u cmds to complete",
				 cptvf->dev_name, pending);
		sleep(1);
		pending = otx_cpt_read_vq_doorbell(cptvf);
		retries--;
		if (!retries)
			break;
	}

	if (!retries && pending) {
		CPT_LOG_ERR("%s: Timeout waiting for commands(%u)",
			    cptvf->dev_name, pending);
		return;
	}

	rc = otx_cpt_send_vf_down(cptvf);
	if (rc) {
		CPT_LOG_ERR("Failed to bring down vf %s, rc %d",
			    cptvf->dev_name, rc);
		return;
	}
}