DPDK logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2017 Intel Corporation
 */

#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>

#include <rte_string_fns.h>
#include <rte_branch_prediction.h>
#include <rte_debug.h>
#include <rte_lcore.h>
#include <rte_log.h>
#include <rte_malloc.h>
#include <rte_memcpy.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_atomic.h>

#include "opdl_ring.h"
#include "opdl_log.h"

#define LIB_NAME "opdl_ring"

#define OPDL_NAME_SIZE 64


#define OPDL_EVENT_MASK  (0x00000000000FFFFFULL)
#define OPDL_FLOWID_MASK (0xFFFFF)
#define OPDL_OPA_MASK    (0xFF)
#define OPDL_OPA_OFFSET  (0x38)

/* Types of dependency between stages */
enum dep_type {
	DEP_NONE = 0,  /* no dependency */
	DEP_DIRECT,  /* stage has direct dependency */
	DEP_INDIRECT,  /* in-direct dependency through other stage(s) */
	DEP_SELF,  /* stage dependency on itself, used to detect loops */
};

/* Shared section of stage state.
 * Care is needed when accessing and the layout is important, especially to
 * limit the adjacent cache-line HW prefetcher from impacting performance.
 */
struct shared_state {
	/* Last known minimum sequence number of dependencies, used for multi
	 * thread operation
	 */
	uint32_t available_seq;
	char _pad1[RTE_CACHE_LINE_SIZE * 3];
	uint32_t head;  /* Head sequence number (for multi thread operation) */
	char _pad2[RTE_CACHE_LINE_SIZE * 3];
	struct opdl_stage *stage;  /* back pointer */
	uint32_t tail;  /* Tail sequence number */
	char _pad3[RTE_CACHE_LINE_SIZE * 2];
} __rte_cache_aligned;

/* A structure to keep track of "unfinished" claims. This is only used for
 * stages that are threadsafe. Each lcore accesses its own instance of this
 * structure to record the entries it has claimed. This allows one lcore to make
 * multiple claims without being blocked by another. When disclaiming it moves
 * forward the shared tail when the shared tail matches the tail value recorded
 * here.
 */
struct claim_manager {
	uint32_t num_to_disclaim;
	uint32_t num_claimed;
	uint32_t mgr_head;
	uint32_t mgr_tail;
	struct {
		uint32_t head;
		uint32_t tail;
	} claims[OPDL_DISCLAIMS_PER_LCORE];
} __rte_cache_aligned;

/* Context for each stage of opdl_ring.
 * Calculations on sequence numbers need to be done with other uint32_t values
 * so that results are modulus 2^32, and not undefined.
 */
struct opdl_stage {
	struct opdl_ring *t;  /* back pointer, set at init */
	uint32_t num_slots;  /* Number of slots for entries, set at init */
	uint32_t index;  /* ID for this stage, set at init */
	bool threadsafe;  /* Set to 1 if this stage supports threadsafe use */
	/* Last known min seq number of dependencies for used for single thread
	 * operation
	 */
	uint32_t available_seq;
	uint32_t head;  /* Current head for single-thread operation */
	uint32_t nb_instance;  /* Number of instances */
	uint32_t instance_id;  /* ID of this stage instance */
	uint16_t num_claimed;  /* Number of slots claimed */
	uint16_t num_event;		/* Number of events */
	uint32_t seq;			/* sequence number  */
	uint32_t num_deps;  /* Number of direct dependencies */
	/* Keep track of all dependencies, used during init only */
	enum dep_type *dep_tracking;
	/* Direct dependencies of this stage */
	struct shared_state **deps;
	/* Other stages read this! */
	struct shared_state shared __rte_cache_aligned;
	/* For managing disclaims in multi-threaded processing stages */
	struct claim_manager pending_disclaims[RTE_MAX_LCORE]
					       __rte_cache_aligned;
	uint32_t shadow_head;  /* Shadow head for single-thread operation */
	uint32_t queue_id;     /* ID of Queue which is assigned to this stage */
	uint32_t pos;		/* Atomic scan position */
} __rte_cache_aligned;

/* Context for opdl_ring */
struct opdl_ring {
	char name[OPDL_NAME_SIZE];  /* OPDL queue instance name */
	int socket;  /* NUMA socket that memory is allocated on */
	uint32_t num_slots;  /* Number of slots for entries */
	uint32_t mask;  /* Mask for sequence numbers (num_slots - 1) */
	uint32_t slot_size;  /* Size of each slot in bytes */
	uint32_t num_stages;  /* Number of stages that have been added */
	uint32_t max_num_stages;  /* Max number of stages */
	/* Stages indexed by ID */
	struct opdl_stage *stages;
	/* Memory for storing slot data */
	uint8_t slots[0] __rte_cache_aligned;
};


/* Return input stage of a opdl_ring */
static __rte_always_inline struct opdl_stage *
input_stage(const struct opdl_ring *t)
{
	return &t->stages[0];
}

/* Check if a stage is the input stage */
static __rte_always_inline bool
is_input_stage(const struct opdl_stage *s)
{
	return s->index == 0;
}

/* Get slot pointer from sequence number */
static __rte_always_inline void *
get_slot(const struct opdl_ring *t, uint32_t n)
{
	return (void *)(uintptr_t)&t->slots[(n & t->mask) * t->slot_size];
}

/* Find how many entries are available for processing */
static __rte_always_inline uint32_t
available(const struct opdl_stage *s)
{
	if (s->threadsafe == true) {
		uint32_t n = __atomic_load_n(&s->shared.available_seq,
				__ATOMIC_ACQUIRE) -
				__atomic_load_n(&s->shared.head,
				__ATOMIC_ACQUIRE);

		/* Return 0 if available_seq needs to be updated */
		return (n <= s->num_slots) ? n : 0;
	}

	/* Single threaded */
	return s->available_seq - s->head;
}

/* Read sequence number of dependencies and find minimum */
static __rte_always_inline void
update_available_seq(struct opdl_stage *s)
{
	uint32_t i;
	uint32_t this_tail = s->shared.tail;
	uint32_t min_seq = __atomic_load_n(&s->deps[0]->tail, __ATOMIC_ACQUIRE);
	/* Input stage sequence numbers are greater than the sequence numbers of
	 * its dependencies so an offset of t->num_slots is needed when
	 * calculating available slots and also the condition which is used to
	 * determine the dependencies minimum sequence number must be reverted.
	 */
	uint32_t wrap;

	if (is_input_stage(s)) {
		wrap = s->num_slots;
		for (i = 1; i < s->num_deps; i++) {
			uint32_t seq = __atomic_load_n(&s->deps[i]->tail,
					__ATOMIC_ACQUIRE);
			if ((this_tail - seq) > (this_tail - min_seq))
				min_seq = seq;
		}
	} else {
		wrap = 0;
		for (i = 1; i < s->num_deps; i++) {
			uint32_t seq = __atomic_load_n(&s->deps[i]->tail,
					__ATOMIC_ACQUIRE);
			if ((seq - this_tail) < (min_seq - this_tail))
				min_seq = seq;
		}
	}

	if (s->threadsafe == false)
		s->available_seq = min_seq + wrap;
	else
		__atomic_store_n(&s->shared.available_seq, min_seq + wrap,
				__ATOMIC_RELEASE);
}

/* Wait until the number of available slots reaches number requested */
static __rte_always_inline void
wait_for_available(struct opdl_stage *s, uint32_t n)
{
	while (available(s) < n) {
		rte_pause();
		update_available_seq(s);
	}
}

/* Return number of slots to process based on number requested and mode */
static __rte_always_inline uint32_t
num_to_process(struct opdl_stage *s, uint32_t n, bool block)
{
	/* Don't read tail sequences of dependencies if not needed */
	if (available(s) >= n)
		return n;

	update_available_seq(s);

	if (block == false) {
		uint32_t avail = available(s);

		if (avail == 0) {
			rte_pause();
			return 0;
		}
		return (avail <= n) ? avail : n;
	}

	if (unlikely(n > s->num_slots)) {
		PMD_DRV_LOG(ERR, "%u entries is more than max (%u)",
				n, s->num_slots);
		return 0;  /* Avoid infinite loop */
	}
	/* blocking */
	wait_for_available(s, n);
	return n;
}

/* Copy entries in to slots with wrap-around */
static __rte_always_inline void
copy_entries_in(struct opdl_ring *t, uint32_t start, const void *entries,
		uint32_t num_entries)
{
	uint32_t slot_size = t->slot_size;
	uint32_t slot_index = start & t->mask;

	if (slot_index + num_entries <= t->num_slots) {
		rte_memcpy(get_slot(t, start), entries,
				num_entries * slot_size);
	} else {
		uint32_t split = t->num_slots - slot_index;

		rte_memcpy(get_slot(t, start), entries, split * slot_size);
		rte_memcpy(get_slot(t, 0),
				RTE_PTR_ADD(entries, split * slot_size),
				(num_entries - split) * slot_size);
	}
}

/* Copy entries out from slots with wrap-around */
static __rte_always_inline void
copy_entries_out(struct opdl_ring *t, uint32_t start, void *entries,
		uint32_t num_entries)
{
	uint32_t slot_size = t->slot_size;
	uint32_t slot_index = start & t->mask;

	if (slot_index + num_entries <= t->num_slots) {
		rte_memcpy(entries, get_slot(t, start),
				num_entries * slot_size);
	} else {
		uint32_t split = t->num_slots - slot_index;

		rte_memcpy(entries, get_slot(t, start), split * slot_size);
		rte_memcpy(RTE_PTR_ADD(entries, split * slot_size),
				get_slot(t, 0),
				(num_entries - split) * slot_size);
	}
}

/* Input function optimised for single thread */
static __rte_always_inline uint32_t
opdl_ring_input_singlethread(struct opdl_ring *t, const void *entries,
		uint32_t num_entries, bool block)
{
	struct opdl_stage *s = input_stage(t);
	uint32_t head = s->head;

	num_entries = num_to_process(s, num_entries, block);
	if (num_entries == 0)
		return 0;

	copy_entries_in(t, head, entries, num_entries);

	s->head += num_entries;
	__atomic_store_n(&s->shared.tail, s->head, __ATOMIC_RELEASE);

	return num_entries;
}

/* Convert head and tail of claim_manager into valid index */
static __rte_always_inline uint32_t
claim_mgr_index(uint32_t n)
{
	return n & (OPDL_DISCLAIMS_PER_LCORE - 1);
}

/* Check if there are available slots in claim_manager */
static __rte_always_inline bool
claim_mgr_available(struct claim_manager *mgr)
{
	return (mgr->mgr_head < (mgr->mgr_tail + OPDL_DISCLAIMS_PER_LCORE)) ?
			true : false;
}

/* Record a new claim. Only use after first checking an entry is available */
static __rte_always_inline void
claim_mgr_add(struct claim_manager *mgr, uint32_t tail, uint32_t head)
{
	if ((mgr->mgr_head != mgr->mgr_tail) &&
			(mgr->claims[claim_mgr_index(mgr->mgr_head - 1)].head ==
			tail)) {
		/* Combine with previous claim */
		mgr->claims[claim_mgr_index(mgr->mgr_head - 1)].head = head;
	} else {
		mgr->claims[claim_mgr_index(mgr->mgr_head)].head = head;
		mgr->claims[claim_mgr_index(mgr->mgr_head)].tail = tail;
		mgr->mgr_head++;
	}

	mgr->num_claimed += (head - tail);
}

/* Read the oldest recorded claim */
static __rte_always_inline bool
claim_mgr_read(struct claim_manager *mgr, uint32_t *tail, uint32_t *head)
{
	if (mgr->mgr_head == mgr->mgr_tail)
		return false;

	*head = mgr->claims[claim_mgr_index(mgr->mgr_tail)].head;
	*tail = mgr->claims[claim_mgr_index(mgr->mgr_tail)].tail;
	return true;
}

/* Remove the oldest recorded claim. Only use after first reading the entry */
static __rte_always_inline void
claim_mgr_remove(struct claim_manager *mgr)
{
	mgr->num_claimed -= (mgr->claims[claim_mgr_index(mgr->mgr_tail)].head -
			mgr->claims[claim_mgr_index(mgr->mgr_tail)].tail);
	mgr->mgr_tail++;
}

/* Update tail in the oldest claim. Only use after first reading the entry */
static __rte_always_inline void
claim_mgr_move_tail(struct claim_manager *mgr, uint32_t num_entries)
{
	mgr->num_claimed -= num_entries;
	mgr->claims[claim_mgr_index(mgr->mgr_tail)].tail += num_entries;
}

static __rte_always_inline void
opdl_stage_disclaim_multithread_n(struct opdl_stage *s,
		uint32_t num_entries, bool block)
{
	struct claim_manager *disclaims = &s->pending_disclaims[rte_lcore_id()];
	uint32_t head;
	uint32_t tail;

	while (num_entries) {
		bool ret = claim_mgr_read(disclaims, &tail, &head);

		if (ret == false)
			break;  /* nothing is claimed */
		/* There should be no race condition here. If shared.tail
		 * matches, no other core can update it until this one does.
		 */
		if (__atomic_load_n(&s->shared.tail, __ATOMIC_ACQUIRE) ==
				tail) {
			if (num_entries >= (head - tail)) {
				claim_mgr_remove(disclaims);
				__atomic_store_n(&s->shared.tail, head,
						__ATOMIC_RELEASE);
				num_entries -= (head - tail);
			} else {
				claim_mgr_move_tail(disclaims, num_entries);
				__atomic_store_n(&s->shared.tail,
						num_entries + tail,
						__ATOMIC_RELEASE);
				num_entries = 0;
			}
		} else if (block == false)
			break;  /* blocked by other thread */
		/* Keep going until num_entries are disclaimed. */
		rte_pause();
	}

	disclaims->num_to_disclaim = num_entries;
}

/* Move head atomically, returning number of entries available to process and
 * the original value of head. For non-input stages, the claim is recorded
 * so that the tail can be updated later by opdl_stage_disclaim().
 */
static __rte_always_inline void
move_head_atomically(struct opdl_stage *s, uint32_t *num_entries,
		uint32_t *old_head, bool block, bool claim_func)
{
	uint32_t orig_num_entries = *num_entries;
	uint32_t ret;
	struct claim_manager *disclaims = &s->pending_disclaims[rte_lcore_id()];

	/* Attempt to disclaim any outstanding claims */
	opdl_stage_disclaim_multithread_n(s, disclaims->num_to_disclaim,
			false);

	*old_head = __atomic_load_n(&s->shared.head, __ATOMIC_ACQUIRE);
	while (true) {
		bool success;
		/* If called by opdl_ring_input(), claim does not need to be
		 * recorded, as there will be no disclaim.
		 */
		if (claim_func) {
			/* Check that the claim can be recorded */
			ret = claim_mgr_available(disclaims);
			if (ret == false) {
				/* exit out if claim can't be recorded */
				*num_entries = 0;
				return;
			}
		}

		*num_entries = num_to_process(s, orig_num_entries, block);
		if (*num_entries == 0)
			return;

		success = __atomic_compare_exchange_n(&s->shared.head, old_head,
				*old_head + *num_entries,
				true,  /* may fail spuriously */
				__ATOMIC_RELEASE,  /* memory order on success */
				__ATOMIC_ACQUIRE);  /* memory order on fail */
		if (likely(success))
			break;
		rte_pause();
	}

	if (claim_func)
		/* Store the claim record */
		claim_mgr_add(disclaims, *old_head, *old_head + *num_entries);
}

/* Input function that supports multiple threads */
static __rte_always_inline uint32_t
opdl_ring_input_multithread(struct opdl_ring *t, const void *entries,
		uint32_t num_entries, bool block)
{
	struct opdl_stage *s = input_stage(t);
	uint32_t old_head;

	move_head_atomically(s, &num_entries, &old_head, block, false);
	if (num_entries == 0)
		return 0;

	copy_entries_in(t, old_head, entries, num_entries);

	/* If another thread started inputting before this one, but hasn't
	 * finished, we need to wait for it to complete to update the tail.
	 */
	rte_wait_until_equal_32(&s->shared.tail, old_head, __ATOMIC_ACQUIRE);

	__atomic_store_n(&s->shared.tail, old_head + num_entries,
			__ATOMIC_RELEASE);

	return num_entries;
}

static __rte_always_inline uint32_t
opdl_first_entry_id(uint32_t start_seq, uint8_t nb_p_lcores,
		uint8_t this_lcore)
{
	return ((nb_p_lcores <= 1) ? 0 :
			(nb_p_lcores - (start_seq % nb_p_lcores) + this_lcore) %
			nb_p_lcores);
}

/* Claim slots to process, optimised for single-thread operation */
static __rte_always_inline uint32_t
opdl_stage_claim_singlethread(struct opdl_stage *s, void *entries,
		uint32_t num_entries, uint32_t *seq, bool block, bool atomic)
{
	uint32_t i = 0, j = 0,  offset;
	uint32_t opa_id   = 0;
	uint32_t flow_id  = 0;
	uint64_t event    = 0;
	void *get_slots;
	struct rte_event *ev;
	RTE_SET_USED(seq);
	struct opdl_ring *t = s->t;
	uint8_t *entries_offset = (uint8_t *)entries;

	if (!atomic) {

		offset = opdl_first_entry_id(s->seq, s->nb_instance,
				s->instance_id);

		num_entries = s->nb_instance * num_entries;

		num_entries = num_to_process(s, num_entries, block);

		for (; offset < num_entries; offset += s->nb_instance) {
			get_slots = get_slot(t, s->head + offset);
			memcpy(entries_offset, get_slots, t->slot_size);
			entries_offset += t->slot_size;
			i++;
		}
	} else {
		num_entries = num_to_process(s, num_entries, block);

		for (j = 0; j < num_entries; j++) {
			ev = (struct rte_event *)get_slot(t, s->head+j);

			event  = __atomic_load_n(&(ev->event),
					__ATOMIC_ACQUIRE);

			opa_id = OPDL_OPA_MASK & (event >> OPDL_OPA_OFFSET);
			flow_id  = OPDL_FLOWID_MASK & event;

			if (opa_id >= s->queue_id)
				continue;

			if ((flow_id % s->nb_instance) == s->instance_id) {
				memcpy(entries_offset, ev, t->slot_size);
				entries_offset += t->slot_size;
				i++;
			}
		}
	}
	s->shadow_head = s->head;
	s->head += num_entries;
	s->num_claimed = num_entries;
	s->num_event = i;
	s->pos = 0;

	/* automatically disclaim entries if number of rte_events is zero */
	if (unlikely(i == 0))
		opdl_stage_disclaim(s, 0, false);

	return i;
}

/* Thread-safe version of function to claim slots for processing */
static __rte_always_inline uint32_t
opdl_stage_claim_multithread(struct opdl_stage *s, void *entries,
		uint32_t num_entries, uint32_t *seq, bool block)
{
	uint32_t old_head;
	struct opdl_ring *t = s->t;
	uint32_t i = 0, offset;
	uint8_t *entries_offset = (uint8_t *)entries;

	if (seq == NULL) {
		PMD_DRV_LOG(ERR, "Invalid seq PTR");
		return 0;
	}
	offset = opdl_first_entry_id(*seq, s->nb_instance, s->instance_id);
	num_entries = offset + (s->nb_instance * num_entries);

	move_head_atomically(s, &num_entries, &old_head, block, true);

	for (; offset < num_entries; offset += s->nb_instance) {
		memcpy(entries_offset, get_slot(t, s->head + offset),
			t->slot_size);
		entries_offset += t->slot_size;
		i++;
	}

	*seq = old_head;

	return i;
}

/* Claim and copy slot pointers, optimised for single-thread operation */
static __rte_always_inline uint32_t
opdl_stage_claim_copy_singlethread(struct opdl_stage *s, void *entries,
		uint32_t num_entries, uint32_t *seq, bool block)
{
	num_entries = num_to_process(s, num_entries, block);
	if (num_entries == 0)
		return 0;
	copy_entries_out(s->t, s->head, entries, num_entries);
	if (seq != NULL)
		*seq = s->head;
	s->head += num_entries;
	return num_entries;
}

/* Thread-safe version of function to claim and copy pointers to slots */
static __rte_always_inline uint32_t
opdl_stage_claim_copy_multithread(struct opdl_stage *s, void *entries,
		uint32_t num_entries, uint32_t *seq, bool block)
{
	uint32_t old_head;

	move_head_atomically(s, &num_entries, &old_head, block, true);
	if (num_entries == 0)
		return 0;
	copy_entries_out(s->t, old_head, entries, num_entries);
	if (seq != NULL)
		*seq = old_head;
	return num_entries;
}

static __rte_always_inline void
opdl_stage_disclaim_singlethread_n(struct opdl_stage *s,
		uint32_t num_entries)
{
	uint32_t old_tail = s->shared.tail;

	if (unlikely(num_entries > (s->head - old_tail))) {
		PMD_DRV_LOG(WARNING, "Attempt to disclaim (%u) more than claimed (%u)",
				num_entries, s->head - old_tail);
		num_entries = s->head - old_tail;
	}
	__atomic_store_n(&s->shared.tail, num_entries + old_tail,
			__ATOMIC_RELEASE);
}

uint32_t
opdl_ring_input(struct opdl_ring *t, const void *entries, uint32_t num_entries,
		bool block)
{
	if (input_stage(t)->threadsafe == false)
		return opdl_ring_input_singlethread(t, entries, num_entries,
				block);
	else
		return opdl_ring_input_multithread(t, entries, num_entries,
				block);
}

uint32_t
opdl_ring_copy_from_burst(struct opdl_ring *t, struct opdl_stage *s,
		const void *entries, uint32_t num_entries, bool block)
{
	uint32_t head = s->head;

	num_entries = num_to_process(s, num_entries, block);

	if (num_entries == 0)
		return 0;

	copy_entries_in(t, head, entries, num_entries);

	s->head += num_entries;
	__atomic_store_n(&s->shared.tail, s->head, __ATOMIC_RELEASE);

	return num_entries;

}

uint32_t
opdl_ring_copy_to_burst(struct opdl_ring *t, struct opdl_stage *s,
		void *entries, uint32_t num_entries, bool block)
{
	uint32_t head = s->head;

	num_entries = num_to_process(s, num_entries, block);
	if (num_entries == 0)
		return 0;

	copy_entries_out(t, head, entries, num_entries);

	s->head += num_entries;
	__atomic_store_n(&s->shared.tail, s->head, __ATOMIC_RELEASE);

	return num_entries;
}

uint32_t
opdl_stage_find_num_available(struct opdl_stage *s, uint32_t num_entries)
{
	/* return (num_to_process(s, num_entries, false)); */

	if (available(s) >= num_entries)
		return num_entries;

	update_available_seq(s);

	uint32_t avail = available(s);

	if (avail == 0) {
		rte_pause();
		return 0;
	}
	return (avail <= num_entries) ? avail : num_entries;
}

uint32_t
opdl_stage_claim(struct opdl_stage *s, void *entries,
		uint32_t num_entries, uint32_t *seq, bool block, bool atomic)
{
	if (s->threadsafe == false)
		return opdl_stage_claim_singlethread(s, entries, num_entries,
				seq, block, atomic);
	else
		return opdl_stage_claim_multithread(s, entries, num_entries,
				seq, block);
}

uint32_t
opdl_stage_claim_copy(struct opdl_stage *s, void *entries,
		uint32_t num_entries, uint32_t *seq, bool block)
{
	if (s->threadsafe == false)
		return opdl_stage_claim_copy_singlethread(s, entries,
				num_entries, seq, block);
	else
		return opdl_stage_claim_copy_multithread(s, entries,
				num_entries, seq, block);
}

void
opdl_stage_disclaim_n(struct opdl_stage *s, uint32_t num_entries,
		bool block)
{

	if (s->threadsafe == false) {
		opdl_stage_disclaim_singlethread_n(s, s->num_claimed);
	} else {
		struct claim_manager *disclaims =
			&s->pending_disclaims[rte_lcore_id()];

		if (unlikely(num_entries > s->num_slots)) {
			PMD_DRV_LOG(WARNING, "Attempt to disclaim (%u) more than claimed (%u)",
					num_entries, disclaims->num_claimed);
			num_entries = disclaims->num_claimed;
		}

		num_entries = RTE_MIN(num_entries + disclaims->num_to_disclaim,
				disclaims->num_claimed);
		opdl_stage_disclaim_multithread_n(s, num_entries, block);
	}
}

int
opdl_stage_disclaim(struct opdl_stage *s, uint32_t num_entries, bool block)
{
	if (num_entries != s->num_event) {
		rte_errno = EINVAL;
		return 0;
	}
	if (s->threadsafe == false) {
		__atomic_store_n(&s->shared.tail, s->head, __ATOMIC_RELEASE);
		s->seq += s->num_claimed;
		s->shadow_head = s->head;
		s->num_claimed = 0;
	} else {
		struct claim_manager *disclaims =
				&s->pending_disclaims[rte_lcore_id()];
		opdl_stage_disclaim_multithread_n(s, disclaims->num_claimed,
				block);
	}
	return num_entries;
}

uint32_t
opdl_ring_available(struct opdl_ring *t)
{
	return opdl_stage_available(&t->stages[0]);
}

uint32_t
opdl_stage_available(struct opdl_stage *s)
{
	update_available_seq(s);
	return available(s);
}

void
opdl_ring_flush(struct opdl_ring *t)
{
	struct opdl_stage *s = input_stage(t);

	wait_for_available(s, s->num_slots);
}

/******************** Non performance sensitive functions ********************/

/* Initial setup of a new stage's context */
static int
init_stage(struct opdl_ring *t, struct opdl_stage *s, bool threadsafe,
		bool is_input)
{
	uint32_t available = (is_input) ? t->num_slots : 0;

	s->t = t;
	s->num_slots = t->num_slots;
	s->index = t->num_stages;
	s->threadsafe = threadsafe;
	s->shared.stage = s;

	/* Alloc memory for deps */
	s->dep_tracking = rte_zmalloc_socket(LIB_NAME,
			t->max_num_stages * sizeof(enum dep_type),
			0, t->socket);
	if (s->dep_tracking == NULL)
		return -ENOMEM;

	s->deps = rte_zmalloc_socket(LIB_NAME,
			t->max_num_stages * sizeof(struct shared_state *),
			0, t->socket);
	if (s->deps == NULL) {
		rte_free(s->dep_tracking);
		return -ENOMEM;
	}

	s->dep_tracking[s->index] = DEP_SELF;

	if (threadsafe == true)
		s->shared.available_seq = available;
	else
		s->available_seq = available;

	return 0;
}

/* Add direct or indirect dependencies between stages */
static int
add_dep(struct opdl_stage *dependent, const struct opdl_stage *dependency,
		enum dep_type type)
{
	struct opdl_ring *t = dependent->t;
	uint32_t i;

	/* Add new direct dependency */
	if ((type == DEP_DIRECT) &&
			(dependent->dep_tracking[dependency->index] ==
					DEP_NONE)) {
		PMD_DRV_LOG(DEBUG, "%s:%u direct dependency on %u",
				t->name, dependent->index, dependency->index);
		dependent->dep_tracking[dependency->index] = DEP_DIRECT;
	}

	/* Add new indirect dependency or change direct to indirect */
	if ((type == DEP_INDIRECT) &&
			((dependent->dep_tracking[dependency->index] ==
			DEP_NONE) ||
			(dependent->dep_tracking[dependency->index] ==
			DEP_DIRECT))) {
		PMD_DRV_LOG(DEBUG, "%s:%u indirect dependency on %u",
				t->name, dependent->index, dependency->index);
		dependent->dep_tracking[dependency->index] = DEP_INDIRECT;
	}

	/* Shouldn't happen... */
	if ((dependent->dep_tracking[dependency->index] == DEP_SELF) &&
			(dependent != input_stage(t))) {
		PMD_DRV_LOG(ERR, "Loop in dependency graph %s:%u",
				t->name, dependent->index);
		return -EINVAL;
	}

	/* Keep going to dependencies of the dependency, until input stage */
	if (dependency != input_stage(t))
		for (i = 0; i < dependency->num_deps; i++) {
			int ret = add_dep(dependent, dependency->deps[i]->stage,
					DEP_INDIRECT);

			if (ret < 0)
				return ret;
		}

	/* Make list of sequence numbers for direct dependencies only */
	if (type == DEP_DIRECT)
		for (i = 0, dependent->num_deps = 0; i < t->num_stages; i++)
			if (dependent->dep_tracking[i] == DEP_DIRECT) {
				if ((i == 0) && (dependent->num_deps > 1))
					rte_panic("%s:%u depends on > input",
							t->name,
							dependent->index);
				dependent->deps[dependent->num_deps++] =
						&t->stages[i].shared;
			}

	return 0;
}

struct opdl_ring *
opdl_ring_create(const char *name, uint32_t num_slots, uint32_t slot_size,
		uint32_t max_num_stages, int socket)
{
	struct opdl_ring *t;
	char mz_name[RTE_MEMZONE_NAMESIZE];
	int mz_flags = 0;
	struct opdl_stage *st = NULL;
	const struct rte_memzone *mz = NULL;
	size_t alloc_size = RTE_CACHE_LINE_ROUNDUP(sizeof(*t) +
			(num_slots * slot_size));

	/* Compile time checking */
	RTE_BUILD_BUG_ON((sizeof(struct shared_state) & RTE_CACHE_LINE_MASK) !=
			0);
	RTE_BUILD_BUG_ON((offsetof(struct opdl_stage, shared) &
			RTE_CACHE_LINE_MASK) != 0);
	RTE_BUILD_BUG_ON((offsetof(struct opdl_ring, slots) &
			RTE_CACHE_LINE_MASK) != 0);
	RTE_BUILD_BUG_ON(!rte_is_power_of_2(OPDL_DISCLAIMS_PER_LCORE));

	/* Parameter checking */
	if (name == NULL) {
		PMD_DRV_LOG(ERR, "name param is NULL");
		return NULL;
	}
	if (!rte_is_power_of_2(num_slots)) {
		PMD_DRV_LOG(ERR, "num_slots (%u) for %s is not power of 2",
				num_slots, name);
		return NULL;
	}

	/* Alloc memory for stages */
	st = rte_zmalloc_socket(LIB_NAME,
		max_num_stages * sizeof(struct opdl_stage),
		RTE_CACHE_LINE_SIZE, socket);
	if (st == NULL)
		goto exit_fail;

	snprintf(mz_name, sizeof(mz_name), "%s%s", LIB_NAME, name);

	/* Alloc memory for memzone */
	mz = rte_memzone_reserve(mz_name, alloc_size, socket, mz_flags);
	if (mz == NULL)
		goto exit_fail;

	t = mz->addr;

	/* Initialise opdl_ring queue */
	memset(t, 0, sizeof(*t));
	strlcpy(t->name, name, sizeof(t->name));
	t->socket = socket;
	t->num_slots = num_slots;
	t->mask = num_slots - 1;
	t->slot_size = slot_size;
	t->max_num_stages = max_num_stages;
	t->stages = st;

	PMD_DRV_LOG(DEBUG, "Created %s at %p (num_slots=%u,socket=%i,slot_size=%u)",
			t->name, t, num_slots, socket, slot_size);

	return t;

exit_fail:
	PMD_DRV_LOG(ERR, "Cannot reserve memory");
	rte_free(st);
	rte_memzone_free(mz);

	return NULL;
}

void *
opdl_ring_get_slot(const struct opdl_ring *t, uint32_t index)
{
	return get_slot(t, index);
}

bool
opdl_ring_cas_slot(struct opdl_stage *s, const struct rte_event *ev,
		uint32_t index, bool atomic)
{
	uint32_t i = 0, offset;
	struct opdl_ring *t = s->t;
	struct rte_event *ev_orig = NULL;
	bool ev_updated = false;
	uint64_t ev_temp    = 0;
	uint64_t ev_update  = 0;

	uint32_t opa_id   = 0;
	uint32_t flow_id  = 0;
	uint64_t event    = 0;

	if (index > s->num_event) {
		PMD_DRV_LOG(ERR, "index is overflow");
		return ev_updated;
	}

	ev_temp = ev->event & OPDL_EVENT_MASK;

	if (!atomic) {
		offset = opdl_first_entry_id(s->seq, s->nb_instance,
				s->instance_id);
		offset += index*s->nb_instance;
		ev_orig = get_slot(t, s->shadow_head+offset);
		if ((ev_orig->event&OPDL_EVENT_MASK) != ev_temp) {
			ev_orig->event = ev->event;
			ev_updated = true;
		}
		if (ev_orig->u64 != ev->u64) {
			ev_orig->u64 = ev->u64;
			ev_updated = true;
		}

	} else {
		for (i = s->pos; i < s->num_claimed; i++) {
			ev_orig = (struct rte_event *)
				get_slot(t, s->shadow_head+i);

			event  = __atomic_load_n(&(ev_orig->event),
					__ATOMIC_ACQUIRE);

			opa_id = OPDL_OPA_MASK & (event >> OPDL_OPA_OFFSET);
			flow_id  = OPDL_FLOWID_MASK & event;

			if (opa_id >= s->queue_id)
				continue;

			if ((flow_id % s->nb_instance) == s->instance_id) {
				ev_update = s->queue_id;
				ev_update = (ev_update << OPDL_OPA_OFFSET)
					| ev->event;

				s->pos = i + 1;

				if ((event & OPDL_EVENT_MASK) !=
						ev_temp) {
					__atomic_store_n(&(ev_orig->event),
							ev_update,
							__ATOMIC_RELEASE);
					ev_updated = true;
				}
				if (ev_orig->u64 != ev->u64) {
					ev_orig->u64 = ev->u64;
					ev_updated = true;
				}

				break;
			}
		}

	}

	return ev_updated;
}

int
opdl_ring_get_socket(const struct opdl_ring *t)
{
	return t->socket;
}

uint32_t
opdl_ring_get_num_slots(const struct opdl_ring *t)
{
	return t->num_slots;
}

const char *
opdl_ring_get_name(const struct opdl_ring *t)
{
	return t->name;
}

/* Check dependency list is valid for a given opdl_ring */
static int
check_deps(struct opdl_ring *t, struct opdl_stage *deps[],
		uint32_t num_deps)
{
	unsigned int i;

	for (i = 0; i < num_deps; ++i) {
		if (!deps[i]) {
			PMD_DRV_LOG(ERR, "deps[%u] is NULL", i);
			return -EINVAL;
		}
		if (t != deps[i]->t) {
			PMD_DRV_LOG(ERR, "deps[%u] is in opdl_ring %s, not %s",
					i, deps[i]->t->name, t->name);
			return -EINVAL;
		}
	}

	return 0;
}

struct opdl_stage *
opdl_stage_add(struct opdl_ring *t, bool threadsafe, bool is_input)
{
	struct opdl_stage *s;

	/* Parameter checking */
	if (!t) {
		PMD_DRV_LOG(ERR, "opdl_ring is NULL");
		return NULL;
	}
	if (t->num_stages == t->max_num_stages) {
		PMD_DRV_LOG(ERR, "%s has max number of stages (%u)",
				t->name, t->max_num_stages);
		return NULL;
	}

	s = &t->stages[t->num_stages];

	if (((uintptr_t)&s->shared & RTE_CACHE_LINE_MASK) != 0)
		PMD_DRV_LOG(WARNING, "Tail seq num (%p) of %s stage not cache aligned",
				&s->shared, t->name);

	if (init_stage(t, s, threadsafe, is_input) < 0) {
		PMD_DRV_LOG(ERR, "Cannot reserve memory");
		return NULL;
	}
	t->num_stages++;

	return s;
}

uint32_t
opdl_stage_deps_add(struct opdl_ring *t, struct opdl_stage *s,
		uint32_t nb_instance, uint32_t instance_id,
		struct opdl_stage *deps[],
		uint32_t num_deps)
{
	uint32_t i;
	int ret = 0;

	if ((num_deps > 0) && (!deps)) {
		PMD_DRV_LOG(ERR, "%s stage has NULL dependencies", t->name);
		return -1;
	}
	ret = check_deps(t, deps, num_deps);
	if (ret < 0)
		return ret;

	for (i = 0; i < num_deps; i++) {
		ret = add_dep(s, deps[i], DEP_DIRECT);
		if (ret < 0)
			return ret;
	}

	s->nb_instance = nb_instance;
	s->instance_id = instance_id;

	return ret;
}

struct opdl_stage *
opdl_ring_get_input_stage(const struct opdl_ring *t)
{
	return input_stage(t);
}

int
opdl_stage_set_deps(struct opdl_stage *s, struct opdl_stage *deps[],
		uint32_t num_deps)
{
	unsigned int i;
	int ret;

	if ((num_deps == 0) || (!deps)) {
		PMD_DRV_LOG(ERR, "cannot set NULL dependencies");
		return -EINVAL;
	}

	ret = check_deps(s->t, deps, num_deps);
	if (ret < 0)
		return ret;

	/* Update deps */
	for (i = 0; i < num_deps; i++)
		s->deps[i] = &deps[i]->shared;
	s->num_deps = num_deps;

	return 0;
}

struct opdl_ring *
opdl_stage_get_opdl_ring(const struct opdl_stage *s)
{
	return s->t;
}

void
opdl_stage_set_queue_id(struct opdl_stage *s,
		uint32_t queue_id)
{
	s->queue_id = queue_id;
}

void
opdl_ring_dump(const struct opdl_ring *t, FILE *f)
{
	uint32_t i;

	if (t == NULL) {
		fprintf(f, "NULL OPDL!\n");
		return;
	}
	fprintf(f, "OPDL \"%s\": num_slots=%u; mask=%#x; slot_size=%u; num_stages=%u; socket=%i\n",
			t->name, t->num_slots, t->mask, t->slot_size,
			t->num_stages, t->socket);
	for (i = 0; i < t->num_stages; i++) {
		uint32_t j;
		const struct opdl_stage *s = &t->stages[i];

		fprintf(f, "  %s[%u]: threadsafe=%s; head=%u; available_seq=%u; tail=%u; deps=%u",
				t->name, i, (s->threadsafe) ? "true" : "false",
				(s->threadsafe) ? s->shared.head : s->head,
				(s->threadsafe) ? s->shared.available_seq :
				s->available_seq,
				s->shared.tail, (s->num_deps > 0) ?
				s->deps[0]->stage->index : 0);
		for (j = 1; j < s->num_deps; j++)
			fprintf(f, ",%u", s->deps[j]->stage->index);
		fprintf(f, "\n");
	}
	fflush(f);
}

void
opdl_ring_free(struct opdl_ring *t)
{
	uint32_t i;
	const struct rte_memzone *mz;
	char mz_name[RTE_MEMZONE_NAMESIZE];

	if (t == NULL) {
		PMD_DRV_LOG(DEBUG, "Freeing NULL OPDL Ring!");
		return;
	}

	PMD_DRV_LOG(DEBUG, "Freeing %s opdl_ring at %p", t->name, t);

	for (i = 0; i < t->num_stages; ++i) {
		rte_free(t->stages[i].deps);
		rte_free(t->stages[i].dep_tracking);
	}

	rte_free(t->stages);

	snprintf(mz_name, sizeof(mz_name), "%s%s", LIB_NAME, t->name);
	mz = rte_memzone_lookup(mz_name);
	if (rte_memzone_free(mz) != 0)
		PMD_DRV_LOG(ERR, "Cannot free memzone for %s", t->name);
}

/* search a opdl_ring from its name */
struct opdl_ring *
opdl_ring_lookup(const char *name)
{
	const struct rte_memzone *mz;
	char mz_name[RTE_MEMZONE_NAMESIZE];

	snprintf(mz_name, sizeof(mz_name), "%s%s", LIB_NAME, name);

	mz = rte_memzone_lookup(mz_name);
	if (mz == NULL)
		return NULL;

	return mz->addr;
}

void
opdl_ring_set_stage_threadsafe(struct opdl_stage *s, bool threadsafe)
{
	s->threadsafe = threadsafe;
}