DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2019-2020 Broadcom
 * All rights reserved.
 */

#include <string.h>

#include <rte_common.h>

#include <cfa_resource_types.h>

#include "tf_rm.h"
#include "tf_common.h"
#include "tf_util.h"
#include "tf_session.h"
#include "tf_device.h"
#include "tfp.h"
#include "tf_msg.h"

/* Logging defines */
#define TF_RM_DEBUG  0

/**
 * Generic RM Element data type that an RM DB is build upon.
 */
struct tf_rm_element {
	/**
	 * RM Element configuration type. If Private then the
	 * hcapi_type can be ignored. If Null then the element is not
	 * valid for the device.
	 */
	enum tf_rm_elem_cfg_type cfg_type;

	/**
	 * HCAPI RM Type for the element.
	 */
	uint16_t hcapi_type;

	/**
	 * HCAPI RM allocated range information for the element.
	 */
	struct tf_rm_alloc_info alloc;

	/**
	 * Bit allocator pool for the element. Pool size is controlled
	 * by the struct tf_session_resources at time of session creation.
	 * Null indicates that the element is not used for the device.
	 */
	struct bitalloc *pool;
};

/**
 * TF RM DB definition
 */
struct tf_rm_new_db {
	/**
	 * Number of elements in the DB
	 */
	uint16_t num_entries;

	/**
	 * Direction this DB controls.
	 */
	enum tf_dir dir;

	/**
	 * Module type, used for logging purposes.
	 */
	enum tf_device_module_type type;

	/**
	 * The DB consists of an array of elements
	 */
	struct tf_rm_element *db;
};

/**
 * Adjust an index according to the allocation information.
 *
 * All resources are controlled in a 0 based pool. Some resources, by
 * design, are not 0 based, i.e. Full Action Records (SRAM) thus they
 * need to be adjusted before they are handed out.
 *
 * [in] cfg
 *   Pointer to the DB configuration
 *
 * [in] reservations
 *   Pointer to the allocation values associated with the module
 *
 * [in] count
 *   Number of DB configuration elements
 *
 * [out] valid_count
 *   Number of HCAPI entries with a reservation value greater than 0
 *
 * Returns:
 *     0          - Success
 *   - EOPNOTSUPP - Operation not supported
 */
static void
tf_rm_count_hcapi_reservations(enum tf_dir dir,
			       enum tf_device_module_type type,
			       struct tf_rm_element_cfg *cfg,
			       uint16_t *reservations,
			       uint16_t count,
			       uint16_t *valid_count)
{
	int i;
	uint16_t cnt = 0;

	for (i = 0; i < count; i++) {
		if ((cfg[i].cfg_type == TF_RM_ELEM_CFG_HCAPI ||
		     cfg[i].cfg_type == TF_RM_ELEM_CFG_HCAPI_BA) &&
		    reservations[i] > 0)
			cnt++;

		/* Only log msg if a type is attempted reserved and
		 * not supported. We ignore EM module as its using a
		 * split configuration array thus it would fail for
		 * this type of check.
		 */
		if (type != TF_DEVICE_MODULE_TYPE_EM &&
		    cfg[i].cfg_type == TF_RM_ELEM_CFG_NULL &&
		    reservations[i] > 0) {
			TFP_DRV_LOG(ERR,
				"%s, %s, %s allocation of %d not supported\n",
				tf_device_module_type_2_str(type),
				tf_dir_2_str(dir),
				tf_device_module_type_subtype_2_str(type, i),
				reservations[i]);
		}
	}

	*valid_count = cnt;
}

/**
 * Resource Manager Adjust of base index definitions.
 */
enum tf_rm_adjust_type {
	TF_RM_ADJUST_ADD_BASE, /**< Adds base to the index */
	TF_RM_ADJUST_RM_BASE   /**< Removes base from the index */
};

/**
 * Adjust an index according to the allocation information.
 *
 * All resources are controlled in a 0 based pool. Some resources, by
 * design, are not 0 based, i.e. Full Action Records (SRAM) thus they
 * need to be adjusted before they are handed out.
 *
 * [in] db
 *   Pointer to the db, used for the lookup
 *
 * [in] action
 *   Adjust action
 *
 * [in] db_index
 *   DB index for the element type
 *
 * [in] index
 *   Index to convert
 *
 * [out] adj_index
 *   Adjusted index
 *
 * Returns:
 *     0          - Success
 *   - EOPNOTSUPP - Operation not supported
 */
static int
tf_rm_adjust_index(struct tf_rm_element *db,
		   enum tf_rm_adjust_type action,
		   uint32_t db_index,
		   uint32_t index,
		   uint32_t *adj_index)
{
	int rc = 0;
	uint32_t base_index;

	base_index = db[db_index].alloc.entry.start;

	switch (action) {
	case TF_RM_ADJUST_RM_BASE:
		*adj_index = index - base_index;
		break;
	case TF_RM_ADJUST_ADD_BASE:
		*adj_index = index + base_index;
		break;
	default:
		return -EOPNOTSUPP;
	}

	return rc;
}

/**
 * Logs an array of found residual entries to the console.
 *
 * [in] dir
 *   Receive or transmit direction
 *
 * [in] type
 *   Type of Device Module
 *
 * [in] count
 *   Number of entries in the residual array
 *
 * [in] residuals
 *   Pointer to an array of residual entries. Array is index same as
 *   the DB in which this function is used. Each entry holds residual
 *   value for that entry.
 */
static void
tf_rm_log_residuals(enum tf_dir dir,
		    enum tf_device_module_type type,
		    uint16_t count,
		    uint16_t *residuals)
{
	int i;

	/* Walk the residual array and log the types that wasn't
	 * cleaned up to the console.
	 */
	for (i = 0; i < count; i++) {
		if (residuals[i] != 0)
			TFP_DRV_LOG(ERR,
				"%s, %s was not cleaned up, %d outstanding\n",
				tf_dir_2_str(dir),
				tf_device_module_type_subtype_2_str(type, i),
				residuals[i]);
	}
}

/**
 * Performs a check of the passed in DB for any lingering elements. If
 * a resource type was found to not have been cleaned up by the caller
 * then its residual values are recorded, logged and passed back in an
 * allocate reservation array that the caller can pass to the FW for
 * cleanup.
 *
 * [in] db
 *   Pointer to the db, used for the lookup
 *
 * [out] resv_size
 *   Pointer to the reservation size of the generated reservation
 *   array.
 *
 * [in/out] resv
 *   Pointer Pointer to a reservation array. The reservation array is
 *   allocated after the residual scan and holds any found residual
 *   entries. Thus it can be smaller than the DB that the check was
 *   performed on. Array must be freed by the caller.
 *
 * [out] residuals_present
 *   Pointer to a bool flag indicating if residual was present in the
 *   DB
 *
 * Returns:
 *     0          - Success
 *   - EOPNOTSUPP - Operation not supported
 */
static int
tf_rm_check_residuals(struct tf_rm_new_db *rm_db,
		      uint16_t *resv_size,
		      struct tf_rm_resc_entry **resv,
		      bool *residuals_present)
{
	int rc;
	int i;
	int f;
	uint16_t count;
	uint16_t found;
	uint16_t *residuals = NULL;
	uint16_t hcapi_type;
	struct tf_rm_get_inuse_count_parms iparms;
	struct tf_rm_get_alloc_info_parms aparms;
	struct tf_rm_get_hcapi_parms hparms;
	struct tf_rm_alloc_info info;
	struct tfp_calloc_parms cparms;
	struct tf_rm_resc_entry *local_resv = NULL;

	/* Create array to hold the entries that have residuals */
	cparms.nitems = rm_db->num_entries;
	cparms.size = sizeof(uint16_t);
	cparms.alignment = 0;
	rc = tfp_calloc(&cparms);
	if (rc)
		return rc;

	residuals = (uint16_t *)cparms.mem_va;

	/* Traverse the DB and collect any residual elements */
	iparms.rm_db = rm_db;
	iparms.count = &count;
	for (i = 0, found = 0; i < rm_db->num_entries; i++) {
		iparms.db_index = i;
		rc = tf_rm_get_inuse_count(&iparms);
		/* Not a device supported entry, just skip */
		if (rc == -ENOTSUP)
			continue;
		if (rc)
			goto cleanup_residuals;

		if (count) {
			found++;
			residuals[i] = count;
			*residuals_present = true;
		}
	}

	if (*residuals_present) {
		/* Populate a reduced resv array with only the entries
		 * that have residuals.
		 */
		cparms.nitems = found;
		cparms.size = sizeof(struct tf_rm_resc_entry);
		cparms.alignment = 0;
		rc = tfp_calloc(&cparms);
		if (rc)
			return rc;

		local_resv = (struct tf_rm_resc_entry *)cparms.mem_va;

		aparms.rm_db = rm_db;
		hparms.rm_db = rm_db;
		hparms.hcapi_type = &hcapi_type;
		for (i = 0, f = 0; i < rm_db->num_entries; i++) {
			if (residuals[i] == 0)
				continue;
			aparms.db_index = i;
			aparms.info = &info;
			rc = tf_rm_get_info(&aparms);
			if (rc)
				goto cleanup_all;

			hparms.db_index = i;
			rc = tf_rm_get_hcapi_type(&hparms);
			if (rc)
				goto cleanup_all;

			local_resv[f].type = hcapi_type;
			local_resv[f].start = info.entry.start;
			local_resv[f].stride = info.entry.stride;
			f++;
		}
		*resv_size = found;
	}

	tf_rm_log_residuals(rm_db->dir,
			    rm_db->type,
			    rm_db->num_entries,
			    residuals);

	tfp_free((void *)residuals);
	*resv = local_resv;

	return 0;

 cleanup_all:
	tfp_free((void *)local_resv);
	*resv = NULL;
 cleanup_residuals:
	tfp_free((void *)residuals);

	return rc;
}

int
tf_rm_create_db(struct tf *tfp,
		struct tf_rm_create_db_parms *parms)
{
	int rc;
	int i;
	int j;
	struct tf_session *tfs;
	struct tf_dev_info *dev;
	uint16_t max_types;
	struct tfp_calloc_parms cparms;
	struct tf_rm_resc_req_entry *query;
	enum tf_rm_resc_resv_strategy resv_strategy;
	struct tf_rm_resc_req_entry *req;
	struct tf_rm_resc_entry *resv;
	struct tf_rm_new_db *rm_db;
	struct tf_rm_element *db;
	uint32_t pool_size;
	uint16_t hcapi_items;

	TF_CHECK_PARMS2(tfp, parms);

	/* Retrieve the session information */
	rc = tf_session_get_session_internal(tfp, &tfs);
	if (rc)
		return rc;

	/* Retrieve device information */
	rc = tf_session_get_device(tfs, &dev);
	if (rc)
		return rc;

	/* Need device max number of elements for the RM QCAPS */
	rc = dev->ops->tf_dev_get_max_types(tfp, &max_types);
	if (rc)
		return rc;

	cparms.nitems = max_types;
	cparms.size = sizeof(struct tf_rm_resc_req_entry);
	cparms.alignment = 0;
	rc = tfp_calloc(&cparms);
	if (rc)
		return rc;

	query = (struct tf_rm_resc_req_entry *)cparms.mem_va;

	/* Get Firmware Capabilities */
	rc = tf_msg_session_resc_qcaps(tfp,
				       parms->dir,
				       max_types,
				       query,
				       &resv_strategy);
	if (rc)
		return rc;

	/* Process capabilities against DB requirements. However, as a
	 * DB can hold elements that are not HCAPI we can reduce the
	 * req msg content by removing those out of the request yet
	 * the DB holds them all as to give a fast lookup. We can also
	 * remove entries where there are no request for elements.
	 */
	tf_rm_count_hcapi_reservations(parms->dir,
				       parms->type,
				       parms->cfg,
				       parms->alloc_cnt,
				       parms->num_elements,
				       &hcapi_items);

	/* Handle the case where a DB create request really ends up
	 * being empty. Unsupported (if not rare) case but possible
	 * that no resources are necessary for a 'direction'.
	 */
	if (hcapi_items == 0) {
		TFP_DRV_LOG(ERR,
			"%s: DB create request for Zero elements, DB Type:%s\n",
			tf_dir_2_str(parms->dir),
			tf_device_module_type_2_str(parms->type));

		parms->rm_db = NULL;
		return -ENOMEM;
	}

	/* Alloc request, alignment already set */
	cparms.nitems = (size_t)hcapi_items;
	cparms.size = sizeof(struct tf_rm_resc_req_entry);
	rc = tfp_calloc(&cparms);
	if (rc)
		return rc;
	req = (struct tf_rm_resc_req_entry *)cparms.mem_va;

	/* Alloc reservation, alignment and nitems already set */
	cparms.size = sizeof(struct tf_rm_resc_entry);
	rc = tfp_calloc(&cparms);
	if (rc)
		return rc;
	resv = (struct tf_rm_resc_entry *)cparms.mem_va;

	/* Build the request */
	for (i = 0, j = 0; i < parms->num_elements; i++) {
		/* Skip any non HCAPI cfg elements */
		if (parms->cfg[i].cfg_type == TF_RM_ELEM_CFG_HCAPI ||
		    parms->cfg[i].cfg_type == TF_RM_ELEM_CFG_HCAPI_BA) {
			/* Only perform reservation for entries that
			 * has been requested
			 */
			if (parms->alloc_cnt[i] == 0)
				continue;

			/* Verify that we can get the full amount
			 * allocated per the qcaps availability.
			 */
			if (parms->alloc_cnt[i] <=
			    query[parms->cfg[i].hcapi_type].max) {
				req[j].type = parms->cfg[i].hcapi_type;
				req[j].min = parms->alloc_cnt[i];
				req[j].max = parms->alloc_cnt[i];
				j++;
			} else {
				TFP_DRV_LOG(ERR,
					    "%s: Resource failure, type:%d\n",
					    tf_dir_2_str(parms->dir),
					    parms->cfg[i].hcapi_type);
				TFP_DRV_LOG(ERR,
					"req:%d, avail:%d\n",
					parms->alloc_cnt[i],
					query[parms->cfg[i].hcapi_type].max);
				return -EINVAL;
			}
		}
	}

	rc = tf_msg_session_resc_alloc(tfp,
				       parms->dir,
				       hcapi_items,
				       req,
				       resv);
	if (rc)
		return rc;

	/* Build the RM DB per the request */
	cparms.nitems = 1;
	cparms.size = sizeof(struct tf_rm_new_db);
	rc = tfp_calloc(&cparms);
	if (rc)
		return rc;
	rm_db = (void *)cparms.mem_va;

	/* Build the DB within RM DB */
	cparms.nitems = parms->num_elements;
	cparms.size = sizeof(struct tf_rm_element);
	rc = tfp_calloc(&cparms);
	if (rc)
		return rc;
	rm_db->db = (struct tf_rm_element *)cparms.mem_va;

	db = rm_db->db;
	for (i = 0, j = 0; i < parms->num_elements; i++) {
		db[i].cfg_type = parms->cfg[i].cfg_type;
		db[i].hcapi_type = parms->cfg[i].hcapi_type;

		/* Skip any non HCAPI types as we didn't include them
		 * in the reservation request.
		 */
		if (parms->cfg[i].cfg_type != TF_RM_ELEM_CFG_HCAPI &&
		    parms->cfg[i].cfg_type != TF_RM_ELEM_CFG_HCAPI_BA)
			continue;

		/* If the element didn't request an allocation no need
		 * to create a pool nor verify if we got a reservation.
		 */
		if (parms->alloc_cnt[i] == 0)
			continue;

		/* If the element had requested an allocation and that
		 * allocation was a success (full amount) then
		 * allocate the pool.
		 */
		if (parms->alloc_cnt[i] == resv[j].stride) {
			db[i].alloc.entry.start = resv[j].start;
			db[i].alloc.entry.stride = resv[j].stride;

			/* Only allocate BA pool if so requested */
			if (parms->cfg[i].cfg_type == TF_RM_ELEM_CFG_HCAPI_BA) {
				/* Create pool */
				pool_size = (BITALLOC_SIZEOF(resv[j].stride) /
					     sizeof(struct bitalloc));
				/* Alloc request, alignment already set */
				cparms.nitems = pool_size;
				cparms.size = sizeof(struct bitalloc);
				rc = tfp_calloc(&cparms);
				if (rc) {
					TFP_DRV_LOG(ERR,
					     "%s: Pool alloc failed, type:%d\n",
					     tf_dir_2_str(parms->dir),
					     db[i].cfg_type);
					goto fail;
				}
				db[i].pool = (struct bitalloc *)cparms.mem_va;

				rc = ba_init(db[i].pool, resv[j].stride);
				if (rc) {
					TFP_DRV_LOG(ERR,
					     "%s: Pool init failed, type:%d\n",
					     tf_dir_2_str(parms->dir),
					     db[i].cfg_type);
					goto fail;
				}
			}
			j++;
		} else {
			/* Bail out as we want what we requested for
			 * all elements, not any less.
			 */
			TFP_DRV_LOG(ERR,
				    "%s: Alloc failed, type:%d\n",
				    tf_dir_2_str(parms->dir),
				    db[i].cfg_type);
			TFP_DRV_LOG(ERR,
				    "req:%d, alloc:%d\n",
				    parms->alloc_cnt[i],
				    resv[j].stride);
			goto fail;
		}
	}

	rm_db->num_entries = parms->num_elements;
	rm_db->dir = parms->dir;
	rm_db->type = parms->type;
	*parms->rm_db = (void *)rm_db;

#if (TF_RM_DEBUG == 1)
	printf("%s: type:%d num_entries:%d\n",
	       tf_dir_2_str(parms->dir),
	       parms->type,
	       i);
#endif /* (TF_RM_DEBUG == 1) */

	tfp_free((void *)req);
	tfp_free((void *)resv);

	return 0;

 fail:
	tfp_free((void *)req);
	tfp_free((void *)resv);
	tfp_free((void *)db->pool);
	tfp_free((void *)db);
	tfp_free((void *)rm_db);
	parms->rm_db = NULL;

	return -EINVAL;
}

int
tf_rm_free_db(struct tf *tfp,
	      struct tf_rm_free_db_parms *parms)
{
	int rc;
	int i;
	uint16_t resv_size = 0;
	struct tf_rm_new_db *rm_db;
	struct tf_rm_resc_entry *resv;
	bool residuals_found = false;

	TF_CHECK_PARMS2(parms, parms->rm_db);

	/* Device unbind happens when the TF Session is closed and the
	 * session ref count is 0. Device unbind will cleanup each of
	 * its support modules, i.e. Identifier, thus we're ending up
	 * here to close the DB.
	 *
	 * On TF Session close it is assumed that the session has already
	 * cleaned up all its resources, individually, while
	 * destroying its flows.
	 *
	 * To assist in the 'cleanup checking' the DB is checked for any
	 * remaining elements and logged if found to be the case.
	 *
	 * Any such elements will need to be 'cleared' ahead of
	 * returning the resources to the HCAPI RM.
	 *
	 * RM will signal FW to flush the DB resources. FW will
	 * perform the invalidation. TF Session close will return the
	 * previous allocated elements to the RM and then close the
	 * HCAPI RM registration. That then saves several 'free' msgs
	 * from being required.
	 */

	rm_db = (struct tf_rm_new_db *)parms->rm_db;

	/* Check for residuals that the client didn't clean up */
	rc = tf_rm_check_residuals(rm_db,
				   &resv_size,
				   &resv,
				   &residuals_found);
	if (rc)
		return rc;

	/* Invalidate any residuals followed by a DB traversal for
	 * pool cleanup.
	 */
	if (residuals_found) {
		rc = tf_msg_session_resc_flush(tfp,
					       parms->dir,
					       resv_size,
					       resv);
		tfp_free((void *)resv);
		/* On failure we still have to cleanup so we can only
		 * log that FW failed.
		 */
		if (rc)
			TFP_DRV_LOG(ERR,
				    "%s: Internal Flush error, module:%s\n",
				    tf_dir_2_str(parms->dir),
				    tf_device_module_type_2_str(rm_db->type));
	}

	/* No need to check for configuration type, even if we do not
	 * have a BA pool we just delete on a null ptr, no harm
	 */
	for (i = 0; i < rm_db->num_entries; i++)
		tfp_free((void *)rm_db->db[i].pool);

	tfp_free((void *)parms->rm_db);

	return rc;
}

int
tf_rm_allocate(struct tf_rm_allocate_parms *parms)
{
	int rc;
	int id;
	uint32_t index;
	struct tf_rm_new_db *rm_db;
	enum tf_rm_elem_cfg_type cfg_type;

	TF_CHECK_PARMS2(parms, parms->rm_db);

	rm_db = (struct tf_rm_new_db *)parms->rm_db;
	cfg_type = rm_db->db[parms->db_index].cfg_type;

	/* Bail out if not controlled by RM */
	if (cfg_type != TF_RM_ELEM_CFG_HCAPI_BA)
		return -ENOTSUP;

	/* Bail out if the pool is not valid, should never happen */
	if (rm_db->db[parms->db_index].pool == NULL) {
		rc = -ENOTSUP;
		TFP_DRV_LOG(ERR,
			    "%s: Invalid pool for this type:%d, rc:%s\n",
			    tf_dir_2_str(rm_db->dir),
			    parms->db_index,
			    strerror(-rc));
		return rc;
	}

	/*
	 * priority  0: allocate from top of the tcam i.e. high
	 * priority !0: allocate index from bottom i.e lowest
	 */
	if (parms->priority)
		id = ba_alloc_reverse(rm_db->db[parms->db_index].pool);
	else
		id = ba_alloc(rm_db->db[parms->db_index].pool);
	if (id == BA_FAIL) {
		rc = -ENOMEM;
		TFP_DRV_LOG(ERR,
			    "%s: Allocation failed, rc:%s\n",
			    tf_dir_2_str(rm_db->dir),
			    strerror(-rc));
		return rc;
	}

	/* Adjust for any non zero start value */
	rc = tf_rm_adjust_index(rm_db->db,
				TF_RM_ADJUST_ADD_BASE,
				parms->db_index,
				id,
				&index);
	if (rc) {
		TFP_DRV_LOG(ERR,
			    "%s: Alloc adjust of base index failed, rc:%s\n",
			    tf_dir_2_str(rm_db->dir),
			    strerror(-rc));
		return -EINVAL;
	}

	*parms->index = index;
	if (parms->base_index)
		*parms->base_index = id;

	return rc;
}

int
tf_rm_free(struct tf_rm_free_parms *parms)
{
	int rc;
	uint32_t adj_index;
	struct tf_rm_new_db *rm_db;
	enum tf_rm_elem_cfg_type cfg_type;

	TF_CHECK_PARMS2(parms, parms->rm_db);

	rm_db = (struct tf_rm_new_db *)parms->rm_db;
	cfg_type = rm_db->db[parms->db_index].cfg_type;

	/* Bail out if not controlled by RM */
	if (cfg_type != TF_RM_ELEM_CFG_HCAPI_BA)
		return -ENOTSUP;

	/* Bail out if the pool is not valid, should never happen */
	if (rm_db->db[parms->db_index].pool == NULL) {
		rc = -ENOTSUP;
		TFP_DRV_LOG(ERR,
			    "%s: Invalid pool for this type:%d, rc:%s\n",
			    tf_dir_2_str(rm_db->dir),
			    parms->db_index,
			    strerror(-rc));
		return rc;
	}

	/* Adjust for any non zero start value */
	rc = tf_rm_adjust_index(rm_db->db,
				TF_RM_ADJUST_RM_BASE,
				parms->db_index,
				parms->index,
				&adj_index);
	if (rc)
		return rc;

	rc = ba_free(rm_db->db[parms->db_index].pool, adj_index);
	/* No logging direction matters and that is not available here */
	if (rc)
		return rc;

	return rc;
}

int
tf_rm_is_allocated(struct tf_rm_is_allocated_parms *parms)
{
	int rc;
	uint32_t adj_index;
	struct tf_rm_new_db *rm_db;
	enum tf_rm_elem_cfg_type cfg_type;

	TF_CHECK_PARMS2(parms, parms->rm_db);

	rm_db = (struct tf_rm_new_db *)parms->rm_db;
	cfg_type = rm_db->db[parms->db_index].cfg_type;

	/* Bail out if not controlled by RM */
	if (cfg_type != TF_RM_ELEM_CFG_HCAPI_BA)
		return -ENOTSUP;

	/* Bail out if the pool is not valid, should never happen */
	if (rm_db->db[parms->db_index].pool == NULL) {
		rc = -ENOTSUP;
		TFP_DRV_LOG(ERR,
			    "%s: Invalid pool for this type:%d, rc:%s\n",
			    tf_dir_2_str(rm_db->dir),
			    parms->db_index,
			    strerror(-rc));
		return rc;
	}

	/* Adjust for any non zero start value */
	rc = tf_rm_adjust_index(rm_db->db,
				TF_RM_ADJUST_RM_BASE,
				parms->db_index,
				parms->index,
				&adj_index);
	if (rc)
		return rc;

	if (parms->base_index)
		*parms->base_index = adj_index;
	*parms->allocated = ba_inuse(rm_db->db[parms->db_index].pool,
				     adj_index);

	return rc;
}

int
tf_rm_get_info(struct tf_rm_get_alloc_info_parms *parms)
{
	struct tf_rm_new_db *rm_db;
	enum tf_rm_elem_cfg_type cfg_type;

	TF_CHECK_PARMS2(parms, parms->rm_db);

	rm_db = (struct tf_rm_new_db *)parms->rm_db;
	cfg_type = rm_db->db[parms->db_index].cfg_type;

	/* Bail out if not controlled by HCAPI */
	if (cfg_type != TF_RM_ELEM_CFG_HCAPI &&
	    cfg_type != TF_RM_ELEM_CFG_HCAPI_BA)
		return -ENOTSUP;

	memcpy(parms->info,
	       &rm_db->db[parms->db_index].alloc,
	       sizeof(struct tf_rm_alloc_info));

	return 0;
}

int
tf_rm_get_hcapi_type(struct tf_rm_get_hcapi_parms *parms)
{
	struct tf_rm_new_db *rm_db;
	enum tf_rm_elem_cfg_type cfg_type;

	TF_CHECK_PARMS2(parms, parms->rm_db);

	rm_db = (struct tf_rm_new_db *)parms->rm_db;
	cfg_type = rm_db->db[parms->db_index].cfg_type;

	/* Bail out if not controlled by HCAPI */
	if (cfg_type != TF_RM_ELEM_CFG_HCAPI &&
	    cfg_type != TF_RM_ELEM_CFG_HCAPI_BA)
		return -ENOTSUP;

	*parms->hcapi_type = rm_db->db[parms->db_index].hcapi_type;

	return 0;
}

int
tf_rm_get_inuse_count(struct tf_rm_get_inuse_count_parms *parms)
{
	int rc = 0;
	struct tf_rm_new_db *rm_db;
	enum tf_rm_elem_cfg_type cfg_type;

	TF_CHECK_PARMS2(parms, parms->rm_db);

	rm_db = (struct tf_rm_new_db *)parms->rm_db;
	cfg_type = rm_db->db[parms->db_index].cfg_type;

	/* Bail out if not controlled by RM */
	if (cfg_type != TF_RM_ELEM_CFG_HCAPI_BA)
		return -ENOTSUP;

	/* Bail silently (no logging), if the pool is not valid there
	 * was no elements allocated for it.
	 */
	if (rm_db->db[parms->db_index].pool == NULL) {
		*parms->count = 0;
		return 0;
	}

	*parms->count = ba_inuse_count(rm_db->db[parms->db_index].pool);

	return rc;

}

int
tf_rm_check_indexes_in_range(struct tf_rm_check_indexes_in_range_parms *parms)
{
	struct tf_rm_new_db *rm_db;
	enum tf_rm_elem_cfg_type cfg_type;
	uint32_t base_index;
	uint32_t stride;
	int rc = 0;

	TF_CHECK_PARMS2(parms, parms->rm_db);

	rm_db = (struct tf_rm_new_db *)parms->rm_db;
	cfg_type = rm_db->db[parms->db_index].cfg_type;

	/* Bail out if not controlled by RM */
	if (cfg_type != TF_RM_ELEM_CFG_HCAPI_BA)
		return -ENOTSUP;

	/* Bail out if the pool is not valid, should never happen */
	if (rm_db->db[parms->db_index].pool == NULL) {
		rc = -ENOTSUP;
		TFP_DRV_LOG(ERR,
			    "%s: Invalid pool for this type:%d, rc:%s\n",
			    tf_dir_2_str(rm_db->dir),
			    parms->db_index,
			    strerror(-rc));
		return rc;
	}

	base_index = rm_db->db[parms->db_index].alloc.entry.start;
	stride = rm_db->db[parms->db_index].alloc.entry.stride;

	if (parms->starting_index < base_index ||
	    parms->starting_index + parms->num_entries > base_index + stride)
		return -EINVAL;

	return rc;
}