DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright 2008-2018 Cisco Systems, Inc.  All rights reserved.
 * Copyright 2007 Nuova Systems, Inc.  All rights reserved.
 */

#include <rte_mbuf.h>
#include <rte_ethdev_driver.h>
#include <rte_vect.h>

#include "enic_compat.h"
#include "rq_enet_desc.h"
#include "enic.h"
#include "enic_rxtx_common.h"

#include <x86intrin.h>

static struct rte_mbuf *
rx_one(struct cq_enet_rq_desc *cqd, struct rte_mbuf *mb, struct enic *enic)
{
	bool tnl;

	*(uint64_t *)&mb->rearm_data = enic->mbuf_initializer;
	mb->data_len = cqd->bytes_written_flags &
		CQ_ENET_RQ_DESC_BYTES_WRITTEN_MASK;
	mb->pkt_len = mb->data_len;
	tnl = enic->overlay_offload && (cqd->completed_index_flags &
					CQ_ENET_RQ_DESC_FLAGS_FCOE) != 0;
	mb->packet_type =
		enic_cq_rx_flags_to_pkt_type((struct cq_desc *)cqd, tnl);
	enic_cq_rx_to_pkt_flags((struct cq_desc *)cqd, mb);
	/* Wipe the outer types set by enic_cq_rx_flags_to_pkt_type() */
	if (tnl) {
		mb->packet_type &= ~(RTE_PTYPE_L3_MASK |
				     RTE_PTYPE_L4_MASK);
	}
	return mb;
}

static uint16_t
enic_noscatter_vec_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
			     uint16_t nb_pkts)
{
	struct rte_mbuf **rx, **rxmb;
	uint16_t cq_idx, nb_rx, max_rx;
	struct cq_enet_rq_desc *cqd;
	struct rq_enet_desc *rqd;
	struct vnic_cq *cq;
	struct vnic_rq *rq;
	struct enic *enic;
	uint8_t color;

	rq = rx_queue;
	enic = vnic_dev_priv(rq->vdev);
	cq = &enic->cq[enic_cq_rq(enic, rq->index)];
	cq_idx = cq->to_clean;

	/*
	 * Fill up the reserve of free mbufs. Below, we restock the receive
	 * ring with these mbufs to avoid allocation failures.
	 */
	if (rq->num_free_mbufs == 0) {
		if (rte_mempool_get_bulk(rq->mp, (void **)rq->free_mbufs,
					 ENIC_RX_BURST_MAX))
			return 0;
		rq->num_free_mbufs = ENIC_RX_BURST_MAX;
	}
	/* Receive until the end of the ring, at most. */
	max_rx = RTE_MIN(nb_pkts, rq->num_free_mbufs);
	max_rx = RTE_MIN(max_rx, cq->ring.desc_count - cq_idx);

	rxmb = rq->mbuf_ring + cq_idx;
	color = cq->last_color;
	cqd = (struct cq_enet_rq_desc *)(cq->ring.descs) + cq_idx;
	rx = rx_pkts;
	if (max_rx == 0 ||
	    (cqd->type_color & CQ_DESC_COLOR_MASK_NOSHIFT) == color)
		return 0;

	/* Step 1: Process one packet to do aligned 256-bit load below */
	if (cq_idx & 0x1) {
		if (unlikely(cqd->bytes_written_flags &
			     CQ_ENET_RQ_DESC_FLAGS_TRUNCATED)) {
			rte_pktmbuf_free(*rxmb++);
			rte_atomic64_inc(&enic->soft_stats.rx_packet_errors);
		} else {
			*rx++ = rx_one(cqd, *rxmb++, enic);
		}
		cqd++;
		max_rx--;
	}

	const __m256i mask =
		_mm256_set_epi8(/* Second descriptor */
			0xff, /* type_color */
			(CQ_ENET_RQ_DESC_FLAGS_IPV4_FRAGMENT |
			 CQ_ENET_RQ_DESC_FLAGS_IPV4 |
			 CQ_ENET_RQ_DESC_FLAGS_IPV6 |
			 CQ_ENET_RQ_DESC_FLAGS_TCP |
			 CQ_ENET_RQ_DESC_FLAGS_UDP), /* flags */
			0, 0, /* checksum_fcoe */
			0xff, 0xff, /* vlan */
			0x3f, 0xff, /* bytes_written_flags */
			0xff, 0xff, 0xff, 0xff, /* rss_hash */
			0xff, 0xff, /* q_number_rss_type_flags */
			0, 0, /* completed_index_flags */
			/* First descriptor */
			0xff, /* type_color */
			(CQ_ENET_RQ_DESC_FLAGS_IPV4_FRAGMENT |
			 CQ_ENET_RQ_DESC_FLAGS_IPV4 |
			 CQ_ENET_RQ_DESC_FLAGS_IPV6 |
			 CQ_ENET_RQ_DESC_FLAGS_TCP |
			 CQ_ENET_RQ_DESC_FLAGS_UDP), /* flags */
			0, 0, /* checksum_fcoe */
			0xff, 0xff, /* vlan */
			0x3f, 0xff, /* bytes_written_flags */
			0xff, 0xff, 0xff, 0xff, /* rss_hash */
			0xff, 0xff, /* q_number_rss_type_flags */
			0, 0 /* completed_index_flags */
			);
	const __m256i shuffle_mask =
		_mm256_set_epi8(/* Second descriptor */
			7, 6, 5, 4,             /* rss = rss_hash */
			11, 10,                 /* vlan_tci = vlan */
			9, 8,                   /* data_len = bytes_written */
			0x80, 0x80, 9, 8,       /* pkt_len = bytes_written */
			0x80, 0x80, 0x80, 0x80, /* packet_type = 0 */
			/* First descriptor */
			7, 6, 5, 4,             /* rss = rss_hash */
			11, 10,                 /* vlan_tci = vlan */
			9, 8,                   /* data_len = bytes_written */
			0x80, 0x80, 9, 8,       /* pkt_len = bytes_written */
			0x80, 0x80, 0x80, 0x80  /* packet_type = 0 */
			);
	/* Used to collect 8 flags from 8 desc into one register */
	const __m256i flags_shuffle_mask =
		_mm256_set_epi8(/* Second descriptor */
			1, 3, 9, 14,
			1, 3, 9, 14,
			1, 3, 9, 14,
			1, 3, 9, 14,
			/* First descriptor */
			1, 3, 9, 14,
			1, 3, 9, 14,
			1, 3, 9, 14,
			/*
			 * Byte 3: upper byte of completed_index_flags
			 *         bit 5 = fcoe (tunnel)
			 * Byte 2: upper byte of q_number_rss_type_flags
			 *         bits 2,3,4,5 = rss type
			 *         bit 6 = csum_not_calc
			 * Byte 1: upper byte of bytes_written_flags
			 *         bit 6 = truncated
			 *         bit 7 = vlan stripped
			 * Byte 0: flags
			 */
			1, 3, 9, 14
			);
	/* Used to collect 8 VLAN IDs from 8 desc into one register */
	const __m256i vlan_shuffle_mask =
		_mm256_set_epi8(/* Second descriptor */
			0x80, 0x80, 11, 10,
			0x80, 0x80, 11, 10,
			0x80, 0x80, 11, 10,
			0x80, 0x80, 11, 10,
			/* First descriptor */
			0x80, 0x80, 11, 10,
			0x80, 0x80, 11, 10,
			0x80, 0x80, 11, 10,
			0x80, 0x80, 11, 10);
	/* PKT_RX_RSS_HASH is 1<<1 so fits in 8-bit integer */
	const __m256i rss_shuffle =
		_mm256_set_epi8(/* second 128 bits */
			PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
			PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
			PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
			PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
			PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
			0, /* rss_types = 0 */
			/* first 128 bits */
			PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
			PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
			PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
			PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
			PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
			0 /* rss_types = 0 */);
	/*
	 * VLAN offload flags.
	 * shuffle index:
	 * vlan_stripped => bit 0
	 * vlan_id == 0  => bit 1
	 */
	const __m256i vlan_shuffle =
		_mm256_set_epi32(0, 0, 0, 0,
			PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0,
			PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, PKT_RX_VLAN);
	/* Use the same shuffle index as vlan_shuffle */
	const __m256i vlan_ptype_shuffle =
		_mm256_set_epi32(0, 0, 0, 0,
				 RTE_PTYPE_L2_ETHER,
				 RTE_PTYPE_L2_ETHER,
				 RTE_PTYPE_L2_ETHER,
				 RTE_PTYPE_L2_ETHER_VLAN);
	/*
	 * CKSUM flags. Shift right so they fit int 8-bit integers.
	 * shuffle index:
	 * ipv4_csum_ok    => bit 3
	 * ip4             => bit 2
	 * tcp_or_udp      => bit 1
	 * tcp_udp_csum_ok => bit 0
	 */
	const __m256i csum_shuffle =
		_mm256_set_epi8(/* second 128 bits */
			/* 1111 ip4+ip4_ok+l4+l4_ok */
			((PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1),
			/* 1110 ip4_ok+ip4+l4+!l4_ok */
			((PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1),
			(PKT_RX_IP_CKSUM_GOOD >> 1), /* 1101 ip4+ip4_ok */
			(PKT_RX_IP_CKSUM_GOOD >> 1), /* 1100 ip4_ok+ip4 */
			(PKT_RX_L4_CKSUM_GOOD >> 1), /* 1011 l4+l4_ok */
			(PKT_RX_L4_CKSUM_BAD >> 1),  /* 1010 l4+!l4_ok */
			0, /* 1001 */
			0, /* 1000 */
			/* 0111 !ip4_ok+ip4+l4+l4_ok */
			((PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD) >> 1),
			/* 0110 !ip4_ok+ip4+l4+!l4_ok */
			((PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD) >> 1),
			(PKT_RX_IP_CKSUM_BAD >> 1),  /* 0101 !ip4_ok+ip4 */
			(PKT_RX_IP_CKSUM_BAD >> 1),  /* 0100 !ip4_ok+ip4 */
			(PKT_RX_L4_CKSUM_GOOD >> 1), /* 0011 l4+l4_ok */
			(PKT_RX_L4_CKSUM_BAD >> 1),  /* 0010 l4+!l4_ok */
			0, /* 0001 */
			0, /* 0000 */
			/* first 128 bits */
			((PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1),
			((PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1),
			(PKT_RX_IP_CKSUM_GOOD >> 1),
			(PKT_RX_IP_CKSUM_GOOD >> 1),
			(PKT_RX_L4_CKSUM_GOOD >> 1),
			(PKT_RX_L4_CKSUM_BAD >> 1),
			0, 0,
			((PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD) >> 1),
			((PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD) >> 1),
			(PKT_RX_IP_CKSUM_BAD >> 1),
			(PKT_RX_IP_CKSUM_BAD >> 1),
			(PKT_RX_L4_CKSUM_GOOD >> 1),
			(PKT_RX_L4_CKSUM_BAD >> 1),
			0, 0);
	/*
	 * Non-fragment PTYPEs.
	 * Shuffle 4-bit index:
	 * ip6 => bit 0
	 * ip4 => bit 1
	 * udp => bit 2
	 * tcp => bit 3
	 *   bit
	 * 3 2 1 0
	 * -------
	 * 0 0 0 0 unknown
	 * 0 0 0 1 ip6 | nonfrag
	 * 0 0 1 0 ip4 | nonfrag
	 * 0 0 1 1 unknown
	 * 0 1 0 0 unknown
	 * 0 1 0 1 ip6 | udp
	 * 0 1 1 0 ip4 | udp
	 * 0 1 1 1 unknown
	 * 1 0 0 0 unknown
	 * 1 0 0 1 ip6 | tcp
	 * 1 0 1 0 ip4 | tcp
	 * 1 0 1 1 unknown
	 * 1 1 0 0 unknown
	 * 1 1 0 1 unknown
	 * 1 1 1 0 unknown
	 * 1 1 1 1 unknown
	 *
	 * PTYPEs do not fit in 8 bits, so shift right 4..
	 */
	const __m256i nonfrag_ptype_shuffle =
		_mm256_set_epi8(/* second 128 bits */
			RTE_PTYPE_UNKNOWN,
			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
			(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP) >> 4,
			(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_TCP) >> 4,
			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
			(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP) >> 4,
			(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_UDP) >> 4,
			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
			(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
			 RTE_PTYPE_L4_NONFRAG) >> 4,
			(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
			 RTE_PTYPE_L4_NONFRAG) >> 4,
			RTE_PTYPE_UNKNOWN,
			/* first 128 bits */
			RTE_PTYPE_UNKNOWN,
			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
			(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP) >> 4,
			(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_TCP) >> 4,
			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
			(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP) >> 4,
			(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_UDP) >> 4,
			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
			(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
			 RTE_PTYPE_L4_NONFRAG) >> 4,
			(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
			 RTE_PTYPE_L4_NONFRAG) >> 4,
			RTE_PTYPE_UNKNOWN);
	/* Fragment PTYPEs. Use the same shuffle index as above. */
	const __m256i frag_ptype_shuffle =
		_mm256_set_epi8(/* second 128 bits */
			RTE_PTYPE_UNKNOWN,
			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
			(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
			 RTE_PTYPE_L4_FRAG) >> 4,
			(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
			 RTE_PTYPE_L4_FRAG) >> 4,
			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
			(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
			 RTE_PTYPE_L4_FRAG) >> 4,
			(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
			 RTE_PTYPE_L4_FRAG) >> 4,
			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
			(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
			 RTE_PTYPE_L4_FRAG) >> 4,
			(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
			 RTE_PTYPE_L4_FRAG) >> 4,
			RTE_PTYPE_UNKNOWN,
			/* first 128 bits */
			RTE_PTYPE_UNKNOWN,
			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
			(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
			 RTE_PTYPE_L4_FRAG) >> 4,
			(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
			 RTE_PTYPE_L4_FRAG) >> 4,
			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
			(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
			 RTE_PTYPE_L4_FRAG) >> 4,
			(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
			 RTE_PTYPE_L4_FRAG) >> 4,
			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
			(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
			 RTE_PTYPE_L4_FRAG) >> 4,
			(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
			 RTE_PTYPE_L4_FRAG) >> 4,
			RTE_PTYPE_UNKNOWN);
	/*
	 * Tunnel PTYPEs. Use the same shuffle index as above.
	 * L4 types are not part of this table. They come from non-tunnel
	 * types above.
	 */
	const __m256i tnl_l3_ptype_shuffle =
		_mm256_set_epi8(/* second 128 bits */
			RTE_PTYPE_UNKNOWN,
			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
			RTE_PTYPE_UNKNOWN,
			/* first 128 bits */
			RTE_PTYPE_UNKNOWN,
			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
			RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
			RTE_PTYPE_UNKNOWN);

	const __m256i mbuf_init = _mm256_set_epi64x(0, enic->mbuf_initializer,
						    0, enic->mbuf_initializer);

	/*
	 * --- cq desc fields ---    offset
	 * completed_index_flags    - 0   use: fcoe
	 * q_number_rss_type_flags  - 2   use: rss types, csum_not_calc
	 * rss_hash                 - 4   ==> mbuf.hash.rss
	 * bytes_written_flags      - 8   ==> mbuf.pkt_len,data_len
	 *                                use: truncated, vlan_stripped
	 * vlan                     - 10  ==> mbuf.vlan_tci
	 * checksum_fcoe            - 12  (unused)
	 * flags                    - 14  use: all bits
	 * type_color               - 15  (unused)
	 *
	 * --- mbuf fields ---       offset
	 * rearm_data              ---- 16
	 * data_off    - 0      (mbuf_init) -+
	 * refcnt      - 2      (mbuf_init)  |
	 * nb_segs     - 4      (mbuf_init)  | 16B 128b
	 * port        - 6      (mbuf_init)  |
	 * ol_flag     - 8      (from cqd)  -+
	 * rx_descriptor_fields1   ---- 32
	 * packet_type - 0      (from cqd)  -+
	 * pkt_len     - 4      (from cqd)   |
	 * data_len    - 8      (from cqd)   | 16B 128b
	 * vlan_tci    - 10     (from cqd)   |
	 * rss         - 12     (from cqd)  -+
	 */

	__m256i overlay_enabled =
		_mm256_set1_epi32((uint32_t)enic->overlay_offload);

	/* Step 2: Process 8 packets per loop using SIMD */
	while (max_rx > 7 && (((cqd + 7)->type_color &
			       CQ_DESC_COLOR_MASK_NOSHIFT) != color)) {
		/* Load 8 16B CQ descriptors */
		__m256i cqd01 = _mm256_load_si256((void *)cqd);
		__m256i cqd23 = _mm256_load_si256((void *)(cqd + 2));
		__m256i cqd45 = _mm256_load_si256((void *)(cqd + 4));
		__m256i cqd67 = _mm256_load_si256((void *)(cqd + 6));
		/* Copy 8 mbuf pointers to rx_pkts */
		_mm256_storeu_si256((void *)rx,
				    _mm256_loadu_si256((void *)rxmb));
		_mm256_storeu_si256((void *)(rx + 4),
				    _mm256_loadu_si256((void *)(rxmb + 4)));

		/*
		 * Collect 8 flags (each 32 bits) into one register.
		 * 4 shuffles, 3 blends, 1 permute for 8 desc: 1 inst/desc
		 */
		__m256i flags01 =
			_mm256_shuffle_epi8(cqd01, flags_shuffle_mask);
		/*
		 * Shuffle above produces 8 x 32-bit flags for 8 descriptors
		 * in this order: 0, 0, 0, 0, 1, 1, 1, 1
		 * The duplicates in each 128-bit lane simplifies blending
		 * below.
		 */
		__m256i flags23 =
			_mm256_shuffle_epi8(cqd23, flags_shuffle_mask);
		__m256i flags45 =
			_mm256_shuffle_epi8(cqd45, flags_shuffle_mask);
		__m256i flags67 =
			_mm256_shuffle_epi8(cqd67, flags_shuffle_mask);
		/* 1st blend produces flags for desc: 0, 2, 0, 0, 1, 3, 1, 1 */
		__m256i flags0_3 = _mm256_blend_epi32(flags01, flags23, 0x22);
		/* 2nd blend produces flags for desc: 4, 4, 4, 6, 5, 5, 5, 7 */
		__m256i flags4_7 = _mm256_blend_epi32(flags45, flags67, 0x88);
		/* 3rd blend produces flags for desc: 0, 2, 4, 6, 1, 3, 5, 7 */
		__m256i flags0_7 = _mm256_blend_epi32(flags0_3, flags4_7, 0xcc);
		/*
		 * Swap to reorder flags in this order: 1, 3, 5, 7, 0, 2, 4, 6
		 * This order simplifies blend operations way below that
		 * produce 'rearm' data for each mbuf.
		 */
		flags0_7 = _mm256_permute4x64_epi64(flags0_7,
			(1 << 6) + (0 << 4) + (3 << 2) + 2);

		/*
		 * Check truncated bits and bail out early on.
		 * 6 avx inst, 1 or, 1 if-then-else for 8 desc: 1 inst/desc
		 */
		__m256i trunc =
			_mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 17), 31);
		trunc = _mm256_add_epi64(trunc, _mm256_permute4x64_epi64(trunc,
			(1 << 6) + (0 << 4) + (3 << 2) + 2));
		/* 0:63 contains 1+3+0+2 and 64:127 contains 5+7+4+6 */
		if (_mm256_extract_epi64(trunc, 0) ||
		    _mm256_extract_epi64(trunc, 1))
			break;

		/*
		 * Compute PKT_RX_RSS_HASH.
		 * Use 2 shifts and 1 shuffle for 8 desc: 0.375 inst/desc
		 * RSS types in byte 0, 4, 8, 12, 16, 20, 24, 28
		 * Everything else is zero.
		 */
		__m256i rss_types =
			_mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 10), 28);
		/*
		 * RSS flags (PKT_RX_RSS_HASH) are in
		 * byte 0, 4, 8, 12, 16, 20, 24, 28
		 * Everything else is zero.
		 */
		__m256i rss_flags = _mm256_shuffle_epi8(rss_shuffle, rss_types);

		/*
		 * Compute CKSUM flags. First build the index and then
		 * use it to shuffle csum_shuffle.
		 * 20 instructions including const loads: 2.5 inst/desc
		 */
		/*
		 * csum_not_calc (bit 22)
		 * csum_not_calc (0) => 0xffffffff
		 * csum_not_calc (1) => 0x0
		 */
		const __m256i zero4 = _mm256_setzero_si256();
		const __m256i mask22 = _mm256_set1_epi32(0x400000);
		__m256i csum_not_calc = _mm256_cmpeq_epi32(zero4,
			_mm256_and_si256(flags0_7, mask22));
		/*
		 * (tcp|udp) && !fragment => bit 1
		 * tcp = bit 2, udp = bit 1, frag = bit 6
		 */
		const __m256i mask1 = _mm256_set1_epi32(0x2);
		__m256i tcp_udp =
			_mm256_andnot_si256(_mm256_srli_epi32(flags0_7, 5),
				_mm256_or_si256(flags0_7,
					_mm256_srli_epi32(flags0_7, 1)));
		tcp_udp = _mm256_and_si256(tcp_udp, mask1);
		/* ipv4 (bit 5) => bit 2 */
		const __m256i mask2 = _mm256_set1_epi32(0x4);
		__m256i ipv4 = _mm256_and_si256(mask2,
			_mm256_srli_epi32(flags0_7, 3));
		/*
		 * ipv4_csum_ok (bit 3) => bit 3
		 * tcp_udp_csum_ok (bit 0) => bit 0
		 * 0x9
		 */
		const __m256i mask0_3 = _mm256_set1_epi32(0x9);
		__m256i csum_idx = _mm256_and_si256(flags0_7, mask0_3);
		csum_idx = _mm256_and_si256(csum_not_calc,
			_mm256_or_si256(_mm256_or_si256(csum_idx, ipv4),
				tcp_udp));
		__m256i csum_flags =
			_mm256_shuffle_epi8(csum_shuffle, csum_idx);
		/* Shift left to restore CKSUM flags. See csum_shuffle. */
		csum_flags = _mm256_slli_epi32(csum_flags, 1);
		/* Combine csum flags and offload flags: 0.125 inst/desc */
		rss_flags = _mm256_or_si256(rss_flags, csum_flags);

		/*
		 * Collect 8 VLAN IDs and compute vlan_id != 0 on each.
		 * 4 shuffles, 3 blends, 1 permute, 1 cmp, 1 sub for 8 desc:
		 * 1.25 inst/desc
		 */
		__m256i vlan01 = _mm256_shuffle_epi8(cqd01, vlan_shuffle_mask);
		__m256i vlan23 = _mm256_shuffle_epi8(cqd23, vlan_shuffle_mask);
		__m256i vlan45 = _mm256_shuffle_epi8(cqd45, vlan_shuffle_mask);
		__m256i vlan67 = _mm256_shuffle_epi8(cqd67, vlan_shuffle_mask);
		__m256i vlan0_3 = _mm256_blend_epi32(vlan01, vlan23, 0x22);
		__m256i vlan4_7 = _mm256_blend_epi32(vlan45, vlan67, 0x88);
		/* desc: 0, 2, 4, 6, 1, 3, 5, 7 */
		__m256i vlan0_7 = _mm256_blend_epi32(vlan0_3, vlan4_7, 0xcc);
		/* desc: 1, 3, 5, 7, 0, 2, 4, 6 */
		vlan0_7 = _mm256_permute4x64_epi64(vlan0_7,
			(1 << 6) + (0 << 4) + (3 << 2) + 2);
		/*
		 * Compare 0 == vlan_id produces 0xffffffff (-1) if
		 * vlan 0 and 0 if vlan non-0. Then subtracting the
		 * result from 0 produces 0 - (-1) = 1 for vlan 0, and
		 * 0 - 0 = 0 for vlan non-0.
		 */
		vlan0_7 = _mm256_cmpeq_epi32(zero4, vlan0_7);
		/* vlan_id != 0 => 0, vlan_id == 0 => 1 */
		vlan0_7 = _mm256_sub_epi32(zero4, vlan0_7);

		/*
		 * Compute PKT_RX_VLAN and PKT_RX_VLAN_STRIPPED.
		 * Use 3 shifts, 1 or,  1 shuffle for 8 desc: 0.625 inst/desc
		 * VLAN offload flags in byte 0, 4, 8, 12, 16, 20, 24, 28
		 * Everything else is zero.
		 */
		__m256i vlan_idx =
			_mm256_or_si256(/* vlan_stripped => bit 0 */
				_mm256_srli_epi32(_mm256_slli_epi32(flags0_7,
					16), 31),
				/* (vlan_id == 0) => bit 1 */
				_mm256_slli_epi32(vlan0_7, 1));
		/*
		 * The index captures 4 cases.
		 * stripped, id = 0   ==> 11b = 3
		 * stripped, id != 0  ==> 01b = 1
		 * not strip, id == 0 ==> 10b = 2
		 * not strip, id != 0 ==> 00b = 0
		 */
		__m256i vlan_flags = _mm256_permutevar8x32_epi32(vlan_shuffle,
			vlan_idx);
		/* Combine vlan and offload flags: 0.125 inst/desc */
		rss_flags = _mm256_or_si256(rss_flags, vlan_flags);

		/*
		 * Compute non-tunnel PTYPEs.
		 * 17 inst / 8 desc = 2.125 inst/desc
		 */
		/* ETHER and ETHER_VLAN */
		__m256i vlan_ptype =
			_mm256_permutevar8x32_epi32(vlan_ptype_shuffle,
				vlan_idx);
		/* Build the ptype index from flags */
		tcp_udp = _mm256_slli_epi32(flags0_7, 29);
		tcp_udp = _mm256_slli_epi32(_mm256_srli_epi32(tcp_udp, 30), 2);
		__m256i ip4_ip6 =
			_mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 26), 30);
		__m256i ptype_idx = _mm256_or_si256(tcp_udp, ip4_ip6);
		__m256i frag_bit =
			_mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 25), 31);
		__m256i nonfrag_ptype =
			_mm256_shuffle_epi8(nonfrag_ptype_shuffle, ptype_idx);
		__m256i frag_ptype =
			_mm256_shuffle_epi8(frag_ptype_shuffle, ptype_idx);
		/*
		 * Zero out the unwanted types and combine the remaining bits.
		 * The effect is same as selecting non-frag or frag types
		 * depending on the frag bit.
		 */
		nonfrag_ptype = _mm256_and_si256(nonfrag_ptype,
			_mm256_cmpeq_epi32(zero4, frag_bit));
		frag_ptype = _mm256_and_si256(frag_ptype,
			_mm256_cmpgt_epi32(frag_bit, zero4));
		__m256i ptype = _mm256_or_si256(nonfrag_ptype, frag_ptype);
		ptype = _mm256_slli_epi32(ptype, 4);
		/*
		 * Compute tunnel PTYPEs.
		 * 15 inst / 8 desc = 1.875 inst/desc
		 */
		__m256i tnl_l3_ptype =
			_mm256_shuffle_epi8(tnl_l3_ptype_shuffle, ptype_idx);
		tnl_l3_ptype = _mm256_slli_epi32(tnl_l3_ptype, 16);
		/*
		 * Shift non-tunnel L4 types to make them tunnel types.
		 * RTE_PTYPE_L4_TCP << 16 == RTE_PTYPE_INNER_L4_TCP
		 */
		__m256i tnl_l4_ptype =
			_mm256_slli_epi32(_mm256_and_si256(ptype,
				_mm256_set1_epi32(RTE_PTYPE_L4_MASK)), 16);
		__m256i tnl_ptype =
			_mm256_or_si256(tnl_l3_ptype, tnl_l4_ptype);
		tnl_ptype = _mm256_or_si256(tnl_ptype,
			_mm256_set1_epi32(RTE_PTYPE_TUNNEL_GRENAT |
				RTE_PTYPE_INNER_L2_ETHER));
		/*
		 * Select non-tunnel or tunnel types by zeroing out the
		 * unwanted ones.
		 */
		__m256i tnl_flags = _mm256_and_si256(overlay_enabled,
			_mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 2), 31));
		tnl_ptype = _mm256_and_si256(tnl_ptype,
			_mm256_sub_epi32(zero4, tnl_flags));
		ptype =	_mm256_and_si256(ptype,
			_mm256_cmpeq_epi32(zero4, tnl_flags));
		/*
		 * Combine types and swap to have ptypes in the same order
		 * as desc.
		 * desc: 0 2 4 6 1 3 5 7
		 * 3 inst / 8 desc = 0.375 inst/desc
		 */
		ptype = _mm256_or_si256(ptype, tnl_ptype);
		ptype = _mm256_or_si256(ptype, vlan_ptype);
		ptype = _mm256_permute4x64_epi64(ptype,
			(1 << 6) + (0 << 4) + (3 << 2) + 2);

		/*
		 * Mask packet length.
		 * Use 4 ands: 0.5 instructions/desc
		 */
		cqd01 = _mm256_and_si256(cqd01, mask);
		cqd23 = _mm256_and_si256(cqd23, mask);
		cqd45 = _mm256_and_si256(cqd45, mask);
		cqd67 = _mm256_and_si256(cqd67, mask);
		/*
		 * Shuffle. Two 16B sets of the mbuf fields.
		 * packet_type, pkt_len, data_len, vlan_tci, rss
		 */
		__m256i rearm01 = _mm256_shuffle_epi8(cqd01, shuffle_mask);
		__m256i rearm23 = _mm256_shuffle_epi8(cqd23, shuffle_mask);
		__m256i rearm45 = _mm256_shuffle_epi8(cqd45, shuffle_mask);
		__m256i rearm67 = _mm256_shuffle_epi8(cqd67, shuffle_mask);

		/*
		 * Blend in ptypes
		 * 4 blends and 3 shuffles for 8 desc: 0.875 inst/desc
		 */
		rearm01 = _mm256_blend_epi32(rearm01, ptype, 0x11);
		rearm23 = _mm256_blend_epi32(rearm23,
			_mm256_shuffle_epi32(ptype, 1), 0x11);
		rearm45 = _mm256_blend_epi32(rearm45,
			_mm256_shuffle_epi32(ptype, 2), 0x11);
		rearm67 = _mm256_blend_epi32(rearm67,
			_mm256_shuffle_epi32(ptype, 3), 0x11);

		/*
		 * Move rss_flags into ol_flags in mbuf_init.
		 * Use 1 shift and 1 blend for each desc: 2 inst/desc
		 */
		__m256i mbuf_init4_5 = _mm256_blend_epi32(mbuf_init,
			rss_flags, 0x44);
		__m256i mbuf_init2_3 = _mm256_blend_epi32(mbuf_init,
			_mm256_slli_si256(rss_flags, 4), 0x44);
		__m256i mbuf_init0_1 = _mm256_blend_epi32(mbuf_init,
			_mm256_slli_si256(rss_flags, 8), 0x44);
		__m256i mbuf_init6_7 = _mm256_blend_epi32(mbuf_init,
			_mm256_srli_si256(rss_flags, 4), 0x44);

		/*
		 * Build rearm, one per desc.
		 * 8 blends and 4 permutes: 1.5 inst/desc
		 */
		__m256i rearm0 = _mm256_blend_epi32(rearm01,
			mbuf_init0_1, 0xf0);
		__m256i rearm1 = _mm256_blend_epi32(mbuf_init0_1,
			rearm01, 0xf0);
		__m256i rearm2 = _mm256_blend_epi32(rearm23,
			mbuf_init2_3, 0xf0);
		__m256i rearm3 = _mm256_blend_epi32(mbuf_init2_3,
			rearm23, 0xf0);
		/* Swap upper and lower 64 bits */
		rearm0 = _mm256_permute4x64_epi64(rearm0,
			(1 << 6) + (0 << 4) + (3 << 2) + 2);
		rearm2 = _mm256_permute4x64_epi64(rearm2,
			(1 << 6) + (0 << 4) + (3 << 2) + 2);
		/* Second set of 4 descriptors */
		__m256i rearm4 = _mm256_blend_epi32(rearm45,
			mbuf_init4_5, 0xf0);
		__m256i rearm5 = _mm256_blend_epi32(mbuf_init4_5,
			rearm45, 0xf0);
		__m256i rearm6 = _mm256_blend_epi32(rearm67,
			mbuf_init6_7, 0xf0);
		__m256i rearm7 = _mm256_blend_epi32(mbuf_init6_7,
			rearm67, 0xf0);
		rearm4 = _mm256_permute4x64_epi64(rearm4,
			(1 << 6) + (0 << 4) + (3 << 2) + 2);
		rearm6 = _mm256_permute4x64_epi64(rearm6,
			(1 << 6) + (0 << 4) + (3 << 2) + 2);

		/*
		 * Write out 32B of mbuf fields.
		 * data_off    - off 0  (mbuf_init)
		 * refcnt      - 2      (mbuf_init)
		 * nb_segs     - 4      (mbuf_init)
		 * port        - 6      (mbuf_init)
		 * ol_flag     - 8      (from cqd)
		 * packet_type - 16     (from cqd)
		 * pkt_len     - 20     (from cqd)
		 * data_len    - 24     (from cqd)
		 * vlan_tci    - 26     (from cqd)
		 * rss         - 28     (from cqd)
		 */
		_mm256_storeu_si256((__m256i *)&rxmb[0]->rearm_data, rearm0);
		_mm256_storeu_si256((__m256i *)&rxmb[1]->rearm_data, rearm1);
		_mm256_storeu_si256((__m256i *)&rxmb[2]->rearm_data, rearm2);
		_mm256_storeu_si256((__m256i *)&rxmb[3]->rearm_data, rearm3);
		_mm256_storeu_si256((__m256i *)&rxmb[4]->rearm_data, rearm4);
		_mm256_storeu_si256((__m256i *)&rxmb[5]->rearm_data, rearm5);
		_mm256_storeu_si256((__m256i *)&rxmb[6]->rearm_data, rearm6);
		_mm256_storeu_si256((__m256i *)&rxmb[7]->rearm_data, rearm7);

		max_rx -= 8;
		cqd += 8;
		rx += 8;
		rxmb += 8;
	}

	/*
	 * Step 3: Slow path to handle a small (<8) number of packets and
	 * occasional truncated packets.
	 */
	while (max_rx && ((cqd->type_color &
			   CQ_DESC_COLOR_MASK_NOSHIFT) != color)) {
		if (unlikely(cqd->bytes_written_flags &
			     CQ_ENET_RQ_DESC_FLAGS_TRUNCATED)) {
			rte_pktmbuf_free(*rxmb++);
			rte_atomic64_inc(&enic->soft_stats.rx_packet_errors);
		} else {
			*rx++ = rx_one(cqd, *rxmb++, enic);
		}
		cqd++;
		max_rx--;
	}

	/* Number of descriptors visited */
	nb_rx = cqd - (struct cq_enet_rq_desc *)(cq->ring.descs) - cq_idx;
	if (nb_rx == 0)
		return 0;
	rqd = ((struct rq_enet_desc *)rq->ring.descs) + cq_idx;
	rxmb = rq->mbuf_ring + cq_idx;
	cq_idx += nb_rx;
	rq->rx_nb_hold += nb_rx;
	if (unlikely(cq_idx == cq->ring.desc_count)) {
		cq_idx = 0;
		cq->last_color ^= CQ_DESC_COLOR_MASK_NOSHIFT;
	}
	cq->to_clean = cq_idx;

	/* Step 4: Restock RQ with new mbufs */
	memcpy(rxmb, rq->free_mbufs + ENIC_RX_BURST_MAX - rq->num_free_mbufs,
	       sizeof(struct rte_mbuf *) * nb_rx);
	rq->num_free_mbufs -= nb_rx;
	while (nb_rx) {
		rqd->address = (*rxmb)->buf_iova + RTE_PKTMBUF_HEADROOM;
		nb_rx--;
		rqd++;
		rxmb++;
	}
	if (rq->rx_nb_hold > rq->rx_free_thresh) {
		rq->posted_index = enic_ring_add(rq->ring.desc_count,
						 rq->posted_index,
						 rq->rx_nb_hold);
		rq->rx_nb_hold = 0;
		rte_wmb();
		iowrite32_relaxed(rq->posted_index,
				  &rq->ctrl->posted_index);
	}

	return rx - rx_pkts;
}

bool
enic_use_vector_rx_handler(struct rte_eth_dev *eth_dev)
{
	struct enic *enic = pmd_priv(eth_dev);
	struct rte_fdir_conf *fconf;

	/* User needs to request for the avx2 handler */
	if (!enic->enable_avx2_rx)
		return false;
	/* Do not support scatter Rx */
	if (!(enic->rq_count > 0 && enic->rq[0].data_queue_enable == 0))
		return false;
	/* Do not support fdir/flow */
	fconf = &eth_dev->data->dev_conf.fdir_conf;
	if (fconf->mode != RTE_FDIR_MODE_NONE)
		return false;
	if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) &&
			rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256) {
		ENICPMD_LOG(DEBUG, " use the non-scatter avx2 Rx handler");
		eth_dev->rx_pkt_burst = &enic_noscatter_vec_recv_pkts;
		enic->use_noscatter_vec_rx_handler = 1;
		return true;
	}
	return false;
}