DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2018-2020 Intel Corporation
 */

#ifndef _ICE_OSDEP_H_
#define _ICE_OSDEP_H_

#include <string.h>
#include <stdint.h>
#include <stdio.h>
#include <stdarg.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <stdbool.h>

#include <rte_common.h>
#include <rte_memcpy.h>
#include <rte_malloc.h>
#include <rte_memzone.h>
#include <rte_byteorder.h>
#include <rte_cycles.h>
#include <rte_spinlock.h>
#include <rte_log.h>
#include <rte_random.h>
#include <rte_io.h>

#include "ice_alloc.h"

#include "../ice_logs.h"

#ifndef __INTEL_NET_BASE_OSDEP__
#define __INTEL_NET_BASE_OSDEP__

#define INLINE inline
#define STATIC static

typedef uint8_t         u8;
typedef int8_t          s8;
typedef uint16_t        u16;
typedef int16_t         s16;
typedef uint32_t        u32;
typedef int32_t         s32;
typedef uint64_t        u64;
typedef uint64_t        s64;

#ifndef __le16
#define __le16          uint16_t
#endif
#ifndef __le32
#define __le32          uint32_t
#endif
#ifndef __le64
#define __le64          uint64_t
#endif
#ifndef __be16
#define __be16          uint16_t
#endif
#ifndef __be32
#define __be32          uint32_t
#endif
#ifndef __be64
#define __be64          uint64_t
#endif

#define min(a, b) RTE_MIN(a, b)
#define max(a, b) RTE_MAX(a, b)

#define FIELD_SIZEOF(t, f) RTE_SIZEOF_FIELD(t, f)
#define ARRAY_SIZE(arr) RTE_DIM(arr)

#define CPU_TO_LE16(o) rte_cpu_to_le_16(o)
#define CPU_TO_LE32(s) rte_cpu_to_le_32(s)
#define CPU_TO_LE64(h) rte_cpu_to_le_64(h)
#define LE16_TO_CPU(a) rte_le_to_cpu_16(a)
#define LE32_TO_CPU(c) rte_le_to_cpu_32(c)
#define LE64_TO_CPU(k) rte_le_to_cpu_64(k)

#define CPU_TO_BE16(o) rte_cpu_to_be_16(o)
#define CPU_TO_BE32(o) rte_cpu_to_be_32(o)
#define CPU_TO_BE64(o) rte_cpu_to_be_64(o)
#define BE16_TO_CPU(o) rte_be_to_cpu_16(o)

#define NTOHS(a) rte_be_to_cpu_16(a)
#define NTOHL(a) rte_be_to_cpu_32(a)
#define HTONS(a) rte_cpu_to_be_16(a)
#define HTONL(a) rte_cpu_to_be_32(a)

static __rte_always_inline uint32_t
readl(volatile void *addr)
{
	return rte_le_to_cpu_32(rte_read32(addr));
}

static __rte_always_inline void
writel(uint32_t value, volatile void *addr)
{
	rte_write32(rte_cpu_to_le_32(value), addr);
}

static __rte_always_inline void
writel_relaxed(uint32_t value, volatile void *addr)
{
	rte_write32_relaxed(rte_cpu_to_le_32(value), addr);
}

static __rte_always_inline uint64_t
readq(volatile void *addr)
{
	return rte_le_to_cpu_64(rte_read64(addr));
}

static __rte_always_inline void
writeq(uint64_t value, volatile void *addr)
{
	rte_write64(rte_cpu_to_le_64(value), addr);
}

#define wr32(a, reg, value) writel((value), (a)->hw_addr + (reg))
#define rd32(a, reg)        readl((a)->hw_addr + (reg))
#define wr64(a, reg, value) writeq((value), (a)->hw_addr + (reg))
#define rd64(a, reg)        readq((a)->hw_addr + (reg))

#endif /* __INTEL_NET_BASE_OSDEP__ */

#ifndef __always_unused
#define __always_unused  __rte_unused
#endif
#ifndef __maybe_unused
#define __maybe_unused  __rte_unused
#endif
#ifndef __packed
#define __packed  __rte_packed
#endif

#ifndef BIT_ULL
#define BIT_ULL(a) (1ULL << (a))
#endif

#define MAKEMASK(m, s) ((m) << (s))

#define ice_debug(h, m, s, ...)					\
do {								\
	if (((m) & (h)->debug_mask))				\
		PMD_DRV_LOG_RAW(DEBUG, "ice %02x.%x " s,	\
			(h)->bus.device, (h)->bus.func,		\
					##__VA_ARGS__);		\
} while (0)

#define ice_info(hw, fmt, args...) ice_debug(hw, ICE_DBG_ALL, fmt, ##args)
#define ice_warn(hw, fmt, args...) ice_debug(hw, ICE_DBG_ALL, fmt, ##args)
#define ice_debug_array(hw, type, rowsize, groupsize, buf, len)		\
do {									\
	struct ice_hw *hw_l = hw;					\
		u16 len_l = len;					\
		u8 *buf_l = buf;					\
		int i;							\
		for (i = 0; i < len_l; i += 8)				\
			ice_debug(hw_l, type,				\
				  "0x%04X  0x%016"PRIx64"\n",		\
				  i, *((u64 *)((buf_l) + i)));		\
} while (0)
#define ice_snprintf snprintf
#ifndef SNPRINTF
#define SNPRINTF ice_snprintf
#endif

#define ICE_PCI_REG_WRITE(reg, value) writel(value, reg)
#define ICE_PCI_REG_WC_WRITE(reg, value) rte_write32_wc(value, reg)

#define ICE_READ_REG(hw, reg)         rd32(hw, reg)
#define ICE_WRITE_REG(hw, reg, value) wr32(hw, reg, value)

#define ice_flush(a)   ICE_READ_REG((a), GLGEN_STAT)
#define icevf_flush(a) ICE_READ_REG((a), VFGEN_RSTAT)

#define flush(a) ICE_READ_REG((a), GLGEN_STAT)
#define div64_long(n, d) ((n) / (d))

#define BITS_PER_BYTE       8

/* memory allocation tracking */
struct ice_dma_mem {
	void *va;
	u64 pa;
	u32 size;
	const void *zone;
} __rte_packed;

struct ice_virt_mem {
	void *va;
	u32 size;
} __rte_packed;

#define ice_malloc(h, s)    rte_zmalloc(NULL, s, 0)
#define ice_calloc(h, c, s) rte_zmalloc(NULL, (c) * (s), 0)
#define ice_free(h, m)         rte_free(m)

#define ice_memset(a, b, c, d) memset((a), (b), (c))
#define ice_memcpy(a, b, c, d) rte_memcpy((a), (b), (c))

/* SW spinlock */
struct ice_lock {
	rte_spinlock_t spinlock;
};

static inline void
ice_init_lock(struct ice_lock *sp)
{
	rte_spinlock_init(&sp->spinlock);
}

static inline void
ice_acquire_lock(struct ice_lock *sp)
{
	rte_spinlock_lock(&sp->spinlock);
}

static inline void
ice_release_lock(struct ice_lock *sp)
{
	rte_spinlock_unlock(&sp->spinlock);
}

static inline void
ice_destroy_lock(__rte_unused struct ice_lock *sp)
{
}

struct ice_hw;

static __rte_always_inline void *
ice_memdup(__rte_unused struct ice_hw *hw, const void *src, size_t size,
	   __rte_unused enum ice_memcpy_type dir)
{
	void *p;

	p = ice_malloc(hw, size);
	if (p)
		rte_memcpy(p, src, size);

	return p;
}

static inline void *
ice_alloc_dma_mem(__rte_unused struct ice_hw *hw,
		  struct ice_dma_mem *mem, u64 size)
{
	const struct rte_memzone *mz = NULL;
	char z_name[RTE_MEMZONE_NAMESIZE];

	if (!mem)
		return NULL;

	snprintf(z_name, sizeof(z_name), "ice_dma_%"PRIu64, rte_rand());
	mz = rte_memzone_reserve_bounded(z_name, size, SOCKET_ID_ANY, 0,
					 0, RTE_PGSIZE_2M);
	if (!mz)
		return NULL;

	mem->size = size;
	mem->va = mz->addr;
	mem->pa = mz->iova;
	mem->zone = (const void *)mz;
	PMD_DRV_LOG(DEBUG, "memzone %s allocated with physical address: "
		    "%"PRIu64, mz->name, mem->pa);

	return mem->va;
}

static inline void
ice_free_dma_mem(__rte_unused struct ice_hw *hw,
		 struct ice_dma_mem *mem)
{
	PMD_DRV_LOG(DEBUG, "memzone %s to be freed with physical address: "
		    "%"PRIu64, ((const struct rte_memzone *)mem->zone)->name,
		    mem->pa);
	rte_memzone_free((const struct rte_memzone *)mem->zone);
	mem->zone = NULL;
	mem->va = NULL;
	mem->pa = (u64)0;
}

static inline u8
ice_hweight8(u32 num)
{
	u8 bits = 0;
	u32 i;

	for (i = 0; i < 8; i++) {
		bits += (u8)(num & 0x1);
		num >>= 1;
	}

	return bits;
}

static inline u8
ice_hweight32(u32 num)
{
	u8 bits = 0;
	u32 i;

	for (i = 0; i < 32; i++) {
		bits += (u8)(num & 0x1);
		num >>= 1;
	}

	return bits;
}

#define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
#define DELAY(x) rte_delay_us(x)
#define ice_usec_delay(x, y) rte_delay_us(x)
#define ice_msec_delay(x, y) rte_delay_us(1000 * (x))
#define udelay(x) DELAY(x)
#define msleep(x) DELAY(1000 * (x))
#define usleep_range(min, max) msleep(DIV_ROUND_UP(min, 1000))

struct ice_list_entry {
	LIST_ENTRY(ice_list_entry) next;
};

LIST_HEAD(ice_list_head, ice_list_entry);

#define LIST_ENTRY_TYPE    ice_list_entry
#define LIST_HEAD_TYPE     ice_list_head
#define INIT_LIST_HEAD(list_head)  LIST_INIT(list_head)
#define LIST_DEL(entry)            LIST_REMOVE(entry, next)
/* LIST_EMPTY(list_head)) the same in sys/queue.h */

/*Note parameters are swapped*/
#define LIST_FIRST_ENTRY(head, type, field) (type *)((head)->lh_first)
#define LIST_NEXT_ENTRY(entry, type, field) \
	((type *)(entry)->field.next.le_next)
#define LIST_ADD(entry, list_head)    LIST_INSERT_HEAD(list_head, entry, next)
#define LIST_ADD_AFTER(entry, list_entry) \
	LIST_INSERT_AFTER(list_entry, entry, next)

static inline void list_add_tail(struct ice_list_entry *entry,
				 struct ice_list_head *head)
{
	struct ice_list_entry *tail = head->lh_first;

	if (tail == NULL) {
		LIST_INSERT_HEAD(head, entry, next);
		return;
	}
	while (tail->next.le_next != NULL)
		tail = tail->next.le_next;
	LIST_INSERT_AFTER(tail, entry, next);
}

#define LIST_ADD_TAIL(entry, head) list_add_tail(entry, head)
#define LIST_FOR_EACH_ENTRY(pos, head, type, member)			       \
	for ((pos) = (head)->lh_first ?					       \
		     container_of((head)->lh_first, struct type, member) :     \
		     0;							       \
	     (pos);							       \
	     (pos) = (pos)->member.next.le_next ?			       \
		     container_of((pos)->member.next.le_next, struct type,     \
				  member) :				       \
		     0)

#define LIST_FOR_EACH_ENTRY_SAFE(pos, tmp, head, type, member)		       \
	for ((pos) = (head)->lh_first ?					       \
		     container_of((head)->lh_first, struct type, member) :     \
		     0,                                                        \
		     (tmp) = (pos) == 0 ? 0 : ((pos)->member.next.le_next ?    \
		     container_of((pos)->member.next.le_next, struct type,     \
				  member) :				       \
		     0);						       \
	     (pos);							       \
	     (pos) = (tmp),						       \
	     (tmp) = (pos) == 0 ? 0 : ((tmp)->member.next.le_next ?	       \
		     container_of((pos)->member.next.le_next, struct type,     \
				  member) :				       \
		     0))

#define LIST_REPLACE_INIT(list_head, head) do {				\
	(head)->lh_first = (list_head)->lh_first;			\
	INIT_LIST_HEAD(list_head);					\
} while (0)

#define HLIST_NODE_TYPE         LIST_ENTRY_TYPE
#define HLIST_HEAD_TYPE         LIST_HEAD_TYPE
#define INIT_HLIST_HEAD(list_head)             INIT_LIST_HEAD(list_head)
#define HLIST_ADD_HEAD(entry, list_head)       LIST_ADD(entry, list_head)
#define HLIST_EMPTY(list_head)                 LIST_EMPTY(list_head)
#define HLIST_DEL(entry)                       LIST_DEL(entry)
#define HLIST_FOR_EACH_ENTRY(pos, head, type, member) \
	LIST_FOR_EACH_ENTRY(pos, head, type, member)

#ifndef ICE_DBG_TRACE
#define ICE_DBG_TRACE		BIT_ULL(0)
#endif

#ifndef DIVIDE_AND_ROUND_UP
#define DIVIDE_AND_ROUND_UP(a, b) (((a) + (b) - 1) / (b))
#endif

#ifndef ICE_INTEL_VENDOR_ID
#define ICE_INTEL_VENDOR_ID		0x8086
#endif

#ifndef IS_UNICAST_ETHER_ADDR
#define IS_UNICAST_ETHER_ADDR(addr) \
	((bool)((((u8 *)(addr))[0] % ((u8)0x2)) == 0))
#endif

#ifndef IS_MULTICAST_ETHER_ADDR
#define IS_MULTICAST_ETHER_ADDR(addr) \
	((bool)((((u8 *)(addr))[0] % ((u8)0x2)) == 1))
#endif

#ifndef IS_BROADCAST_ETHER_ADDR
/* Check whether an address is broadcast. */
#define IS_BROADCAST_ETHER_ADDR(addr)	\
	((bool)((((u16 *)(addr))[0] == ((u16)0xffff))))
#endif

#ifndef IS_ZERO_ETHER_ADDR
#define IS_ZERO_ETHER_ADDR(addr) \
	(((bool)((((u16 *)(addr))[0] == ((u16)0x0)))) && \
	 ((bool)((((u16 *)(addr))[1] == ((u16)0x0)))) && \
	 ((bool)((((u16 *)(addr))[2] == ((u16)0x0)))))
#endif

#endif /* _ICE_OSDEP_H_ */