DPDK logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright 2017 6WIND S.A.
 * Copyright 2017 Mellanox Technologies, Ltd
 */

/**
 * @file
 * Data plane functions for mlx4 driver.
 */

#include <stdbool.h>
#include <stdint.h>
#include <string.h>

/* Verbs headers do not support -pedantic. */
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#include <infiniband/verbs.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-Wpedantic"
#endif

#include <rte_branch_prediction.h>
#include <rte_common.h>
#include <rte_io.h>
#include <rte_mbuf.h>
#include <rte_mempool.h>
#include <rte_prefetch.h>

#include "mlx4.h"
#include "mlx4_prm.h"
#include "mlx4_rxtx.h"
#include "mlx4_utils.h"

/**
 * Pointer-value pair structure used in tx_post_send for saving the first
 * DWORD (32 byte) of a TXBB.
 */
struct pv {
	union {
		volatile struct mlx4_wqe_data_seg *dseg;
		volatile uint32_t *dst;
	};
	uint32_t val;
};

/** A helper structure for TSO packet handling. */
struct tso_info {
	/** Pointer to the array of saved first DWORD (32 byte) of a TXBB. */
	struct pv *pv;
	/** Current entry in the pv array. */
	int pv_counter;
	/** Total size of the WQE including padding. */
	uint32_t wqe_size;
	/** Size of TSO header to prepend to each packet to send. */
	uint16_t tso_header_size;
	/** Total size of the TSO segment in the WQE. */
	uint16_t wqe_tso_seg_size;
	/** Raw WQE size in units of 16 Bytes and without padding. */
	uint8_t fence_size;
};

/** A table to translate Rx completion flags to packet type. */
uint32_t mlx4_ptype_table[0x100] __rte_cache_aligned = {
	/*
	 * The index to the array should have:
	 *  bit[7] - MLX4_CQE_L2_TUNNEL
	 *  bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
	 *  bit[5] - MLX4_CQE_STATUS_UDP
	 *  bit[4] - MLX4_CQE_STATUS_TCP
	 *  bit[3] - MLX4_CQE_STATUS_IPV4OPT
	 *  bit[2] - MLX4_CQE_STATUS_IPV6
	 *  bit[1] - MLX4_CQE_STATUS_IPF
	 *  bit[0] - MLX4_CQE_STATUS_IPV4
	 * giving a total of up to 256 entries.
	 */
	/* L2 */
	[0x00] = RTE_PTYPE_L2_ETHER,
	/* L3 */
	[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_L4_NONFRAG,
	[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_L4_FRAG,
	[0x03] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_L4_FRAG,
	[0x04] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_L4_NONFRAG,
	[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_L4_FRAG,
	[0x08] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
		     RTE_PTYPE_L4_NONFRAG,
	[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
		     RTE_PTYPE_L4_NONFRAG,
	[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
		     RTE_PTYPE_L4_FRAG,
	[0x0b] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
		     RTE_PTYPE_L4_FRAG,
	/* TCP */
	[0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_L4_TCP,
	[0x14] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_L4_TCP,
	[0x16] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_L4_FRAG,
	[0x18] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
		     RTE_PTYPE_L4_TCP,
	[0x19] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
		     RTE_PTYPE_L4_TCP,
	/* UDP */
	[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_L4_UDP,
	[0x24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_L4_UDP,
	[0x26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_L4_FRAG,
	[0x28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
		     RTE_PTYPE_L4_UDP,
	[0x29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
		     RTE_PTYPE_L4_UDP,
	/* Tunneled - L3 IPV6 */
	[0x80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
	[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_NONFRAG,
	[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_FRAG,
	[0x83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_FRAG,
	[0x84] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_NONFRAG,
	[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_FRAG,
	[0x88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT |
		     RTE_PTYPE_INNER_L4_NONFRAG,
	[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT |
		     RTE_PTYPE_INNER_L4_NONFRAG,
	[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT |
		     RTE_PTYPE_INNER_L4_FRAG,
	[0x8b] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT |
		     RTE_PTYPE_INNER_L4_FRAG,
	/* Tunneled - L3 IPV6, TCP */
	[0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_TCP,
	[0x94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_TCP,
	[0x96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_FRAG,
	[0x98] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP,
	[0x99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP,
	/* Tunneled - L3 IPV6, UDP */
	[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_UDP,
	[0xa4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_UDP,
	[0xa6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_FRAG,
	[0xa8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT |
		     RTE_PTYPE_INNER_L4_UDP,
	[0xa9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT |
		     RTE_PTYPE_INNER_L4_UDP,
	/* Tunneled - L3 IPV4 */
	[0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
	[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_NONFRAG,
	[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_FRAG,
	[0xc3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_FRAG,
	[0xc4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_NONFRAG,
	[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_FRAG,
	[0xc8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT |
		     RTE_PTYPE_INNER_L4_NONFRAG,
	[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT |
		     RTE_PTYPE_INNER_L4_NONFRAG,
	[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT |
		     RTE_PTYPE_INNER_L4_FRAG,
	[0xcb] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT |
		     RTE_PTYPE_INNER_L4_FRAG,
	/* Tunneled - L3 IPV4, TCP */
	[0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_TCP,
	[0xd4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_TCP,
	[0xd6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_FRAG,
	[0xd8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT |
		     RTE_PTYPE_INNER_L4_TCP,
	[0xd9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT |
		     RTE_PTYPE_INNER_L4_TCP,
	/* Tunneled - L3 IPV4, UDP */
	[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_UDP,
	[0xe4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_UDP,
	[0xe6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_FRAG,
	[0xe8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT |
		     RTE_PTYPE_INNER_L4_UDP,
	[0xe9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT |
		     RTE_PTYPE_INNER_L4_UDP,
};

/**
 * Stamp TXBB burst so it won't be reused by the HW.
 *
 * Routine is used when freeing WQE used by the chip or when failing
 * building an WQ entry has failed leaving partial information on the queue.
 *
 * @param sq
 *   Pointer to the SQ structure.
 * @param start
 *   Pointer to the first TXBB to stamp.
 * @param end
 *   Pointer to the followed end TXBB to stamp.
 *
 * @return
 *   Stamping burst size in byte units.
 */
static uint32_t
mlx4_txq_stamp_freed_wqe(struct mlx4_sq *sq, volatile uint32_t *start,
			 volatile uint32_t *end)
{
	uint32_t stamp = sq->stamp;
	int32_t size = (intptr_t)end - (intptr_t)start;

	MLX4_ASSERT(start != end);
	/* Hold SQ ring wrap around. */
	if (size < 0) {
		size = (int32_t)sq->size + size;
		do {
			*start = stamp;
			start += MLX4_SQ_STAMP_DWORDS;
		} while (start != (volatile uint32_t *)sq->eob);
		start = (volatile uint32_t *)sq->buf;
		/* Flip invalid stamping ownership. */
		stamp ^= RTE_BE32(1u << MLX4_SQ_OWNER_BIT);
		sq->stamp = stamp;
		if (start == end)
			return size;
	}
	do {
		*start = stamp;
		start += MLX4_SQ_STAMP_DWORDS;
	} while (start != end);
	return (uint32_t)size;
}

/**
 * Manage Tx completions.
 *
 * When sending a burst, mlx4_tx_burst() posts several WRs.
 * To improve performance, a completion event is only required once every
 * MLX4_PMD_TX_PER_COMP_REQ sends. Doing so discards completion information
 * for other WRs, but this information would not be used anyway.
 *
 * @param txq
 *   Pointer to Tx queue structure.
 * @param elts_m
 *   Tx elements number mask.
 * @param sq
 *   Pointer to the SQ structure.
 */
static void
mlx4_txq_complete(struct txq *txq, const unsigned int elts_m,
		  struct mlx4_sq *sq)
{
	unsigned int elts_tail = txq->elts_tail;
	struct mlx4_cq *cq = &txq->mcq;
	volatile struct mlx4_cqe *cqe;
	uint32_t completed;
	uint32_t cons_index = cq->cons_index;
	volatile uint32_t *first_txbb;

	/*
	 * Traverse over all CQ entries reported and handle each WQ entry
	 * reported by them.
	 */
	do {
		cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cons_index);
		if (unlikely(!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
		    !!(cons_index & cq->cqe_cnt)))
			break;
#ifdef RTE_LIBRTE_MLX4_DEBUG
		/*
		 * Make sure we read the CQE after we read the ownership bit.
		 */
		rte_io_rmb();
		if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
			     MLX4_CQE_OPCODE_ERROR)) {
			volatile struct mlx4_err_cqe *cqe_err =
				(volatile struct mlx4_err_cqe *)cqe;
			ERROR("%p CQE error - vendor syndrome: 0x%x"
			      " syndrome: 0x%x\n",
			      (void *)txq, cqe_err->vendor_err,
			      cqe_err->syndrome);
			break;
		}
#endif /* RTE_LIBRTE_MLX4_DEBUG */
		cons_index++;
	} while (1);
	completed = (cons_index - cq->cons_index) * txq->elts_comp_cd_init;
	if (unlikely(!completed))
		return;
	/* First stamping address is the end of the last one. */
	first_txbb = (&(*txq->elts)[elts_tail & elts_m])->eocb;
	elts_tail += completed;
	/* The new tail element holds the end address. */
	sq->remain_size += mlx4_txq_stamp_freed_wqe(sq, first_txbb,
		(&(*txq->elts)[elts_tail & elts_m])->eocb);
	/* Update CQ consumer index. */
	cq->cons_index = cons_index;
	*cq->set_ci_db = rte_cpu_to_be_32(cons_index & MLX4_CQ_DB_CI_MASK);
	txq->elts_tail = elts_tail;
}

/**
 * Write Tx data segment to the SQ.
 *
 * @param dseg
 *   Pointer to data segment in SQ.
 * @param lkey
 *   Memory region lkey.
 * @param addr
 *   Data address.
 * @param byte_count
 *   Big endian bytes count of the data to send.
 */
static inline void
mlx4_fill_tx_data_seg(volatile struct mlx4_wqe_data_seg *dseg,
		       uint32_t lkey, uintptr_t addr, rte_be32_t  byte_count)
{
	dseg->addr = rte_cpu_to_be_64(addr);
	dseg->lkey = lkey;
#if RTE_CACHE_LINE_SIZE < 64
	/*
	 * Need a barrier here before writing the byte_count
	 * fields to make sure that all the data is visible
	 * before the byte_count field is set.
	 * Otherwise, if the segment begins a new cacheline,
	 * the HCA prefetcher could grab the 64-byte chunk and
	 * get a valid (!= 0xffffffff) byte count but stale
	 * data, and end up sending the wrong data.
	 */
	rte_io_wmb();
#endif /* RTE_CACHE_LINE_SIZE */
	dseg->byte_count = byte_count;
}

/**
 * Obtain and calculate TSO information needed for assembling a TSO WQE.
 *
 * @param buf
 *   Pointer to the first packet mbuf.
 * @param txq
 *   Pointer to Tx queue structure.
 * @param tinfo
 *   Pointer to a structure to fill the info with.
 *
 * @return
 *   0 on success, negative value upon error.
 */
static inline int
mlx4_tx_burst_tso_get_params(struct rte_mbuf *buf,
			     struct txq *txq,
			     struct tso_info *tinfo)
{
	struct mlx4_sq *sq = &txq->msq;
	const uint8_t tunneled = txq->priv->hw_csum_l2tun &&
				 (buf->ol_flags & PKT_TX_TUNNEL_MASK);

	tinfo->tso_header_size = buf->l2_len + buf->l3_len + buf->l4_len;
	if (tunneled)
		tinfo->tso_header_size +=
				buf->outer_l2_len + buf->outer_l3_len;
	if (unlikely(buf->tso_segsz == 0 ||
		     tinfo->tso_header_size == 0 ||
		     tinfo->tso_header_size > MLX4_MAX_TSO_HEADER ||
		     tinfo->tso_header_size > buf->data_len))
		return -EINVAL;
	/*
	 * Calculate the WQE TSO segment size
	 * Note:
	 * 1. An LSO segment must be padded such that the subsequent data
	 *    segment is 16-byte aligned.
	 * 2. The start address of the TSO segment is always 16 Bytes aligned.
	 */
	tinfo->wqe_tso_seg_size = RTE_ALIGN(sizeof(struct mlx4_wqe_lso_seg) +
					    tinfo->tso_header_size,
					    sizeof(struct mlx4_wqe_data_seg));
	tinfo->fence_size = ((sizeof(struct mlx4_wqe_ctrl_seg) +
			     tinfo->wqe_tso_seg_size) >> MLX4_SEG_SHIFT) +
			     buf->nb_segs;
	tinfo->wqe_size =
		RTE_ALIGN((uint32_t)(tinfo->fence_size << MLX4_SEG_SHIFT),
			  MLX4_TXBB_SIZE);
	/* Validate WQE size and WQE space in the send queue. */
	if (sq->remain_size < tinfo->wqe_size ||
	    tinfo->wqe_size > MLX4_MAX_WQE_SIZE)
		return -ENOMEM;
	/* Init pv. */
	tinfo->pv = (struct pv *)txq->bounce_buf;
	tinfo->pv_counter = 0;
	return 0;
}

/**
 * Fill the TSO WQE data segments with info on buffers to transmit .
 *
 * @param buf
 *   Pointer to the first packet mbuf.
 * @param txq
 *   Pointer to Tx queue structure.
 * @param tinfo
 *   Pointer to TSO info to use.
 * @param dseg
 *   Pointer to the first data segment in the TSO WQE.
 * @param ctrl
 *   Pointer to the control segment in the TSO WQE.
 *
 * @return
 *   0 on success, negative value upon error.
 */
static inline volatile struct mlx4_wqe_ctrl_seg *
mlx4_tx_burst_fill_tso_dsegs(struct rte_mbuf *buf,
			     struct txq *txq,
			     struct tso_info *tinfo,
			     volatile struct mlx4_wqe_data_seg *dseg,
			     volatile struct mlx4_wqe_ctrl_seg *ctrl)
{
	uint32_t lkey;
	int nb_segs = buf->nb_segs;
	int nb_segs_txbb;
	struct mlx4_sq *sq = &txq->msq;
	struct rte_mbuf *sbuf = buf;
	struct pv *pv = tinfo->pv;
	int *pv_counter = &tinfo->pv_counter;
	volatile struct mlx4_wqe_ctrl_seg *ctrl_next =
			(volatile struct mlx4_wqe_ctrl_seg *)
				((volatile uint8_t *)ctrl + tinfo->wqe_size);
	uint16_t data_len = sbuf->data_len - tinfo->tso_header_size;
	uintptr_t data_addr = rte_pktmbuf_mtod_offset(sbuf, uintptr_t,
						      tinfo->tso_header_size);

	do {
		/* how many dseg entries do we have in the current TXBB ? */
		nb_segs_txbb = (MLX4_TXBB_SIZE -
				((uintptr_t)dseg & (MLX4_TXBB_SIZE - 1))) >>
			       MLX4_SEG_SHIFT;
		switch (nb_segs_txbb) {
#ifdef RTE_LIBRTE_MLX4_DEBUG
		default:
			/* Should never happen. */
			rte_panic("%p: Invalid number of SGEs(%d) for a TXBB",
			(void *)txq, nb_segs_txbb);
			/* rte_panic never returns. */
			break;
#endif /* RTE_LIBRTE_MLX4_DEBUG */
		case 4:
			/* Memory region key for this memory pool. */
			lkey = mlx4_tx_mb2mr(txq, sbuf);
			if (unlikely(lkey == (uint32_t)-1))
				goto err;
			dseg->addr = rte_cpu_to_be_64(data_addr);
			dseg->lkey = lkey;
			/*
			 * This data segment starts at the beginning of a new
			 * TXBB, so we need to postpone its byte_count writing
			 * for later.
			 */
			pv[*pv_counter].dseg = dseg;
			/*
			 * Zero length segment is treated as inline segment
			 * with zero data.
			 */
			pv[(*pv_counter)++].val =
				rte_cpu_to_be_32(data_len ?
						 data_len :
						 0x80000000);
			if (--nb_segs == 0)
				return ctrl_next;
			/* Prepare next buf info */
			sbuf = sbuf->next;
			dseg++;
			data_len = sbuf->data_len;
			data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
			/* fallthrough */
		case 3:
			lkey = mlx4_tx_mb2mr(txq, sbuf);
			if (unlikely(lkey == (uint32_t)-1))
				goto err;
			mlx4_fill_tx_data_seg(dseg, lkey, data_addr,
					rte_cpu_to_be_32(data_len ?
							 data_len :
							 0x80000000));
			if (--nb_segs == 0)
				return ctrl_next;
			/* Prepare next buf info */
			sbuf = sbuf->next;
			dseg++;
			data_len = sbuf->data_len;
			data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
			/* fallthrough */
		case 2:
			lkey = mlx4_tx_mb2mr(txq, sbuf);
			if (unlikely(lkey == (uint32_t)-1))
				goto err;
			mlx4_fill_tx_data_seg(dseg, lkey, data_addr,
					rte_cpu_to_be_32(data_len ?
							 data_len :
							 0x80000000));
			if (--nb_segs == 0)
				return ctrl_next;
			/* Prepare next buf info */
			sbuf = sbuf->next;
			dseg++;
			data_len = sbuf->data_len;
			data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
			/* fallthrough */
		case 1:
			lkey = mlx4_tx_mb2mr(txq, sbuf);
			if (unlikely(lkey == (uint32_t)-1))
				goto err;
			mlx4_fill_tx_data_seg(dseg, lkey, data_addr,
					rte_cpu_to_be_32(data_len ?
							 data_len :
							 0x80000000));
			if (--nb_segs == 0)
				return ctrl_next;
			/* Prepare next buf info */
			sbuf = sbuf->next;
			dseg++;
			data_len = sbuf->data_len;
			data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
			/* fallthrough */
		}
		/* Wrap dseg if it points at the end of the queue. */
		if ((volatile uint8_t *)dseg >= sq->eob)
			dseg = (volatile struct mlx4_wqe_data_seg *)
					((volatile uint8_t *)dseg - sq->size);
	} while (true);
err:
	return NULL;
}

/**
 * Fill the packet's l2, l3 and l4 headers to the WQE.
 *
 * This will be used as the header for each TSO segment that is transmitted.
 *
 * @param buf
 *   Pointer to the first packet mbuf.
 * @param txq
 *   Pointer to Tx queue structure.
 * @param tinfo
 *   Pointer to TSO info to use.
 * @param ctrl
 *   Pointer to the control segment in the TSO WQE.
 *
 * @return
 *   0 on success, negative value upon error.
 */
static inline volatile struct mlx4_wqe_data_seg *
mlx4_tx_burst_fill_tso_hdr(struct rte_mbuf *buf,
			   struct txq *txq,
			   struct tso_info *tinfo,
			   volatile struct mlx4_wqe_ctrl_seg *ctrl)
{
	volatile struct mlx4_wqe_lso_seg *tseg =
		(volatile struct mlx4_wqe_lso_seg *)(ctrl + 1);
	struct mlx4_sq *sq = &txq->msq;
	struct pv *pv = tinfo->pv;
	int *pv_counter = &tinfo->pv_counter;
	int remain_size = tinfo->tso_header_size;
	char *from = rte_pktmbuf_mtod(buf, char *);
	uint16_t txbb_avail_space;
	/* Union to overcome volatile constraints when copying TSO header. */
	union {
		volatile uint8_t *vto;
		uint8_t *to;
	} thdr = { .vto = (volatile uint8_t *)tseg->header, };

	/*
	 * TSO data always starts at offset 20 from the beginning of the TXBB
	 * (16 byte ctrl + 4byte TSO desc). Since each TXBB is 64Byte aligned
	 * we can write the first 44 TSO header bytes without worry for TxQ
	 * wrapping or overwriting the first TXBB 32bit word.
	 */
	txbb_avail_space = MLX4_TXBB_SIZE -
			   (sizeof(struct mlx4_wqe_ctrl_seg) +
			    sizeof(struct mlx4_wqe_lso_seg));
	while (remain_size >= (int)(txbb_avail_space + sizeof(uint32_t))) {
		/* Copy to end of txbb. */
		rte_memcpy(thdr.to, from, txbb_avail_space);
		from += txbb_avail_space;
		thdr.to += txbb_avail_space;
		/* New TXBB, Check for TxQ wrap. */
		if (thdr.to >= sq->eob)
			thdr.vto = sq->buf;
		/* New TXBB, stash the first 32bits for later use. */
		pv[*pv_counter].dst = (volatile uint32_t *)thdr.to;
		pv[(*pv_counter)++].val = *(uint32_t *)from,
		from += sizeof(uint32_t);
		thdr.to += sizeof(uint32_t);
		remain_size -= txbb_avail_space + sizeof(uint32_t);
		/* Avail space in new TXBB is TXBB size - 4 */
		txbb_avail_space = MLX4_TXBB_SIZE - sizeof(uint32_t);
	}
	if (remain_size > txbb_avail_space) {
		rte_memcpy(thdr.to, from, txbb_avail_space);
		from += txbb_avail_space;
		thdr.to += txbb_avail_space;
		remain_size -= txbb_avail_space;
		/* New TXBB, Check for TxQ wrap. */
		if (thdr.to >= sq->eob)
			thdr.vto = sq->buf;
		pv[*pv_counter].dst = (volatile uint32_t *)thdr.to;
		rte_memcpy(&pv[*pv_counter].val, from, remain_size);
		(*pv_counter)++;
	} else if (remain_size) {
		rte_memcpy(thdr.to, from, remain_size);
	}
	tseg->mss_hdr_size = rte_cpu_to_be_32((buf->tso_segsz << 16) |
					      tinfo->tso_header_size);
	/* Calculate data segment location */
	return (volatile struct mlx4_wqe_data_seg *)
				((uintptr_t)tseg + tinfo->wqe_tso_seg_size);
}

/**
 * Write data segments and header for TSO uni/multi segment packet.
 *
 * @param buf
 *   Pointer to the first packet mbuf.
 * @param txq
 *   Pointer to Tx queue structure.
 * @param ctrl
 *   Pointer to the WQE control segment.
 *
 * @return
 *   Pointer to the next WQE control segment on success, NULL otherwise.
 */
static volatile struct mlx4_wqe_ctrl_seg *
mlx4_tx_burst_tso(struct rte_mbuf *buf, struct txq *txq,
		  volatile struct mlx4_wqe_ctrl_seg *ctrl)
{
	volatile struct mlx4_wqe_data_seg *dseg;
	volatile struct mlx4_wqe_ctrl_seg *ctrl_next;
	struct mlx4_sq *sq = &txq->msq;
	struct tso_info tinfo;
	struct pv *pv;
	int pv_counter;
	int ret;

	ret = mlx4_tx_burst_tso_get_params(buf, txq, &tinfo);
	if (unlikely(ret))
		goto error;
	dseg = mlx4_tx_burst_fill_tso_hdr(buf, txq, &tinfo, ctrl);
	if (unlikely(dseg == NULL))
		goto error;
	if ((uintptr_t)dseg >= (uintptr_t)sq->eob)
		dseg = (volatile struct mlx4_wqe_data_seg *)
					((uintptr_t)dseg - sq->size);
	ctrl_next = mlx4_tx_burst_fill_tso_dsegs(buf, txq, &tinfo, dseg, ctrl);
	if (unlikely(ctrl_next == NULL))
		goto error;
	/* Write the first DWORD of each TXBB save earlier. */
	if (likely(tinfo.pv_counter)) {
		pv = tinfo.pv;
		pv_counter = tinfo.pv_counter;
		/* Need a barrier here before writing the first TXBB word. */
		rte_io_wmb();
		do {
			--pv_counter;
			*pv[pv_counter].dst = pv[pv_counter].val;
		} while (pv_counter > 0);
	}
	ctrl->fence_size = tinfo.fence_size;
	sq->remain_size -= tinfo.wqe_size;
	return ctrl_next;
error:
	txq->stats.odropped++;
	return NULL;
}

/**
 * Write data segments of multi-segment packet.
 *
 * @param buf
 *   Pointer to the first packet mbuf.
 * @param txq
 *   Pointer to Tx queue structure.
 * @param ctrl
 *   Pointer to the WQE control segment.
 *
 * @return
 *   Pointer to the next WQE control segment on success, NULL otherwise.
 */
static volatile struct mlx4_wqe_ctrl_seg *
mlx4_tx_burst_segs(struct rte_mbuf *buf, struct txq *txq,
		   volatile struct mlx4_wqe_ctrl_seg *ctrl)
{
	struct pv *pv = (struct pv *)txq->bounce_buf;
	struct mlx4_sq *sq = &txq->msq;
	struct rte_mbuf *sbuf = buf;
	uint32_t lkey;
	int pv_counter = 0;
	int nb_segs = buf->nb_segs;
	uint32_t wqe_size;
	volatile struct mlx4_wqe_data_seg *dseg =
		(volatile struct mlx4_wqe_data_seg *)(ctrl + 1);

	ctrl->fence_size = 1 + nb_segs;
	wqe_size = RTE_ALIGN((uint32_t)(ctrl->fence_size << MLX4_SEG_SHIFT),
			     MLX4_TXBB_SIZE);
	/* Validate WQE size and WQE space in the send queue. */
	if (sq->remain_size < wqe_size ||
	    wqe_size > MLX4_MAX_WQE_SIZE)
		return NULL;
	/*
	 * Fill the data segments with buffer information.
	 * First WQE TXBB head segment is always control segment,
	 * so jump to tail TXBB data segments code for the first
	 * WQE data segments filling.
	 */
	goto txbb_tail_segs;
txbb_head_seg:
	/* Memory region key (big endian) for this memory pool. */
	lkey = mlx4_tx_mb2mr(txq, sbuf);
	if (unlikely(lkey == (uint32_t)-1)) {
		DEBUG("%p: unable to get MP <-> MR association",
		      (void *)txq);
		return NULL;
	}
	/* Handle WQE wraparound. */
	if (dseg >=
		(volatile struct mlx4_wqe_data_seg *)sq->eob)
		dseg = (volatile struct mlx4_wqe_data_seg *)
			sq->buf;
	dseg->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(sbuf, uintptr_t));
	dseg->lkey = lkey;
	/*
	 * This data segment starts at the beginning of a new
	 * TXBB, so we need to postpone its byte_count writing
	 * for later.
	 */
	pv[pv_counter].dseg = dseg;
	/*
	 * Zero length segment is treated as inline segment
	 * with zero data.
	 */
	pv[pv_counter++].val = rte_cpu_to_be_32(sbuf->data_len ?
						sbuf->data_len : 0x80000000);
	sbuf = sbuf->next;
	dseg++;
	nb_segs--;
txbb_tail_segs:
	/* Jump to default if there are more than two segments remaining. */
	switch (nb_segs) {
	default:
		lkey = mlx4_tx_mb2mr(txq, sbuf);
		if (unlikely(lkey == (uint32_t)-1)) {
			DEBUG("%p: unable to get MP <-> MR association",
			      (void *)txq);
			return NULL;
		}
		mlx4_fill_tx_data_seg(dseg, lkey,
				      rte_pktmbuf_mtod(sbuf, uintptr_t),
				      rte_cpu_to_be_32(sbuf->data_len ?
						       sbuf->data_len :
						       0x80000000));
		sbuf = sbuf->next;
		dseg++;
		nb_segs--;
		/* fallthrough */
	case 2:
		lkey = mlx4_tx_mb2mr(txq, sbuf);
		if (unlikely(lkey == (uint32_t)-1)) {
			DEBUG("%p: unable to get MP <-> MR association",
			      (void *)txq);
			return NULL;
		}
		mlx4_fill_tx_data_seg(dseg, lkey,
				      rte_pktmbuf_mtod(sbuf, uintptr_t),
				      rte_cpu_to_be_32(sbuf->data_len ?
						       sbuf->data_len :
						       0x80000000));
		sbuf = sbuf->next;
		dseg++;
		nb_segs--;
		/* fallthrough */
	case 1:
		lkey = mlx4_tx_mb2mr(txq, sbuf);
		if (unlikely(lkey == (uint32_t)-1)) {
			DEBUG("%p: unable to get MP <-> MR association",
			      (void *)txq);
			return NULL;
		}
		mlx4_fill_tx_data_seg(dseg, lkey,
				      rte_pktmbuf_mtod(sbuf, uintptr_t),
				      rte_cpu_to_be_32(sbuf->data_len ?
						       sbuf->data_len :
						       0x80000000));
		nb_segs--;
		if (nb_segs) {
			sbuf = sbuf->next;
			dseg++;
			goto txbb_head_seg;
		}
		/* fallthrough */
	case 0:
		break;
	}
	/* Write the first DWORD of each TXBB save earlier. */
	if (pv_counter) {
		/* Need a barrier here before writing the byte_count. */
		rte_io_wmb();
		for (--pv_counter; pv_counter  >= 0; pv_counter--)
			pv[pv_counter].dseg->byte_count = pv[pv_counter].val;
	}
	sq->remain_size -= wqe_size;
	/* Align next WQE address to the next TXBB. */
	return (volatile struct mlx4_wqe_ctrl_seg *)
		((volatile uint8_t *)ctrl + wqe_size);
}

/**
 * DPDK callback for Tx.
 *
 * @param dpdk_txq
 *   Generic pointer to Tx queue structure.
 * @param[in] pkts
 *   Packets to transmit.
 * @param pkts_n
 *   Number of packets in array.
 *
 * @return
 *   Number of packets successfully transmitted (<= pkts_n).
 */
uint16_t
mlx4_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
	struct txq *txq = (struct txq *)dpdk_txq;
	unsigned int elts_head = txq->elts_head;
	const unsigned int elts_n = txq->elts_n;
	const unsigned int elts_m = elts_n - 1;
	unsigned int bytes_sent = 0;
	unsigned int i;
	unsigned int max = elts_head - txq->elts_tail;
	struct mlx4_sq *sq = &txq->msq;
	volatile struct mlx4_wqe_ctrl_seg *ctrl;
	struct txq_elt *elt;

	MLX4_ASSERT(txq->elts_comp_cd != 0);
	if (likely(max >= txq->elts_comp_cd_init))
		mlx4_txq_complete(txq, elts_m, sq);
	max = elts_n - max;
	MLX4_ASSERT(max >= 1);
	MLX4_ASSERT(max <= elts_n);
	/* Always leave one free entry in the ring. */
	--max;
	if (max > pkts_n)
		max = pkts_n;
	elt = &(*txq->elts)[elts_head & elts_m];
	/* First Tx burst element saves the next WQE control segment. */
	ctrl = elt->wqe;
	for (i = 0; (i != max); ++i) {
		struct rte_mbuf *buf = pkts[i];
		struct txq_elt *elt_next = &(*txq->elts)[++elts_head & elts_m];
		uint32_t owner_opcode = sq->owner_opcode;
		volatile struct mlx4_wqe_data_seg *dseg =
				(volatile struct mlx4_wqe_data_seg *)(ctrl + 1);
		volatile struct mlx4_wqe_ctrl_seg *ctrl_next;
		union {
			uint32_t flags;
			uint16_t flags16[2];
		} srcrb;
		uint32_t lkey;
		bool tso = txq->priv->tso && (buf->ol_flags & PKT_TX_TCP_SEG);

		/* Clean up old buffer. */
		if (likely(elt->buf != NULL)) {
			struct rte_mbuf *tmp = elt->buf;

#ifdef RTE_LIBRTE_MLX4_DEBUG
			/* Poisoning. */
			memset(&elt->buf, 0x66, sizeof(struct rte_mbuf *));
#endif
			/* Faster than rte_pktmbuf_free(). */
			do {
				struct rte_mbuf *next = tmp->next;

				rte_pktmbuf_free_seg(tmp);
				tmp = next;
			} while (tmp != NULL);
		}
		RTE_MBUF_PREFETCH_TO_FREE(elt_next->buf);
		if (tso) {
			/* Change opcode to TSO */
			owner_opcode &= ~MLX4_OPCODE_CONFIG_CMD;
			owner_opcode |= MLX4_OPCODE_LSO | MLX4_WQE_CTRL_RR;
			ctrl_next = mlx4_tx_burst_tso(buf, txq, ctrl);
			if (!ctrl_next) {
				elt->buf = NULL;
				break;
			}
		} else if (buf->nb_segs == 1) {
			/* Validate WQE space in the send queue. */
			if (sq->remain_size < MLX4_TXBB_SIZE) {
				elt->buf = NULL;
				break;
			}
			lkey = mlx4_tx_mb2mr(txq, buf);
			if (unlikely(lkey == (uint32_t)-1)) {
				/* MR does not exist. */
				DEBUG("%p: unable to get MP <-> MR association",
				      (void *)txq);
				elt->buf = NULL;
				break;
			}
			mlx4_fill_tx_data_seg(dseg++, lkey,
					      rte_pktmbuf_mtod(buf, uintptr_t),
					      rte_cpu_to_be_32(buf->data_len));
			/* Set WQE size in 16-byte units. */
			ctrl->fence_size = 0x2;
			sq->remain_size -= MLX4_TXBB_SIZE;
			/* Align next WQE address to the next TXBB. */
			ctrl_next = ctrl + 0x4;
		} else {
			ctrl_next = mlx4_tx_burst_segs(buf, txq, ctrl);
			if (!ctrl_next) {
				elt->buf = NULL;
				break;
			}
		}
		/* Hold SQ ring wrap around. */
		if ((volatile uint8_t *)ctrl_next >= sq->eob) {
			ctrl_next = (volatile struct mlx4_wqe_ctrl_seg *)
				((volatile uint8_t *)ctrl_next - sq->size);
			/* Flip HW valid ownership. */
			sq->owner_opcode ^= 1u << MLX4_SQ_OWNER_BIT;
		}
		/*
		 * For raw Ethernet, the SOLICIT flag is used to indicate
		 * that no ICRC should be calculated.
		 */
		if (--txq->elts_comp_cd == 0) {
			/* Save the completion burst end address. */
			elt_next->eocb = (volatile uint32_t *)ctrl_next;
			txq->elts_comp_cd = txq->elts_comp_cd_init;
			srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT |
					       MLX4_WQE_CTRL_CQ_UPDATE);
		} else {
			srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT);
		}
		/* Enable HW checksum offload if requested */
		if (txq->csum &&
		    (buf->ol_flags &
		     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))) {
			const uint64_t is_tunneled = (buf->ol_flags &
						      (PKT_TX_TUNNEL_GRE |
						       PKT_TX_TUNNEL_VXLAN));

			if (is_tunneled && txq->csum_l2tun) {
				owner_opcode |= MLX4_WQE_CTRL_IIP_HDR_CSUM |
						MLX4_WQE_CTRL_IL4_HDR_CSUM;
				if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
					srcrb.flags |=
					    RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM);
			} else {
				srcrb.flags |=
					RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM |
						MLX4_WQE_CTRL_TCP_UDP_CSUM);
			}
		}
		if (txq->lb) {
			/*
			 * Copy destination MAC address to the WQE, this allows
			 * loopback in eSwitch, so that VFs and PF can
			 * communicate with each other.
			 */
			srcrb.flags16[0] = *(rte_pktmbuf_mtod(buf, uint16_t *));
			ctrl->imm = *(rte_pktmbuf_mtod_offset(buf, uint32_t *,
					      sizeof(uint16_t)));
		} else {
			ctrl->imm = 0;
		}
		ctrl->srcrb_flags = srcrb.flags;
		/*
		 * Make sure descriptor is fully written before
		 * setting ownership bit (because HW can start
		 * executing as soon as we do).
		 */
		rte_io_wmb();
		ctrl->owner_opcode = rte_cpu_to_be_32(owner_opcode);
		elt->buf = buf;
		bytes_sent += buf->pkt_len;
		ctrl = ctrl_next;
		elt = elt_next;
	}
	/* Take a shortcut if nothing must be sent. */
	if (unlikely(i == 0))
		return 0;
	/* Save WQE address of the next Tx burst element. */
	elt->wqe = ctrl;
	/* Increment send statistics counters. */
	txq->stats.opackets += i;
	txq->stats.obytes += bytes_sent;
	/* Make sure that descriptors are written before doorbell record. */
	rte_wmb();
	/* Ring QP doorbell. */
	rte_write32(txq->msq.doorbell_qpn, MLX4_TX_BFREG(txq));
	txq->elts_head += i;
	return i;
}

/**
 * Translate Rx completion flags to packet type.
 *
 * @param[in] cqe
 *   Pointer to CQE.
 *
 * @return
 *   Packet type for struct rte_mbuf.
 */
static inline uint32_t
rxq_cq_to_pkt_type(volatile struct mlx4_cqe *cqe,
		   uint32_t l2tun_offload)
{
	uint8_t idx = 0;
	uint32_t pinfo = rte_be_to_cpu_32(cqe->vlan_my_qpn);
	uint32_t status = rte_be_to_cpu_32(cqe->status);

	/*
	 * The index to the array should have:
	 *  bit[7] - MLX4_CQE_L2_TUNNEL
	 *  bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
	 */
	if (l2tun_offload && (pinfo & MLX4_CQE_L2_TUNNEL))
		idx |= ((pinfo & MLX4_CQE_L2_TUNNEL) >> 20) |
		       ((pinfo & MLX4_CQE_L2_TUNNEL_IPV4) >> 19);
	/*
	 * The index to the array should have:
	 *  bit[5] - MLX4_CQE_STATUS_UDP
	 *  bit[4] - MLX4_CQE_STATUS_TCP
	 *  bit[3] - MLX4_CQE_STATUS_IPV4OPT
	 *  bit[2] - MLX4_CQE_STATUS_IPV6
	 *  bit[1] - MLX4_CQE_STATUS_IPF
	 *  bit[0] - MLX4_CQE_STATUS_IPV4
	 * giving a total of up to 256 entries.
	 */
	idx |= ((status & MLX4_CQE_STATUS_PTYPE_MASK) >> 22);
	if (status & MLX4_CQE_STATUS_IPV6)
		idx |= ((status & MLX4_CQE_STATUS_IPV6F) >> 11);
	return mlx4_ptype_table[idx];
}

/**
 * Translate Rx completion flags to offload flags.
 *
 * @param flags
 *   Rx completion flags returned by mlx4_cqe_flags().
 * @param csum
 *   Whether Rx checksums are enabled.
 * @param csum_l2tun
 *   Whether Rx L2 tunnel checksums are enabled.
 *
 * @return
 *   Offload flags (ol_flags) in mbuf format.
 */
static inline uint32_t
rxq_cq_to_ol_flags(uint32_t flags, int csum, int csum_l2tun)
{
	uint32_t ol_flags = 0;

	if (csum)
		ol_flags |=
			mlx4_transpose(flags,
				       MLX4_CQE_STATUS_IP_HDR_CSUM_OK,
				       PKT_RX_IP_CKSUM_GOOD) |
			mlx4_transpose(flags,
				       MLX4_CQE_STATUS_TCP_UDP_CSUM_OK,
				       PKT_RX_L4_CKSUM_GOOD);
	if ((flags & MLX4_CQE_L2_TUNNEL) && csum_l2tun)
		ol_flags |=
			mlx4_transpose(flags,
				       MLX4_CQE_L2_TUNNEL_IPOK,
				       PKT_RX_IP_CKSUM_GOOD) |
			mlx4_transpose(flags,
				       MLX4_CQE_L2_TUNNEL_L4_CSUM,
				       PKT_RX_L4_CKSUM_GOOD);
	return ol_flags;
}

/**
 * Extract checksum information from CQE flags.
 *
 * @param cqe
 *   Pointer to CQE structure.
 * @param csum
 *   Whether Rx checksums are enabled.
 * @param csum_l2tun
 *   Whether Rx L2 tunnel checksums are enabled.
 *
 * @return
 *   CQE checksum information.
 */
static inline uint32_t
mlx4_cqe_flags(volatile struct mlx4_cqe *cqe, int csum, int csum_l2tun)
{
	uint32_t flags = 0;

	/*
	 * The relevant bits are in different locations on their
	 * CQE fields therefore we can join them in one 32bit
	 * variable.
	 */
	if (csum)
		flags = (rte_be_to_cpu_32(cqe->status) &
			 MLX4_CQE_STATUS_IPV4_CSUM_OK);
	if (csum_l2tun)
		flags |= (rte_be_to_cpu_32(cqe->vlan_my_qpn) &
			  (MLX4_CQE_L2_TUNNEL |
			   MLX4_CQE_L2_TUNNEL_IPOK |
			   MLX4_CQE_L2_TUNNEL_L4_CSUM |
			   MLX4_CQE_L2_TUNNEL_IPV4));
	return flags;
}

/**
 * Poll one CQE from CQ.
 *
 * @param rxq
 *   Pointer to the receive queue structure.
 * @param[out] out
 *   Just polled CQE.
 *
 * @return
 *   Number of bytes of the CQE, 0 in case there is no completion.
 */
static unsigned int
mlx4_cq_poll_one(struct rxq *rxq, volatile struct mlx4_cqe **out)
{
	int ret = 0;
	volatile struct mlx4_cqe *cqe = NULL;
	struct mlx4_cq *cq = &rxq->mcq;

	cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cq->cons_index);
	if (!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
	    !!(cq->cons_index & cq->cqe_cnt))
		goto out;
	/*
	 * Make sure we read CQ entry contents after we've checked the
	 * ownership bit.
	 */
	rte_rmb();
	MLX4_ASSERT(!(cqe->owner_sr_opcode & MLX4_CQE_IS_SEND_MASK));
	MLX4_ASSERT((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) !=
		    MLX4_CQE_OPCODE_ERROR);
	ret = rte_be_to_cpu_32(cqe->byte_cnt);
	++cq->cons_index;
out:
	*out = cqe;
	return ret;
}

/**
 * DPDK callback for Rx with scattered packets support.
 *
 * @param dpdk_rxq
 *   Generic pointer to Rx queue structure.
 * @param[out] pkts
 *   Array to store received packets.
 * @param pkts_n
 *   Maximum number of packets in array.
 *
 * @return
 *   Number of packets successfully received (<= pkts_n).
 */
uint16_t
mlx4_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
	struct rxq *rxq = dpdk_rxq;
	const uint32_t wr_cnt = (1 << rxq->elts_n) - 1;
	const uint16_t sges_n = rxq->sges_n;
	struct rte_mbuf *pkt = NULL;
	struct rte_mbuf *seg = NULL;
	unsigned int i = 0;
	uint32_t rq_ci = rxq->rq_ci << sges_n;
	int len = 0;

	while (pkts_n) {
		volatile struct mlx4_cqe *cqe;
		uint32_t idx = rq_ci & wr_cnt;
		struct rte_mbuf *rep = (*rxq->elts)[idx];
		volatile struct mlx4_wqe_data_seg *scat = &(*rxq->wqes)[idx];

		/* Update the 'next' pointer of the previous segment. */
		if (pkt)
			seg->next = rep;
		seg = rep;
		rte_prefetch0(seg);
		rte_prefetch0(scat);
		rep = rte_mbuf_raw_alloc(rxq->mp);
		if (unlikely(rep == NULL)) {
			++rxq->stats.rx_nombuf;
			if (!pkt) {
				/*
				 * No buffers before we even started,
				 * bail out silently.
				 */
				break;
			}
			while (pkt != seg) {
				MLX4_ASSERT(pkt != (*rxq->elts)[idx]);
				rep = pkt->next;
				pkt->next = NULL;
				pkt->nb_segs = 1;
				rte_mbuf_raw_free(pkt);
				pkt = rep;
			}
			break;
		}
		if (!pkt) {
			/* Looking for the new packet. */
			len = mlx4_cq_poll_one(rxq, &cqe);
			if (!len) {
				rte_mbuf_raw_free(rep);
				break;
			}
			if (unlikely(len < 0)) {
				/* Rx error, packet is likely too large. */
				rte_mbuf_raw_free(rep);
				++rxq->stats.idropped;
				goto skip;
			}
			pkt = seg;
			MLX4_ASSERT(len >= (rxq->crc_present << 2));
			/* Update packet information. */
			pkt->packet_type =
				rxq_cq_to_pkt_type(cqe, rxq->l2tun_offload);
			pkt->ol_flags = PKT_RX_RSS_HASH;
			pkt->hash.rss = cqe->immed_rss_invalid;
			if (rxq->crc_present)
				len -= RTE_ETHER_CRC_LEN;
			pkt->pkt_len = len;
			if (rxq->csum | rxq->csum_l2tun) {
				uint32_t flags =
					mlx4_cqe_flags(cqe,
						       rxq->csum,
						       rxq->csum_l2tun);

				pkt->ol_flags =
					rxq_cq_to_ol_flags(flags,
							   rxq->csum,
							   rxq->csum_l2tun);
			}
		}
		rep->nb_segs = 1;
		rep->port = rxq->port_id;
		rep->data_len = seg->data_len;
		rep->data_off = seg->data_off;
		(*rxq->elts)[idx] = rep;
		/*
		 * Fill NIC descriptor with the new buffer. The lkey and size
		 * of the buffers are already known, only the buffer address
		 * changes.
		 */
		scat->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
		/* If there's only one MR, no need to replace LKey in WQE. */
		if (unlikely(mlx4_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
			scat->lkey = mlx4_rx_mb2mr(rxq, rep);
		if (len > seg->data_len) {
			len -= seg->data_len;
			++pkt->nb_segs;
			++rq_ci;
			continue;
		}
		/* The last segment. */
		seg->data_len = len;
		/* Increment bytes counter. */
		rxq->stats.ibytes += pkt->pkt_len;
		/* Return packet. */
		*(pkts++) = pkt;
		pkt = NULL;
		--pkts_n;
		++i;
skip:
		/* Align consumer index to the next stride. */
		rq_ci >>= sges_n;
		++rq_ci;
		rq_ci <<= sges_n;
	}
	if (unlikely(i == 0 && (rq_ci >> sges_n) == rxq->rq_ci))
		return 0;
	/* Update the consumer index. */
	rxq->rq_ci = rq_ci >> sges_n;
	rte_wmb();
	*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
	*rxq->mcq.set_ci_db =
		rte_cpu_to_be_32(rxq->mcq.cons_index & MLX4_CQ_DB_CI_MASK);
	/* Increment packets counter. */
	rxq->stats.ipackets += i;
	return i;
}

/**
 * Dummy DPDK callback for Tx.
 *
 * This function is used to temporarily replace the real callback during
 * unsafe control operations on the queue, or in case of error.
 *
 * @param dpdk_txq
 *   Generic pointer to Tx queue structure.
 * @param[in] pkts
 *   Packets to transmit.
 * @param pkts_n
 *   Number of packets in array.
 *
 * @return
 *   Number of packets successfully transmitted (<= pkts_n).
 */
uint16_t
mlx4_tx_burst_removed(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
	(void)dpdk_txq;
	(void)pkts;
	(void)pkts_n;
	rte_mb();
	return 0;
}

/**
 * Dummy DPDK callback for Rx.
 *
 * This function is used to temporarily replace the real callback during
 * unsafe control operations on the queue, or in case of error.
 *
 * @param dpdk_rxq
 *   Generic pointer to Rx queue structure.
 * @param[out] pkts
 *   Array to store received packets.
 * @param pkts_n
 *   Maximum number of packets in array.
 *
 * @return
 *   Number of packets successfully received (<= pkts_n).
 */
uint16_t
mlx4_rx_burst_removed(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
	(void)dpdk_rxq;
	(void)pkts;
	(void)pkts_n;
	rte_mb();
	return 0;
}