DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright 2017 6WIND S.A.
 * Copyright 2017 Mellanox Technologies, Ltd
 */

#ifndef RTE_PMD_MLX5_RXTX_VEC_SSE_H_
#define RTE_PMD_MLX5_RXTX_VEC_SSE_H_

#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <smmintrin.h>

#include <rte_mbuf.h>
#include <rte_mempool.h>
#include <rte_prefetch.h>

#include <mlx5_prm.h>

#include "mlx5_defs.h"
#include "mlx5.h"
#include "mlx5_utils.h"
#include "mlx5_rxtx.h"
#include "mlx5_rxtx_vec.h"
#include "mlx5_autoconf.h"

#ifndef __INTEL_COMPILER
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif

/**
 * Store free buffers to RX SW ring.
 *
 * @param elts
 *   Pointer to SW ring to be filled.
 * @param pkts
 *   Pointer to array of packets to be stored.
 * @param pkts_n
 *   Number of packets to be stored.
 */
static inline void
rxq_copy_mbuf_v(struct rte_mbuf **elts, struct rte_mbuf **pkts, uint16_t n)
{
	unsigned int pos;
	uint16_t p = n & -2;

	for (pos = 0; pos < p; pos += 2) {
		__m128i mbp;

		mbp = _mm_loadu_si128((__m128i *)&elts[pos]);
		_mm_storeu_si128((__m128i *)&pkts[pos], mbp);
	}
	if (n & 1)
		pkts[pos] = elts[pos];
}

/**
 * Decompress a compressed completion and fill in mbufs in RX SW ring with data
 * extracted from the title completion descriptor.
 *
 * @param rxq
 *   Pointer to RX queue structure.
 * @param cq
 *   Pointer to completion array having a compressed completion at first.
 * @param elts
 *   Pointer to SW ring to be filled. The first mbuf has to be pre-built from
 *   the title completion descriptor to be copied to the rest of mbufs.
 *
 * @return
 *   Number of mini-CQEs successfully decompressed.
 */
static inline uint16_t
rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
		    struct rte_mbuf **elts)
{
	volatile struct mlx5_mini_cqe8 *mcq = (void *)(cq + 1);
	struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
	unsigned int pos;
	unsigned int i;
	unsigned int inv = 0;
	/* Mask to shuffle from extracted mini CQE to mbuf. */
	const __m128i shuf_mask1 =
		_mm_set_epi8(0,  1,  2,  3, /* rss, bswap32 */
			    -1, -1,         /* skip vlan_tci */
			     6,  7,         /* data_len, bswap16 */
			    -1, -1,  6,  7, /* pkt_len, bswap16 */
			    -1, -1, -1, -1  /* skip packet_type */);
	const __m128i shuf_mask2 =
		_mm_set_epi8(8,  9, 10, 11, /* rss, bswap32 */
			    -1, -1,         /* skip vlan_tci */
			    14, 15,         /* data_len, bswap16 */
			    -1, -1, 14, 15, /* pkt_len, bswap16 */
			    -1, -1, -1, -1  /* skip packet_type */);
	/* Restore the compressed count. Must be 16 bits. */
	const uint16_t mcqe_n = t_pkt->data_len +
				(rxq->crc_present * RTE_ETHER_CRC_LEN);
	const __m128i rearm =
		_mm_loadu_si128((__m128i *)&t_pkt->rearm_data);
	const __m128i rxdf =
		_mm_loadu_si128((__m128i *)&t_pkt->rx_descriptor_fields1);
	const __m128i crc_adj =
		_mm_set_epi16(0, 0, 0,
			      rxq->crc_present * RTE_ETHER_CRC_LEN,
			      0,
			      rxq->crc_present * RTE_ETHER_CRC_LEN,
			      0, 0);
	__m128i ol_flags = _mm_setzero_si128();
	__m128i ol_flags_mask = _mm_setzero_si128();
#ifdef MLX5_PMD_SOFT_COUNTERS
	const __m128i zero = _mm_setzero_si128();
	const __m128i ones = _mm_cmpeq_epi32(zero, zero);
	uint32_t rcvd_byte = 0;
	/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
	const __m128i len_shuf_mask =
		_mm_set_epi8(-1, -1, -1, -1,
			     -1, -1, -1, -1,
			     14, 15,  6,  7,
			     10, 11,  2,  3);
#endif
	/*
	 * A. load mCQEs into a 128bit register.
	 * B. store rearm data to mbuf.
	 * C. combine data from mCQEs with rx_descriptor_fields1.
	 * D. store rx_descriptor_fields1.
	 * E. store flow tag (rte_flow mark).
	 */
	for (pos = 0; pos < mcqe_n; ) {
		__m128i mcqe1, mcqe2;
		__m128i rxdf1, rxdf2;
#ifdef MLX5_PMD_SOFT_COUNTERS
		__m128i byte_cnt, invalid_mask;
#endif

		for (i = 0; i < MLX5_VPMD_DESCS_PER_LOOP; ++i)
			if (likely(pos + i < mcqe_n))
				rte_prefetch0((void *)(cq + pos + i));
		/* A.1 load mCQEs into a 128bit register. */
		mcqe1 = _mm_loadu_si128((__m128i *)&mcq[pos % 8]);
		mcqe2 = _mm_loadu_si128((__m128i *)&mcq[pos % 8 + 2]);
		/* B.1 store rearm data to mbuf. */
		_mm_storeu_si128((__m128i *)&elts[pos]->rearm_data, rearm);
		_mm_storeu_si128((__m128i *)&elts[pos + 1]->rearm_data, rearm);
		/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
		rxdf1 = _mm_shuffle_epi8(mcqe1, shuf_mask1);
		rxdf2 = _mm_shuffle_epi8(mcqe1, shuf_mask2);
		rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
		rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
		rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
		rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
		/* D.1 store rx_descriptor_fields1. */
		_mm_storeu_si128((__m128i *)
				  &elts[pos]->rx_descriptor_fields1,
				 rxdf1);
		_mm_storeu_si128((__m128i *)
				  &elts[pos + 1]->rx_descriptor_fields1,
				 rxdf2);
		/* B.1 store rearm data to mbuf. */
		_mm_storeu_si128((__m128i *)&elts[pos + 2]->rearm_data, rearm);
		_mm_storeu_si128((__m128i *)&elts[pos + 3]->rearm_data, rearm);
		/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
		rxdf1 = _mm_shuffle_epi8(mcqe2, shuf_mask1);
		rxdf2 = _mm_shuffle_epi8(mcqe2, shuf_mask2);
		rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
		rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
		rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
		rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
		/* D.1 store rx_descriptor_fields1. */
		_mm_storeu_si128((__m128i *)
				  &elts[pos + 2]->rx_descriptor_fields1,
				 rxdf1);
		_mm_storeu_si128((__m128i *)
				  &elts[pos + 3]->rx_descriptor_fields1,
				 rxdf2);
#ifdef MLX5_PMD_SOFT_COUNTERS
		invalid_mask = _mm_set_epi64x(0,
					      (mcqe_n - pos) *
					      sizeof(uint16_t) * 8);
		invalid_mask = _mm_sll_epi64(ones, invalid_mask);
		byte_cnt = _mm_blend_epi16(_mm_srli_si128(mcqe1, 4),
					   mcqe2, 0xcc);
		byte_cnt = _mm_shuffle_epi8(byte_cnt, len_shuf_mask);
		byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
		byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
		rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
#endif
		if (rxq->mark) {
			if (rxq->mcqe_format !=
				MLX5_CQE_RESP_FORMAT_FTAG_STRIDX) {
				const uint32_t flow_tag = t_pkt->hash.fdir.hi;

				/* E.1 store flow tag (rte_flow mark). */
				elts[pos]->hash.fdir.hi = flow_tag;
				elts[pos + 1]->hash.fdir.hi = flow_tag;
				elts[pos + 2]->hash.fdir.hi = flow_tag;
				elts[pos + 3]->hash.fdir.hi = flow_tag;
			} else {
				const __m128i flow_mark_adj =
					_mm_set_epi32(-1, -1, -1, -1);
				const __m128i flow_mark_shuf =
					_mm_set_epi8(-1,  1,  0,  4,
						     -1,  9,  8, 12,
						     -1, -1, -1, -1,
						     -1, -1, -1, -1);
				const __m128i ft_mask =
					_mm_set1_epi32(0xffffff00);
				const __m128i fdir_flags =
					_mm_set1_epi32(PKT_RX_FDIR);
				const __m128i fdir_all_flags =
					_mm_set1_epi32(PKT_RX_FDIR |
						       PKT_RX_FDIR_ID);
				__m128i fdir_id_flags =
					_mm_set1_epi32(PKT_RX_FDIR_ID);

				/* Extract flow_tag field. */
				__m128i ftag0 =
					_mm_shuffle_epi8(mcqe1, flow_mark_shuf);
				__m128i ftag1 =
					_mm_shuffle_epi8(mcqe2, flow_mark_shuf);
				__m128i ftag =
					_mm_unpackhi_epi64(ftag0, ftag1);
				__m128i invalid_mask =
					_mm_cmpeq_epi32(ftag, zero);

				ol_flags_mask = _mm_or_si128(ol_flags_mask,
							     fdir_all_flags);
				/* Set PKT_RX_FDIR if flow tag is non-zero. */
				ol_flags = _mm_or_si128(ol_flags,
					_mm_andnot_si128(invalid_mask,
							 fdir_flags));
				/* Mask out invalid entries. */
				fdir_id_flags = _mm_andnot_si128(invalid_mask,
								 fdir_id_flags);
				/* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
				ol_flags = _mm_or_si128(ol_flags,
					_mm_andnot_si128(_mm_cmpeq_epi32(ftag,
							 ft_mask),
					fdir_id_flags));
				ftag = _mm_add_epi32(ftag, flow_mark_adj);
				elts[pos]->hash.fdir.hi =
						_mm_extract_epi32(ftag, 0);
				elts[pos + 1]->hash.fdir.hi =
						_mm_extract_epi32(ftag, 1);
				elts[pos + 2]->hash.fdir.hi =
						_mm_extract_epi32(ftag, 2);
				elts[pos + 3]->hash.fdir.hi =
						_mm_extract_epi32(ftag, 3);
			}
		}
		if (unlikely(rxq->mcqe_format != MLX5_CQE_RESP_FORMAT_HASH)) {
			if (rxq->mcqe_format ==
			    MLX5_CQE_RESP_FORMAT_L34H_STRIDX) {
				const uint8_t pkt_info =
					(cq->pkt_info & 0x3) << 6;
				const uint8_t pkt_hdr0 =
					_mm_extract_epi8(mcqe1, 0);
				const uint8_t pkt_hdr1 =
					_mm_extract_epi8(mcqe1, 8);
				const uint8_t pkt_hdr2 =
					_mm_extract_epi8(mcqe2, 0);
				const uint8_t pkt_hdr3 =
					_mm_extract_epi8(mcqe2, 8);
				const __m128i vlan_mask =
					_mm_set1_epi32(PKT_RX_VLAN |
						       PKT_RX_VLAN_STRIPPED);
				const __m128i cv_mask =
					_mm_set1_epi32(MLX5_CQE_VLAN_STRIPPED);
				const __m128i pkt_cv =
					_mm_set_epi32(pkt_hdr0 & 0x1,
						      pkt_hdr1 & 0x1,
						      pkt_hdr2 & 0x1,
						      pkt_hdr3 & 0x1);

				ol_flags_mask = _mm_or_si128(ol_flags_mask,
							     vlan_mask);
				ol_flags = _mm_or_si128(ol_flags,
					_mm_and_si128(_mm_cmpeq_epi32(pkt_cv,
					cv_mask), vlan_mask));
				elts[pos]->packet_type =
					mlx5_ptype_table[(pkt_hdr0 >> 2) |
							 pkt_info];
				elts[pos + 1]->packet_type =
					mlx5_ptype_table[(pkt_hdr1 >> 2) |
							 pkt_info];
				elts[pos + 2]->packet_type =
					mlx5_ptype_table[(pkt_hdr2 >> 2) |
							 pkt_info];
				elts[pos + 3]->packet_type =
					mlx5_ptype_table[(pkt_hdr3 >> 2) |
							 pkt_info];
				if (rxq->tunnel) {
					elts[pos]->packet_type |=
						!!(((pkt_hdr0 >> 2) |
						pkt_info) & (1 << 6));
					elts[pos + 1]->packet_type |=
						!!(((pkt_hdr1 >> 2) |
						pkt_info) & (1 << 6));
					elts[pos + 2]->packet_type |=
						!!(((pkt_hdr2 >> 2) |
						pkt_info) & (1 << 6));
					elts[pos + 3]->packet_type |=
						!!(((pkt_hdr3 >> 2) |
						pkt_info) & (1 << 6));
				}
			}
			const __m128i hash_flags =
				_mm_set1_epi32(PKT_RX_RSS_HASH);
			const __m128i rearm_flags =
				_mm_set1_epi32((uint32_t)t_pkt->ol_flags);

			ol_flags_mask = _mm_or_si128(ol_flags_mask, hash_flags);
			ol_flags = _mm_or_si128(ol_flags,
				_mm_andnot_si128(ol_flags_mask, rearm_flags));
			elts[pos]->ol_flags =
				_mm_extract_epi32(ol_flags, 0);
			elts[pos + 1]->ol_flags =
				_mm_extract_epi32(ol_flags, 1);
			elts[pos + 2]->ol_flags =
				_mm_extract_epi32(ol_flags, 2);
			elts[pos + 3]->ol_flags =
				_mm_extract_epi32(ol_flags, 3);
			elts[pos]->hash.rss = 0;
			elts[pos + 1]->hash.rss = 0;
			elts[pos + 2]->hash.rss = 0;
			elts[pos + 3]->hash.rss = 0;
		}
		if (rxq->dynf_meta) {
			int32_t offs = rxq->flow_meta_offset;
			const uint32_t meta =
				*RTE_MBUF_DYNFIELD(t_pkt, offs, uint32_t *);

			/* Check if title packet has valid metadata. */
			if (meta) {
				MLX5_ASSERT(t_pkt->ol_flags &
					    rxq->flow_meta_mask);
				*RTE_MBUF_DYNFIELD(elts[pos], offs,
							uint32_t *) = meta;
				*RTE_MBUF_DYNFIELD(elts[pos + 1], offs,
							uint32_t *) = meta;
				*RTE_MBUF_DYNFIELD(elts[pos + 2], offs,
							uint32_t *) = meta;
				*RTE_MBUF_DYNFIELD(elts[pos + 3], offs,
							uint32_t *) = meta;
			}
		}
		pos += MLX5_VPMD_DESCS_PER_LOOP;
		/* Move to next CQE and invalidate consumed CQEs. */
		if (!(pos & 0x7) && pos < mcqe_n) {
			if (pos + 8 < mcqe_n)
				rte_prefetch0((void *)(cq + pos + 8));
			mcq = (void *)(cq + pos);
			for (i = 0; i < 8; ++i)
				cq[inv++].op_own = MLX5_CQE_INVALIDATE;
		}
	}
	/* Invalidate the rest of CQEs. */
	for (; inv < mcqe_n; ++inv)
		cq[inv].op_own = MLX5_CQE_INVALIDATE;
#ifdef MLX5_PMD_SOFT_COUNTERS
	rxq->stats.ipackets += mcqe_n;
	rxq->stats.ibytes += rcvd_byte;
#endif
	return mcqe_n;
}

/**
 * Calculate packet type and offload flag for mbuf and store it.
 *
 * @param rxq
 *   Pointer to RX queue structure.
 * @param cqes[4]
 *   Array of four 16bytes completions extracted from the original completion
 *   descriptor.
 * @param op_err
 *   Opcode vector having responder error status. Each field is 4B.
 * @param pkts
 *   Pointer to array of packets to be filled.
 */
static inline void
rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq, __m128i cqes[4],
			 __m128i op_err, struct rte_mbuf **pkts)
{
	__m128i pinfo0, pinfo1;
	__m128i pinfo, ptype;
	__m128i ol_flags = _mm_set1_epi32(rxq->rss_hash * PKT_RX_RSS_HASH |
					  rxq->hw_timestamp * rxq->timestamp_rx_flag);
	__m128i cv_flags;
	const __m128i zero = _mm_setzero_si128();
	const __m128i ptype_mask = _mm_set1_epi32(0xfd06);
	const __m128i ptype_ol_mask = _mm_set1_epi32(0x106);
	const __m128i pinfo_mask = _mm_set1_epi32(0x3);
	const __m128i cv_flag_sel =
		_mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
			     (uint8_t)((PKT_RX_IP_CKSUM_GOOD |
					PKT_RX_L4_CKSUM_GOOD) >> 1),
			     0,
			     (uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1),
			     0,
			     (uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1),
			     (uint8_t)(PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED),
			     0);
	const __m128i cv_mask =
		_mm_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
			      PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
	const __m128i mbuf_init =
		_mm_load_si128((__m128i *)&rxq->mbuf_initializer);
	__m128i rearm0, rearm1, rearm2, rearm3;
	uint8_t pt_idx0, pt_idx1, pt_idx2, pt_idx3;

	/* Extract pkt_info field. */
	pinfo0 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
	pinfo1 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
	pinfo = _mm_unpacklo_epi64(pinfo0, pinfo1);
	/* Extract hdr_type_etc field. */
	pinfo0 = _mm_unpackhi_epi32(cqes[0], cqes[1]);
	pinfo1 = _mm_unpackhi_epi32(cqes[2], cqes[3]);
	ptype = _mm_unpacklo_epi64(pinfo0, pinfo1);
	if (rxq->mark) {
		const __m128i pinfo_ft_mask = _mm_set1_epi32(0xffffff00);
		const __m128i fdir_flags = _mm_set1_epi32(PKT_RX_FDIR);
		__m128i fdir_id_flags = _mm_set1_epi32(PKT_RX_FDIR_ID);
		__m128i flow_tag, invalid_mask;

		flow_tag = _mm_and_si128(pinfo, pinfo_ft_mask);
		/* Check if flow tag is non-zero then set PKT_RX_FDIR. */
		invalid_mask = _mm_cmpeq_epi32(flow_tag, zero);
		ol_flags = _mm_or_si128(ol_flags,
					_mm_andnot_si128(invalid_mask,
							 fdir_flags));
		/* Mask out invalid entries. */
		fdir_id_flags = _mm_andnot_si128(invalid_mask, fdir_id_flags);
		/* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
		ol_flags = _mm_or_si128(ol_flags,
					_mm_andnot_si128(
						_mm_cmpeq_epi32(flow_tag,
								pinfo_ft_mask),
						fdir_id_flags));
	}
	/*
	 * Merge the two fields to generate the following:
	 * bit[1]     = l3_ok
	 * bit[2]     = l4_ok
	 * bit[8]     = cv
	 * bit[11:10] = l3_hdr_type
	 * bit[14:12] = l4_hdr_type
	 * bit[15]    = ip_frag
	 * bit[16]    = tunneled
	 * bit[17]    = outer_l3_type
	 */
	ptype = _mm_and_si128(ptype, ptype_mask);
	pinfo = _mm_and_si128(pinfo, pinfo_mask);
	pinfo = _mm_slli_epi32(pinfo, 16);
	/* Make pinfo has merged fields for ol_flags calculation. */
	pinfo = _mm_or_si128(ptype, pinfo);
	ptype = _mm_srli_epi32(pinfo, 10);
	ptype = _mm_packs_epi32(ptype, zero);
	/* Errored packets will have RTE_PTYPE_ALL_MASK. */
	op_err = _mm_srli_epi16(op_err, 8);
	ptype = _mm_or_si128(ptype, op_err);
	pt_idx0 = _mm_extract_epi8(ptype, 0);
	pt_idx1 = _mm_extract_epi8(ptype, 2);
	pt_idx2 = _mm_extract_epi8(ptype, 4);
	pt_idx3 = _mm_extract_epi8(ptype, 6);
	pkts[0]->packet_type = mlx5_ptype_table[pt_idx0] |
			       !!(pt_idx0 & (1 << 6)) * rxq->tunnel;
	pkts[1]->packet_type = mlx5_ptype_table[pt_idx1] |
			       !!(pt_idx1 & (1 << 6)) * rxq->tunnel;
	pkts[2]->packet_type = mlx5_ptype_table[pt_idx2] |
			       !!(pt_idx2 & (1 << 6)) * rxq->tunnel;
	pkts[3]->packet_type = mlx5_ptype_table[pt_idx3] |
			       !!(pt_idx3 & (1 << 6)) * rxq->tunnel;
	/* Fill flags for checksum and VLAN. */
	pinfo = _mm_and_si128(pinfo, ptype_ol_mask);
	pinfo = _mm_shuffle_epi8(cv_flag_sel, pinfo);
	/* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
	cv_flags = _mm_slli_epi32(pinfo, 9);
	cv_flags = _mm_or_si128(pinfo, cv_flags);
	/* Move back flags to start from byte[0]. */
	cv_flags = _mm_srli_epi32(cv_flags, 8);
	/* Mask out garbage bits. */
	cv_flags = _mm_and_si128(cv_flags, cv_mask);
	/* Merge to ol_flags. */
	ol_flags = _mm_or_si128(ol_flags, cv_flags);
	/* Merge mbuf_init and ol_flags. */
	rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 8), 0x30);
	rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 4), 0x30);
	rearm2 = _mm_blend_epi16(mbuf_init, ol_flags, 0x30);
	rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(ol_flags, 4), 0x30);
	/* Write 8B rearm_data and 8B ol_flags. */
	_mm_store_si128((__m128i *)&pkts[0]->rearm_data, rearm0);
	_mm_store_si128((__m128i *)&pkts[1]->rearm_data, rearm1);
	_mm_store_si128((__m128i *)&pkts[2]->rearm_data, rearm2);
	_mm_store_si128((__m128i *)&pkts[3]->rearm_data, rearm3);
}

/**
 * Process a non-compressed completion and fill in mbufs in RX SW ring
 * with data extracted from the title completion descriptor.
 *
 * @param rxq
 *   Pointer to RX queue structure.
 * @param cq
 *   Pointer to completion array having a non-compressed completion at first.
 * @param elts
 *   Pointer to SW ring to be filled. The first mbuf has to be pre-built from
 *   the title completion descriptor to be copied to the rest of mbufs.
 * @param[out] pkts
 *   Array to store received packets.
 * @param pkts_n
 *   Maximum number of packets in array.
 * @param[out] err
 *   Pointer to a flag. Set non-zero value if pkts array has at least one error
 *   packet to handle.
 * @param[out] comp
 *   Pointer to a index. Set it to the first compressed completion if any.
 *
 * @return
 *   Number of CQEs successfully processed.
 */
static inline uint16_t
rxq_cq_process_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
		 struct rte_mbuf **elts, struct rte_mbuf **pkts,
		 uint16_t pkts_n, uint64_t *err, uint64_t *comp)
{
	const uint16_t q_n = 1 << rxq->cqe_n;
	const uint16_t q_mask = q_n - 1;
	unsigned int pos;
	uint64_t n = 0;
	uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
	uint16_t nocmp_n = 0;
	unsigned int ownership = !!(rxq->cq_ci & (q_mask + 1));
	const __m128i owner_check =	_mm_set1_epi64x(0x0100000001000000LL);
	const __m128i opcode_check = _mm_set1_epi64x(0xf0000000f0000000LL);
	const __m128i format_check = _mm_set1_epi64x(0x0c0000000c000000LL);
	const __m128i resp_err_check = _mm_set1_epi64x(0xe0000000e0000000LL);
#ifdef MLX5_PMD_SOFT_COUNTERS
	uint32_t rcvd_byte = 0;
	/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
	const __m128i len_shuf_mask =
		_mm_set_epi8(-1, -1, -1, -1,
			     -1, -1, -1, -1,
			     12, 13,  8,  9,
			      4,  5,  0,  1);
#endif
	/* Mask to shuffle from extracted CQE to mbuf. */
	const __m128i shuf_mask =
		_mm_set_epi8(-1,  3,  2,  1, /* fdir.hi */
			     12, 13, 14, 15, /* rss, bswap32 */
			     10, 11,         /* vlan_tci, bswap16 */
			      4,  5,         /* data_len, bswap16 */
			     -1, -1,         /* zero out 2nd half of pkt_len */
			      4,  5          /* pkt_len, bswap16 */);
	/* Mask to blend from the last Qword to the first DQword. */
	const __m128i blend_mask =
		_mm_set_epi8(-1, -1, -1, -1,
			     -1, -1, -1, -1,
			      0,  0,  0,  0,
			      0,  0,  0, -1);
	const __m128i zero = _mm_setzero_si128();
	const __m128i ones = _mm_cmpeq_epi32(zero, zero);
	const __m128i crc_adj =
		_mm_set_epi16(0, 0, 0, 0, 0,
			      rxq->crc_present * RTE_ETHER_CRC_LEN,
			      0,
			      rxq->crc_present * RTE_ETHER_CRC_LEN);
	const __m128i flow_mark_adj = _mm_set_epi32(rxq->mark * (-1), 0, 0, 0);
	/*
	 * A. load first Qword (8bytes) in one loop.
	 * B. copy 4 mbuf pointers from elts ring to returing pkts.
	 * C. load remained CQE data and extract necessary fields.
	 *    Final 16bytes cqes[] extracted from original 64bytes CQE has the
	 *    following structure:
	 *        struct {
	 *          uint8_t  pkt_info;
	 *          uint8_t  flow_tag[3];
	 *          uint16_t byte_cnt;
	 *          uint8_t  rsvd4;
	 *          uint8_t  op_own;
	 *          uint16_t hdr_type_etc;
	 *          uint16_t vlan_info;
	 *          uint32_t rx_has_res;
	 *        } c;
	 * D. fill in mbuf.
	 * E. get valid CQEs.
	 * F. find compressed CQE.
	 */
	for (pos = 0;
	     pos < pkts_n;
	     pos += MLX5_VPMD_DESCS_PER_LOOP) {
		__m128i cqes[MLX5_VPMD_DESCS_PER_LOOP];
		__m128i cqe_tmp1, cqe_tmp2;
		__m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
		__m128i op_own, op_own_tmp1, op_own_tmp2;
		__m128i opcode, owner_mask, invalid_mask;
		__m128i comp_mask;
		__m128i mask;
#ifdef MLX5_PMD_SOFT_COUNTERS
		__m128i byte_cnt;
#endif
		__m128i mbp1, mbp2;
		__m128i p = _mm_set_epi16(0, 0, 0, 0, 3, 2, 1, 0);
		unsigned int p1, p2, p3;

		/* Prefetch next 4 CQEs. */
		if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP]);
			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 1]);
			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 2]);
			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 3]);
		}
		/* A.0 do not cross the end of CQ. */
		mask = _mm_set_epi64x(0, (pkts_n - pos) * sizeof(uint16_t) * 8);
		mask = _mm_sll_epi64(ones, mask);
		p = _mm_andnot_si128(mask, p);
		/* A.1 load cqes. */
		p3 = _mm_extract_epi16(p, 3);
		cqes[3] = _mm_loadl_epi64((__m128i *)
					   &cq[pos + p3].sop_drop_qpn);
		rte_compiler_barrier();
		p2 = _mm_extract_epi16(p, 2);
		cqes[2] = _mm_loadl_epi64((__m128i *)
					   &cq[pos + p2].sop_drop_qpn);
		rte_compiler_barrier();
		/* B.1 load mbuf pointers. */
		mbp1 = _mm_loadu_si128((__m128i *)&elts[pos]);
		mbp2 = _mm_loadu_si128((__m128i *)&elts[pos + 2]);
		/* A.1 load a block having op_own. */
		p1 = _mm_extract_epi16(p, 1);
		cqes[1] = _mm_loadl_epi64((__m128i *)
					   &cq[pos + p1].sop_drop_qpn);
		rte_compiler_barrier();
		cqes[0] = _mm_loadl_epi64((__m128i *)
					   &cq[pos].sop_drop_qpn);
		/* B.2 copy mbuf pointers. */
		_mm_storeu_si128((__m128i *)&pkts[pos], mbp1);
		_mm_storeu_si128((__m128i *)&pkts[pos + 2], mbp2);
		rte_io_rmb();
		/* C.1 load remained CQE data and extract necessary fields. */
		cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p3]);
		cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos + p2]);
		cqes[3] = _mm_blendv_epi8(cqes[3], cqe_tmp2, blend_mask);
		cqes[2] = _mm_blendv_epi8(cqes[2], cqe_tmp1, blend_mask);
		cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p3].csum);
		cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos + p2].csum);
		cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x30);
		cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x30);
		cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p3].rsvd4[2]);
		cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos + p2].rsvd4[2]);
		cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x04);
		cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x04);
		/* C.2 generate final structure for mbuf with swapping bytes. */
		pkt_mb3 = _mm_shuffle_epi8(cqes[3], shuf_mask);
		pkt_mb2 = _mm_shuffle_epi8(cqes[2], shuf_mask);
		/* C.3 adjust CRC length. */
		pkt_mb3 = _mm_sub_epi16(pkt_mb3, crc_adj);
		pkt_mb2 = _mm_sub_epi16(pkt_mb2, crc_adj);
		/* C.4 adjust flow mark. */
		pkt_mb3 = _mm_add_epi32(pkt_mb3, flow_mark_adj);
		pkt_mb2 = _mm_add_epi32(pkt_mb2, flow_mark_adj);
		/* D.1 fill in mbuf - rx_descriptor_fields1. */
		_mm_storeu_si128((void *)&pkts[pos + 3]->pkt_len, pkt_mb3);
		_mm_storeu_si128((void *)&pkts[pos + 2]->pkt_len, pkt_mb2);
		/* E.1 extract op_own field. */
		op_own_tmp2 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
		/* C.1 load remained CQE data and extract necessary fields. */
		cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p1]);
		cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos]);
		cqes[1] = _mm_blendv_epi8(cqes[1], cqe_tmp2, blend_mask);
		cqes[0] = _mm_blendv_epi8(cqes[0], cqe_tmp1, blend_mask);
		cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p1].csum);
		cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos].csum);
		cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x30);
		cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x30);
		cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p1].rsvd4[2]);
		cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos].rsvd4[2]);
		cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x04);
		cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x04);
		/* C.2 generate final structure for mbuf with swapping bytes. */
		pkt_mb1 = _mm_shuffle_epi8(cqes[1], shuf_mask);
		pkt_mb0 = _mm_shuffle_epi8(cqes[0], shuf_mask);
		/* C.3 adjust CRC length. */
		pkt_mb1 = _mm_sub_epi16(pkt_mb1, crc_adj);
		pkt_mb0 = _mm_sub_epi16(pkt_mb0, crc_adj);
		/* C.4 adjust flow mark. */
		pkt_mb1 = _mm_add_epi32(pkt_mb1, flow_mark_adj);
		pkt_mb0 = _mm_add_epi32(pkt_mb0, flow_mark_adj);
		/* E.1 extract op_own byte. */
		op_own_tmp1 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
		op_own = _mm_unpackhi_epi64(op_own_tmp1, op_own_tmp2);
		/* D.1 fill in mbuf - rx_descriptor_fields1. */
		_mm_storeu_si128((void *)&pkts[pos + 1]->pkt_len, pkt_mb1);
		_mm_storeu_si128((void *)&pkts[pos]->pkt_len, pkt_mb0);
		/* E.2 flip owner bit to mark CQEs from last round. */
		owner_mask = _mm_and_si128(op_own, owner_check);
		if (ownership)
			owner_mask = _mm_xor_si128(owner_mask, owner_check);
		owner_mask = _mm_cmpeq_epi32(owner_mask, owner_check);
		owner_mask = _mm_packs_epi32(owner_mask, zero);
		/* E.3 get mask for invalidated CQEs. */
		opcode = _mm_and_si128(op_own, opcode_check);
		invalid_mask = _mm_cmpeq_epi32(opcode_check, opcode);
		invalid_mask = _mm_packs_epi32(invalid_mask, zero);
		/* E.4 mask out beyond boundary. */
		invalid_mask = _mm_or_si128(invalid_mask, mask);
		/* E.5 merge invalid_mask with invalid owner. */
		invalid_mask = _mm_or_si128(invalid_mask, owner_mask);
		/* F.1 find compressed CQE format. */
		comp_mask = _mm_and_si128(op_own, format_check);
		comp_mask = _mm_cmpeq_epi32(comp_mask, format_check);
		comp_mask = _mm_packs_epi32(comp_mask, zero);
		/* F.2 mask out invalid entries. */
		comp_mask = _mm_andnot_si128(invalid_mask, comp_mask);
		comp_idx = _mm_cvtsi128_si64(comp_mask);
		/* F.3 get the first compressed CQE. */
		comp_idx = comp_idx ?
				__builtin_ctzll(comp_idx) /
					(sizeof(uint16_t) * 8) :
				MLX5_VPMD_DESCS_PER_LOOP;
		/* E.6 mask out entries after the compressed CQE. */
		mask = _mm_set_epi64x(0, comp_idx * sizeof(uint16_t) * 8);
		mask = _mm_sll_epi64(ones, mask);
		invalid_mask = _mm_or_si128(invalid_mask, mask);
		/* E.7 count non-compressed valid CQEs. */
		n = _mm_cvtsi128_si64(invalid_mask);
		n = n ? __builtin_ctzll(n) / (sizeof(uint16_t) * 8) :
			MLX5_VPMD_DESCS_PER_LOOP;
		nocmp_n += n;
		/* D.2 get the final invalid mask. */
		mask = _mm_set_epi64x(0, n * sizeof(uint16_t) * 8);
		mask = _mm_sll_epi64(ones, mask);
		invalid_mask = _mm_or_si128(invalid_mask, mask);
		/* D.3 check error in opcode. */
		opcode = _mm_cmpeq_epi32(resp_err_check, opcode);
		opcode = _mm_packs_epi32(opcode, zero);
		opcode = _mm_andnot_si128(invalid_mask, opcode);
		/* D.4 mark if any error is set */
		*err |= _mm_cvtsi128_si64(opcode);
		/* D.5 fill in mbuf - rearm_data and packet_type. */
		rxq_cq_to_ptype_oflags_v(rxq, cqes, opcode, &pkts[pos]);
		if (rxq->hw_timestamp) {
			int offset = rxq->timestamp_offset;
			if (rxq->rt_timestamp) {
				struct mlx5_dev_ctx_shared *sh = rxq->sh;
				uint64_t ts;

				ts = rte_be_to_cpu_64(cq[pos].timestamp);
				mlx5_timestamp_set(pkts[pos], offset,
					mlx5_txpp_convert_rx_ts(sh, ts));
				ts = rte_be_to_cpu_64(cq[pos + p1].timestamp);
				mlx5_timestamp_set(pkts[pos + 1], offset,
					mlx5_txpp_convert_rx_ts(sh, ts));
				ts = rte_be_to_cpu_64(cq[pos + p2].timestamp);
				mlx5_timestamp_set(pkts[pos + 2], offset,
					mlx5_txpp_convert_rx_ts(sh, ts));
				ts = rte_be_to_cpu_64(cq[pos + p3].timestamp);
				mlx5_timestamp_set(pkts[pos + 3], offset,
					mlx5_txpp_convert_rx_ts(sh, ts));
			} else {
				mlx5_timestamp_set(pkts[pos], offset,
					rte_be_to_cpu_64(cq[pos].timestamp));
				mlx5_timestamp_set(pkts[pos + 1], offset,
					rte_be_to_cpu_64(cq[pos + p1].timestamp));
				mlx5_timestamp_set(pkts[pos + 2], offset,
					rte_be_to_cpu_64(cq[pos + p2].timestamp));
				mlx5_timestamp_set(pkts[pos + 3], offset,
					rte_be_to_cpu_64(cq[pos + p3].timestamp));
			}
		}
		if (rxq->dynf_meta) {
			/* This code is subject for futher optimization. */
			int32_t offs = rxq->flow_meta_offset;

			*RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *) =
				cq[pos].flow_table_metadata;
			*RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *) =
				cq[pos + p1].flow_table_metadata;
			*RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *) =
				cq[pos + p2].flow_table_metadata;
			*RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *) =
				cq[pos + p3].flow_table_metadata;
			if (*RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *))
				pkts[pos]->ol_flags |= rxq->flow_meta_mask;
			if (*RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *))
				pkts[pos + 1]->ol_flags |= rxq->flow_meta_mask;
			if (*RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *))
				pkts[pos + 2]->ol_flags |= rxq->flow_meta_mask;
			if (*RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *))
				pkts[pos + 3]->ol_flags |= rxq->flow_meta_mask;
		}
#ifdef MLX5_PMD_SOFT_COUNTERS
		/* Add up received bytes count. */
		byte_cnt = _mm_shuffle_epi8(op_own, len_shuf_mask);
		byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
		byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
		rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
#endif
		/*
		 * Break the loop unless more valid CQE is expected, or if
		 * there's a compressed CQE.
		 */
		if (n != MLX5_VPMD_DESCS_PER_LOOP)
			break;
	}
#ifdef MLX5_PMD_SOFT_COUNTERS
	rxq->stats.ipackets += nocmp_n;
	rxq->stats.ibytes += rcvd_byte;
#endif
	if (comp_idx == n)
		*comp = comp_idx;
	return nocmp_n;
}

#endif /* RTE_PMD_MLX5_RXTX_VEC_SSE_H_ */