DPDK logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
/* SPDX-License-Identifier: BSD-3-Clause
 *
 * Copyright(c) 2019-2020 Xilinx, Inc.
 * Copyright(c) 2016-2019 Solarflare Communications Inc.
 *
 * This software was jointly developed between OKTET Labs (under contract
 * for Solarflare) and Solarflare Communications, Inc.
 */

#include <stdbool.h>

#include <rte_mbuf.h>
#include <rte_io.h>
#include <rte_ip.h>
#include <rte_tcp.h>

#include "efx.h"
#include "efx_types.h"
#include "efx_regs.h"
#include "efx_regs_ef10.h"

#include "sfc_dp_tx.h"
#include "sfc_tweak.h"
#include "sfc_kvargs.h"
#include "sfc_ef10.h"
#include "sfc_tso.h"

#define sfc_ef10_tx_err(dpq, ...) \
	SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, ERR, dpq, __VA_ARGS__)

/** Maximum length of the DMA descriptor data */
#define SFC_EF10_TX_DMA_DESC_LEN_MAX \
	((1u << ESF_DZ_TX_KER_BYTE_CNT_WIDTH) - 1)

/**
 * Maximum number of descriptors/buffers in the Tx ring.
 * It should guarantee that corresponding event queue never overfill.
 * EF10 native datapath uses event queue of the same size as Tx queue.
 * Maximum number of events on datapath can be estimated as number of
 * Tx queue entries (one event per Tx buffer in the worst case) plus
 * Tx error and flush events.
 */
#define SFC_EF10_TXQ_LIMIT(_ndesc) \
	((_ndesc) - 1 /* head must not step on tail */ - \
	 (SFC_EF10_EV_PER_CACHE_LINE - 1) /* max unused EvQ entries */ - \
	 1 /* Rx error */ - 1 /* flush */)

struct sfc_ef10_tx_sw_desc {
	struct rte_mbuf			*mbuf;
};

struct sfc_ef10_txq {
	unsigned int			flags;
#define SFC_EF10_TXQ_STARTED		0x1
#define SFC_EF10_TXQ_NOT_RUNNING	0x2
#define SFC_EF10_TXQ_EXCEPTION		0x4

	unsigned int			ptr_mask;
	unsigned int			added;
	unsigned int			completed;
	unsigned int			max_fill_level;
	unsigned int			free_thresh;
	unsigned int			evq_read_ptr;
	struct sfc_ef10_tx_sw_desc	*sw_ring;
	efx_qword_t			*txq_hw_ring;
	volatile void			*doorbell;
	efx_qword_t			*evq_hw_ring;
	uint8_t				*tsoh;
	rte_iova_t			tsoh_iova;
	uint16_t			tso_tcp_header_offset_limit;

	/* Datapath transmit queue anchor */
	struct sfc_dp_txq		dp;
};

static inline struct sfc_ef10_txq *
sfc_ef10_txq_by_dp_txq(struct sfc_dp_txq *dp_txq)
{
	return container_of(dp_txq, struct sfc_ef10_txq, dp);
}

static bool
sfc_ef10_tx_get_event(struct sfc_ef10_txq *txq, efx_qword_t *tx_ev)
{
	volatile efx_qword_t *evq_hw_ring = txq->evq_hw_ring;

	/*
	 * Exception flag is set when reap is done.
	 * It is never done twice per packet burst get and absence of
	 * the flag is checked on burst get entry.
	 */
	SFC_ASSERT((txq->flags & SFC_EF10_TXQ_EXCEPTION) == 0);

	*tx_ev = evq_hw_ring[txq->evq_read_ptr & txq->ptr_mask];

	if (!sfc_ef10_ev_present(*tx_ev))
		return false;

	if (unlikely(EFX_QWORD_FIELD(*tx_ev, FSF_AZ_EV_CODE) !=
		     FSE_AZ_EV_CODE_TX_EV)) {
		/*
		 * Do not move read_ptr to keep the event for exception
		 * handling by the control path.
		 */
		txq->flags |= SFC_EF10_TXQ_EXCEPTION;
		sfc_ef10_tx_err(&txq->dp.dpq,
				"TxQ exception at EvQ read ptr %#x",
				txq->evq_read_ptr);
		return false;
	}

	txq->evq_read_ptr++;
	return true;
}

static unsigned int
sfc_ef10_tx_process_events(struct sfc_ef10_txq *txq)
{
	const unsigned int curr_done = txq->completed - 1;
	unsigned int anew_done = curr_done;
	efx_qword_t tx_ev;

	while (sfc_ef10_tx_get_event(txq, &tx_ev)) {
		/*
		 * DROP_EVENT is an internal to the NIC, software should
		 * never see it and, therefore, may ignore it.
		 */

		/* Update the latest done descriptor */
		anew_done = EFX_QWORD_FIELD(tx_ev, ESF_DZ_TX_DESCR_INDX);
	}
	return (anew_done - curr_done) & txq->ptr_mask;
}

static void
sfc_ef10_tx_reap(struct sfc_ef10_txq *txq)
{
	const unsigned int old_read_ptr = txq->evq_read_ptr;
	const unsigned int ptr_mask = txq->ptr_mask;
	unsigned int completed = txq->completed;
	unsigned int pending = completed;

	pending += sfc_ef10_tx_process_events(txq);

	if (pending != completed) {
		struct rte_mbuf *bulk[SFC_TX_REAP_BULK_SIZE];
		unsigned int nb = 0;

		do {
			struct sfc_ef10_tx_sw_desc *txd;
			struct rte_mbuf *m;

			txd = &txq->sw_ring[completed & ptr_mask];
			if (txd->mbuf == NULL)
				continue;

			m = rte_pktmbuf_prefree_seg(txd->mbuf);
			txd->mbuf = NULL;
			if (m == NULL)
				continue;

			if ((nb == RTE_DIM(bulk)) ||
			    ((nb != 0) && (m->pool != bulk[0]->pool))) {
				rte_mempool_put_bulk(bulk[0]->pool,
						     (void *)bulk, nb);
				nb = 0;
			}

			bulk[nb++] = m;
		} while (++completed != pending);

		if (nb != 0)
			rte_mempool_put_bulk(bulk[0]->pool, (void *)bulk, nb);

		txq->completed = completed;
	}

	sfc_ef10_ev_qclear(txq->evq_hw_ring, ptr_mask, old_read_ptr,
			   txq->evq_read_ptr);
}

static void
sfc_ef10_tx_qdesc_dma_create(rte_iova_t addr, uint16_t size, bool eop,
			     efx_qword_t *edp)
{
	EFX_POPULATE_QWORD_4(*edp,
			     ESF_DZ_TX_KER_TYPE, 0,
			     ESF_DZ_TX_KER_CONT, !eop,
			     ESF_DZ_TX_KER_BYTE_CNT, size,
			     ESF_DZ_TX_KER_BUF_ADDR, addr);
}

static void
sfc_ef10_tx_qdesc_tso2_create(struct sfc_ef10_txq * const txq,
			      unsigned int added, uint16_t ipv4_id,
			      uint16_t outer_ipv4_id, uint32_t tcp_seq,
			      uint16_t tcp_mss)
{
	EFX_POPULATE_QWORD_5(txq->txq_hw_ring[added & txq->ptr_mask],
			    ESF_DZ_TX_DESC_IS_OPT, 1,
			    ESF_DZ_TX_OPTION_TYPE,
			    ESE_DZ_TX_OPTION_DESC_TSO,
			    ESF_DZ_TX_TSO_OPTION_TYPE,
			    ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
			    ESF_DZ_TX_TSO_IP_ID, ipv4_id,
			    ESF_DZ_TX_TSO_TCP_SEQNO, tcp_seq);
	EFX_POPULATE_QWORD_5(txq->txq_hw_ring[(added + 1) & txq->ptr_mask],
			    ESF_DZ_TX_DESC_IS_OPT, 1,
			    ESF_DZ_TX_OPTION_TYPE,
			    ESE_DZ_TX_OPTION_DESC_TSO,
			    ESF_DZ_TX_TSO_OPTION_TYPE,
			    ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
			    ESF_DZ_TX_TSO_TCP_MSS, tcp_mss,
			    ESF_DZ_TX_TSO_OUTER_IPID, outer_ipv4_id);
}

static inline void
sfc_ef10_tx_qpush(struct sfc_ef10_txq *txq, unsigned int added,
		  unsigned int pushed)
{
	efx_qword_t desc;
	efx_oword_t oword;

	/*
	 * This improves performance by pushing a TX descriptor at the same
	 * time as the doorbell. The descriptor must be added to the TXQ,
	 * so that can be used if the hardware decides not to use the pushed
	 * descriptor.
	 */
	desc.eq_u64[0] = txq->txq_hw_ring[pushed & txq->ptr_mask].eq_u64[0];
	EFX_POPULATE_OWORD_3(oword,
		ERF_DZ_TX_DESC_WPTR, added & txq->ptr_mask,
		ERF_DZ_TX_DESC_HWORD, EFX_QWORD_FIELD(desc, EFX_DWORD_1),
		ERF_DZ_TX_DESC_LWORD, EFX_QWORD_FIELD(desc, EFX_DWORD_0));

	/* DMA sync to device is not required */

	/*
	 * rte_io_wmb() which guarantees that the STORE operations
	 * (i.e. Tx and event descriptor updates) that precede
	 * the rte_io_wmb() call are visible to NIC before the STORE
	 * operations that follow it (i.e. doorbell write).
	 */
	rte_io_wmb();

	*(volatile __m128i *)txq->doorbell = oword.eo_u128[0];
}

static unsigned int
sfc_ef10_tx_pkt_descs_max(const struct rte_mbuf *m)
{
	unsigned int extra_descs_per_seg;
	unsigned int extra_descs_per_pkt;

	/*
	 * VLAN offload is not supported yet, so no extra descriptors
	 * are required for VLAN option descriptor.
	 */

/** Maximum length of the mbuf segment data */
#define SFC_MBUF_SEG_LEN_MAX		UINT16_MAX
	RTE_BUILD_BUG_ON(sizeof(m->data_len) != 2);

	/*
	 * Each segment is already counted once below.  So, calculate
	 * how many extra DMA descriptors may be required per segment in
	 * the worst case because of maximum DMA descriptor length limit.
	 * If maximum segment length is less or equal to maximum DMA
	 * descriptor length, no extra DMA descriptors are required.
	 */
	extra_descs_per_seg =
		(SFC_MBUF_SEG_LEN_MAX - 1) / SFC_EF10_TX_DMA_DESC_LEN_MAX;

/** Maximum length of the packet */
#define SFC_MBUF_PKT_LEN_MAX		UINT32_MAX
	RTE_BUILD_BUG_ON(sizeof(m->pkt_len) != 4);

	/*
	 * One more limitation on maximum number of extra DMA descriptors
	 * comes from slicing entire packet because of DMA descriptor length
	 * limit taking into account that there is at least one segment
	 * which is already counted below (so division of the maximum
	 * packet length minus one with round down).
	 * TSO is not supported yet, so packet length is limited by
	 * maximum PDU size.
	 */
	extra_descs_per_pkt =
		(RTE_MIN((unsigned int)EFX_MAC_PDU_MAX,
			 SFC_MBUF_PKT_LEN_MAX) - 1) /
		SFC_EF10_TX_DMA_DESC_LEN_MAX;

	return m->nb_segs + RTE_MIN(m->nb_segs * extra_descs_per_seg,
				    extra_descs_per_pkt);
}

static bool
sfc_ef10_try_reap(struct sfc_ef10_txq * const txq, unsigned int added,
		  unsigned int needed_desc, unsigned int *dma_desc_space,
		  bool *reap_done)
{
	if (*reap_done)
		return false;

	if (added != txq->added) {
		sfc_ef10_tx_qpush(txq, added, txq->added);
		txq->added = added;
	}

	sfc_ef10_tx_reap(txq);
	*reap_done = true;

	/*
	 * Recalculate DMA descriptor space since Tx reap may change
	 * the number of completed descriptors
	 */
	*dma_desc_space = txq->max_fill_level -
		(added - txq->completed);

	return (needed_desc <= *dma_desc_space);
}

static uint16_t
sfc_ef10_prepare_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
		      uint16_t nb_pkts)
{
	struct sfc_ef10_txq * const txq = sfc_ef10_txq_by_dp_txq(tx_queue);
	uint16_t i;

	for (i = 0; i < nb_pkts; i++) {
		struct rte_mbuf *m = tx_pkts[i];
		int ret;

#ifdef RTE_LIBRTE_SFC_EFX_DEBUG
		/*
		 * In non-TSO case, check that a packet segments do not exceed
		 * the size limit. Perform the check in debug mode since MTU
		 * more than 9k is not supported, but the limit here is 16k-1.
		 */
		if (!(m->ol_flags & PKT_TX_TCP_SEG)) {
			struct rte_mbuf *m_seg;

			for (m_seg = m; m_seg != NULL; m_seg = m_seg->next) {
				if (m_seg->data_len >
				    SFC_EF10_TX_DMA_DESC_LEN_MAX) {
					rte_errno = EINVAL;
					break;
				}
			}
		}
#endif
		ret = sfc_dp_tx_prepare_pkt(m,
				txq->tso_tcp_header_offset_limit,
				txq->max_fill_level,
				SFC_EF10_TSO_OPT_DESCS_NUM, 0);
		if (unlikely(ret != 0)) {
			rte_errno = ret;
			break;
		}
	}

	return i;
}

static int
sfc_ef10_xmit_tso_pkt(struct sfc_ef10_txq * const txq, struct rte_mbuf *m_seg,
		      unsigned int *added, unsigned int *dma_desc_space,
		      bool *reap_done)
{
	size_t iph_off = ((m_seg->ol_flags & PKT_TX_TUNNEL_MASK) ?
			  m_seg->outer_l2_len + m_seg->outer_l3_len : 0) +
			 m_seg->l2_len;
	size_t tcph_off = iph_off + m_seg->l3_len;
	size_t header_len = tcph_off + m_seg->l4_len;
	/* Offset of the payload in the last segment that contains the header */
	size_t in_off = 0;
	const struct rte_tcp_hdr *th;
	uint16_t packet_id = 0;
	uint16_t outer_packet_id = 0;
	uint32_t sent_seq;
	uint8_t *hdr_addr;
	rte_iova_t hdr_iova;
	struct rte_mbuf *first_m_seg = m_seg;
	unsigned int pkt_start = *added;
	unsigned int needed_desc;
	struct rte_mbuf *m_seg_to_free_up_to = first_m_seg;
	bool eop;

	/*
	 * Preliminary estimation of required DMA descriptors, including extra
	 * descriptor for TSO header that is needed when the header is
	 * separated from payload in one segment. It does not include
	 * extra descriptors that may appear when a big segment is split across
	 * several descriptors.
	 */
	needed_desc = m_seg->nb_segs +
			(unsigned int)SFC_EF10_TSO_OPT_DESCS_NUM +
			(unsigned int)SFC_EF10_TSO_HDR_DESCS_NUM;

	if (needed_desc > *dma_desc_space &&
	    !sfc_ef10_try_reap(txq, pkt_start, needed_desc,
			       dma_desc_space, reap_done)) {
		/*
		 * If a future Tx reap may increase available DMA descriptor
		 * space, do not try to send the packet.
		 */
		if (txq->completed != pkt_start)
			return ENOSPC;
		/*
		 * Do not allow to send packet if the maximum DMA
		 * descriptor space is not sufficient to hold TSO
		 * descriptors, header descriptor and at least 1
		 * segment descriptor.
		 */
		if (*dma_desc_space < SFC_EF10_TSO_OPT_DESCS_NUM +
				SFC_EF10_TSO_HDR_DESCS_NUM + 1)
			return EMSGSIZE;
	}

	/* Check if the header is not fragmented */
	if (rte_pktmbuf_data_len(m_seg) >= header_len) {
		hdr_addr = rte_pktmbuf_mtod(m_seg, uint8_t *);
		hdr_iova = rte_mbuf_data_iova(m_seg);
		if (rte_pktmbuf_data_len(m_seg) == header_len) {
			/* Cannot send a packet that consists only of header */
			if (unlikely(m_seg->next == NULL))
				return EMSGSIZE;
			/*
			 * Associate header mbuf with header descriptor
			 * which is located after TSO descriptors.
			 */
			txq->sw_ring[(pkt_start + SFC_EF10_TSO_OPT_DESCS_NUM) &
				     txq->ptr_mask].mbuf = m_seg;
			m_seg = m_seg->next;
			in_off = 0;

			/*
			 * If there is no payload offset (payload starts at the
			 * beginning of a segment) then an extra descriptor for
			 * separated header is not needed.
			 */
			needed_desc--;
		} else {
			in_off = header_len;
		}
	} else {
		unsigned int copied_segs;
		unsigned int hdr_addr_off = (*added & txq->ptr_mask) *
				SFC_TSOH_STD_LEN;

		/*
		 * Discard a packet if header linearization is needed but
		 * the header is too big.
		 * Duplicate Tx prepare check here to avoid spoil of
		 * memory if Tx prepare is skipped.
		 */
		if (unlikely(header_len > SFC_TSOH_STD_LEN))
			return EMSGSIZE;

		hdr_addr = txq->tsoh + hdr_addr_off;
		hdr_iova = txq->tsoh_iova + hdr_addr_off;
		copied_segs = sfc_tso_prepare_header(hdr_addr, header_len,
						     &m_seg, &in_off);

		/* Cannot send a packet that consists only of header */
		if (unlikely(m_seg == NULL))
			return EMSGSIZE;

		m_seg_to_free_up_to = m_seg;
		/*
		 * Reduce the number of needed descriptors by the number of
		 * segments that entirely consist of header data.
		 */
		needed_desc -= copied_segs;

		/* Extra descriptor for separated header is not needed */
		if (in_off == 0)
			needed_desc--;
	}

	/*
	 * Tx prepare has debug-only checks that offload flags are correctly
	 * filled in in TSO mbuf. Use zero IPID if there is no IPv4 flag.
	 * If the packet is still IPv4, HW will simply start from zero IPID.
	 */
	if (first_m_seg->ol_flags & PKT_TX_IPV4)
		packet_id = sfc_tso_ip4_get_ipid(hdr_addr, iph_off);

	if (first_m_seg->ol_flags & PKT_TX_OUTER_IPV4)
		outer_packet_id = sfc_tso_ip4_get_ipid(hdr_addr,
						first_m_seg->outer_l2_len);

	th = (const struct rte_tcp_hdr *)(hdr_addr + tcph_off);
	rte_memcpy(&sent_seq, &th->sent_seq, sizeof(uint32_t));
	sent_seq = rte_be_to_cpu_32(sent_seq);

	sfc_ef10_tx_qdesc_tso2_create(txq, *added, packet_id, outer_packet_id,
			sent_seq, first_m_seg->tso_segsz);
	(*added) += SFC_EF10_TSO_OPT_DESCS_NUM;

	sfc_ef10_tx_qdesc_dma_create(hdr_iova, header_len, false,
			&txq->txq_hw_ring[(*added) & txq->ptr_mask]);
	(*added)++;

	do {
		rte_iova_t next_frag = rte_mbuf_data_iova(m_seg);
		unsigned int seg_len = rte_pktmbuf_data_len(m_seg);
		unsigned int id;

		next_frag += in_off;
		seg_len -= in_off;
		in_off = 0;

		do {
			rte_iova_t frag_addr = next_frag;
			size_t frag_len;

			frag_len = RTE_MIN(seg_len,
					   SFC_EF10_TX_DMA_DESC_LEN_MAX);

			next_frag += frag_len;
			seg_len -= frag_len;

			eop = (seg_len == 0 && m_seg->next == NULL);

			id = (*added) & txq->ptr_mask;
			(*added)++;

			/*
			 * Initially we assume that one DMA descriptor is needed
			 * for every segment. When the segment is split across
			 * several DMA descriptors, increase the estimation.
			 */
			needed_desc += (seg_len != 0);

			/*
			 * When no more descriptors can be added, but not all
			 * segments are processed.
			 */
			if (*added - pkt_start == *dma_desc_space &&
			    !eop &&
			    !sfc_ef10_try_reap(txq, pkt_start, needed_desc,
						dma_desc_space, reap_done)) {
				struct rte_mbuf *m;
				struct rte_mbuf *m_next;

				if (txq->completed != pkt_start) {
					unsigned int i;

					/*
					 * Reset mbuf associations with added
					 * descriptors.
					 */
					for (i = pkt_start; i != *added; i++) {
						id = i & txq->ptr_mask;
						txq->sw_ring[id].mbuf = NULL;
					}
					return ENOSPC;
				}

				/* Free the segments that cannot be sent */
				for (m = m_seg->next; m != NULL; m = m_next) {
					m_next = m->next;
					rte_pktmbuf_free_seg(m);
				}
				eop = true;
				/* Ignore the rest of the segment */
				seg_len = 0;
			}

			sfc_ef10_tx_qdesc_dma_create(frag_addr, frag_len,
					eop, &txq->txq_hw_ring[id]);

		} while (seg_len != 0);

		txq->sw_ring[id].mbuf = m_seg;

		m_seg = m_seg->next;
	} while (!eop);

	/*
	 * Free segments which content was entirely copied to the TSO header
	 * memory space of Tx queue
	 */
	for (m_seg = first_m_seg; m_seg != m_seg_to_free_up_to;) {
		struct rte_mbuf *seg_to_free = m_seg;

		m_seg = m_seg->next;
		rte_pktmbuf_free_seg(seg_to_free);
	}

	return 0;
}

static uint16_t
sfc_ef10_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
	struct sfc_ef10_txq * const txq = sfc_ef10_txq_by_dp_txq(tx_queue);
	unsigned int added;
	unsigned int dma_desc_space;
	bool reap_done;
	struct rte_mbuf **pktp;
	struct rte_mbuf **pktp_end;

	if (unlikely(txq->flags &
		     (SFC_EF10_TXQ_NOT_RUNNING | SFC_EF10_TXQ_EXCEPTION)))
		return 0;

	added = txq->added;
	dma_desc_space = txq->max_fill_level - (added - txq->completed);

	reap_done = (dma_desc_space < txq->free_thresh);
	if (reap_done) {
		sfc_ef10_tx_reap(txq);
		dma_desc_space = txq->max_fill_level - (added - txq->completed);
	}

	for (pktp = &tx_pkts[0], pktp_end = &tx_pkts[nb_pkts];
	     pktp != pktp_end;
	     ++pktp) {
		struct rte_mbuf *m_seg = *pktp;
		unsigned int pkt_start = added;
		uint32_t pkt_len;

		if (likely(pktp + 1 != pktp_end))
			rte_mbuf_prefetch_part1(pktp[1]);

		if (m_seg->ol_flags & PKT_TX_TCP_SEG) {
			int rc;

			rc = sfc_ef10_xmit_tso_pkt(txq, m_seg, &added,
					&dma_desc_space, &reap_done);
			if (rc != 0) {
				added = pkt_start;

				/* Packet can be sent in following xmit calls */
				if (likely(rc == ENOSPC))
					break;

				/*
				 * Packet cannot be sent, tell RTE that
				 * it is sent, but actually drop it and
				 * continue with another packet
				 */
				rte_pktmbuf_free(*pktp);
				continue;
			}

			goto dma_desc_space_update;
		}

		if (sfc_ef10_tx_pkt_descs_max(m_seg) > dma_desc_space) {
			if (reap_done)
				break;

			/* Push already prepared descriptors before polling */
			if (added != txq->added) {
				sfc_ef10_tx_qpush(txq, added, txq->added);
				txq->added = added;
			}

			sfc_ef10_tx_reap(txq);
			reap_done = true;
			dma_desc_space = txq->max_fill_level -
				(added - txq->completed);
			if (sfc_ef10_tx_pkt_descs_max(m_seg) > dma_desc_space)
				break;
		}

		pkt_len = m_seg->pkt_len;
		do {
			rte_iova_t seg_addr = rte_mbuf_data_iova(m_seg);
			unsigned int seg_len = rte_pktmbuf_data_len(m_seg);
			unsigned int id = added & txq->ptr_mask;

			SFC_ASSERT(seg_len <= SFC_EF10_TX_DMA_DESC_LEN_MAX);

			pkt_len -= seg_len;

			sfc_ef10_tx_qdesc_dma_create(seg_addr,
				seg_len, (pkt_len == 0),
				&txq->txq_hw_ring[id]);

			/*
			 * rte_pktmbuf_free() is commonly used in DPDK for
			 * recycling packets - the function checks every
			 * segment's reference counter and returns the
			 * buffer to its pool whenever possible;
			 * nevertheless, freeing mbuf segments one by one
			 * may entail some performance decline;
			 * from this point, sfc_efx_tx_reap() does the same job
			 * on its own and frees buffers in bulks (all mbufs
			 * within a bulk belong to the same pool);
			 * from this perspective, individual segment pointers
			 * must be associated with the corresponding SW
			 * descriptors independently so that only one loop
			 * is sufficient on reap to inspect all the buffers
			 */
			txq->sw_ring[id].mbuf = m_seg;

			++added;

		} while ((m_seg = m_seg->next) != 0);

dma_desc_space_update:
		dma_desc_space -= (added - pkt_start);
	}

	if (likely(added != txq->added)) {
		sfc_ef10_tx_qpush(txq, added, txq->added);
		txq->added = added;
	}

#if SFC_TX_XMIT_PKTS_REAP_AT_LEAST_ONCE
	if (!reap_done)
		sfc_ef10_tx_reap(txq);
#endif

	return pktp - &tx_pkts[0];
}

static void
sfc_ef10_simple_tx_reap(struct sfc_ef10_txq *txq)
{
	const unsigned int old_read_ptr = txq->evq_read_ptr;
	const unsigned int ptr_mask = txq->ptr_mask;
	unsigned int completed = txq->completed;
	unsigned int pending = completed;

	pending += sfc_ef10_tx_process_events(txq);

	if (pending != completed) {
		struct rte_mbuf *bulk[SFC_TX_REAP_BULK_SIZE];
		unsigned int nb = 0;

		do {
			struct sfc_ef10_tx_sw_desc *txd;

			txd = &txq->sw_ring[completed & ptr_mask];

			if (nb == RTE_DIM(bulk)) {
				rte_mempool_put_bulk(bulk[0]->pool,
						     (void *)bulk, nb);
				nb = 0;
			}

			bulk[nb++] = txd->mbuf;
		} while (++completed != pending);

		rte_mempool_put_bulk(bulk[0]->pool, (void *)bulk, nb);

		txq->completed = completed;
	}

	sfc_ef10_ev_qclear(txq->evq_hw_ring, ptr_mask, old_read_ptr,
			   txq->evq_read_ptr);
}

#ifdef RTE_LIBRTE_SFC_EFX_DEBUG
static uint16_t
sfc_ef10_simple_prepare_pkts(__rte_unused void *tx_queue,
			     struct rte_mbuf **tx_pkts,
			     uint16_t nb_pkts)
{
	uint16_t i;

	for (i = 0; i < nb_pkts; i++) {
		struct rte_mbuf *m = tx_pkts[i];
		int ret;

		ret = rte_validate_tx_offload(m);
		if (unlikely(ret != 0)) {
			/*
			 * Negative error code is returned by
			 * rte_validate_tx_offload(), but positive are used
			 * inside net/sfc PMD.
			 */
			SFC_ASSERT(ret < 0);
			rte_errno = -ret;
			break;
		}

		/* ef10_simple does not support TSO and VLAN insertion */
		if (unlikely(m->ol_flags &
			     (PKT_TX_TCP_SEG | PKT_TX_VLAN_PKT))) {
			rte_errno = ENOTSUP;
			break;
		}

		/* ef10_simple does not support scattered packets */
		if (unlikely(m->nb_segs != 1)) {
			rte_errno = ENOTSUP;
			break;
		}

		/*
		 * ef10_simple requires fast-free which ignores reference
		 * counters
		 */
		if (unlikely(rte_mbuf_refcnt_read(m) != 1)) {
			rte_errno = ENOTSUP;
			break;
		}

		/* ef10_simple requires single pool for all packets */
		if (unlikely(m->pool != tx_pkts[0]->pool)) {
			rte_errno = ENOTSUP;
			break;
		}
	}

	return i;
}
#endif

static uint16_t
sfc_ef10_simple_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
			  uint16_t nb_pkts)
{
	struct sfc_ef10_txq * const txq = sfc_ef10_txq_by_dp_txq(tx_queue);
	unsigned int ptr_mask;
	unsigned int added;
	unsigned int dma_desc_space;
	bool reap_done;
	struct rte_mbuf **pktp;
	struct rte_mbuf **pktp_end;

	if (unlikely(txq->flags &
		     (SFC_EF10_TXQ_NOT_RUNNING | SFC_EF10_TXQ_EXCEPTION)))
		return 0;

	ptr_mask = txq->ptr_mask;
	added = txq->added;
	dma_desc_space = txq->max_fill_level - (added - txq->completed);

	reap_done = (dma_desc_space < RTE_MAX(txq->free_thresh, nb_pkts));
	if (reap_done) {
		sfc_ef10_simple_tx_reap(txq);
		dma_desc_space = txq->max_fill_level - (added - txq->completed);
	}

	pktp_end = &tx_pkts[MIN(nb_pkts, dma_desc_space)];
	for (pktp = &tx_pkts[0]; pktp != pktp_end; ++pktp) {
		struct rte_mbuf *pkt = *pktp;
		unsigned int id = added & ptr_mask;

		SFC_ASSERT(rte_pktmbuf_data_len(pkt) <=
			   SFC_EF10_TX_DMA_DESC_LEN_MAX);

		sfc_ef10_tx_qdesc_dma_create(rte_mbuf_data_iova(pkt),
					     rte_pktmbuf_data_len(pkt),
					     true, &txq->txq_hw_ring[id]);

		txq->sw_ring[id].mbuf = pkt;

		++added;
	}

	if (likely(added != txq->added)) {
		sfc_ef10_tx_qpush(txq, added, txq->added);
		txq->added = added;
	}

#if SFC_TX_XMIT_PKTS_REAP_AT_LEAST_ONCE
	if (!reap_done)
		sfc_ef10_simple_tx_reap(txq);
#endif

	return pktp - &tx_pkts[0];
}

static sfc_dp_tx_get_dev_info_t sfc_ef10_get_dev_info;
static void
sfc_ef10_get_dev_info(struct rte_eth_dev_info *dev_info)
{
	/*
	 * Number of descriptors just defines maximum number of pushed
	 * descriptors (fill level).
	 */
	dev_info->tx_desc_lim.nb_min = 1;
	dev_info->tx_desc_lim.nb_align = 1;
}

static sfc_dp_tx_qsize_up_rings_t sfc_ef10_tx_qsize_up_rings;
static int
sfc_ef10_tx_qsize_up_rings(uint16_t nb_tx_desc,
			   struct sfc_dp_tx_hw_limits *limits,
			   unsigned int *txq_entries,
			   unsigned int *evq_entries,
			   unsigned int *txq_max_fill_level)
{
	/*
	 * rte_ethdev API guarantees that the number meets min, max and
	 * alignment requirements.
	 */
	if (nb_tx_desc <= limits->txq_min_entries)
		*txq_entries = limits->txq_min_entries;
	else
		*txq_entries = rte_align32pow2(nb_tx_desc);

	*evq_entries = *txq_entries;

	*txq_max_fill_level = RTE_MIN(nb_tx_desc,
				      SFC_EF10_TXQ_LIMIT(*evq_entries));
	return 0;
}

static sfc_dp_tx_qcreate_t sfc_ef10_tx_qcreate;
static int
sfc_ef10_tx_qcreate(uint16_t port_id, uint16_t queue_id,
		    const struct rte_pci_addr *pci_addr, int socket_id,
		    const struct sfc_dp_tx_qcreate_info *info,
		    struct sfc_dp_txq **dp_txqp)
{
	struct sfc_ef10_txq *txq;
	int rc;

	rc = EINVAL;
	if (info->txq_entries != info->evq_entries)
		goto fail_bad_args;

	rc = ENOMEM;
	txq = rte_zmalloc_socket("sfc-ef10-txq", sizeof(*txq),
				 RTE_CACHE_LINE_SIZE, socket_id);
	if (txq == NULL)
		goto fail_txq_alloc;

	sfc_dp_queue_init(&txq->dp.dpq, port_id, queue_id, pci_addr);

	rc = ENOMEM;
	txq->sw_ring = rte_calloc_socket("sfc-ef10-txq-sw_ring",
					 info->txq_entries,
					 sizeof(*txq->sw_ring),
					 RTE_CACHE_LINE_SIZE, socket_id);
	if (txq->sw_ring == NULL)
		goto fail_sw_ring_alloc;

	if (info->offloads & (DEV_TX_OFFLOAD_TCP_TSO |
			      DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
			      DEV_TX_OFFLOAD_GENEVE_TNL_TSO)) {
		txq->tsoh = rte_calloc_socket("sfc-ef10-txq-tsoh",
					      info->txq_entries,
					      SFC_TSOH_STD_LEN,
					      RTE_CACHE_LINE_SIZE,
					      socket_id);
		if (txq->tsoh == NULL)
			goto fail_tsoh_alloc;

		txq->tsoh_iova = rte_malloc_virt2iova(txq->tsoh);
	}

	txq->flags = SFC_EF10_TXQ_NOT_RUNNING;
	txq->ptr_mask = info->txq_entries - 1;
	txq->max_fill_level = info->max_fill_level;
	txq->free_thresh = info->free_thresh;
	txq->txq_hw_ring = info->txq_hw_ring;
	txq->doorbell = (volatile uint8_t *)info->mem_bar +
			ER_DZ_TX_DESC_UPD_REG_OFST +
			(info->hw_index << info->vi_window_shift);
	txq->evq_hw_ring = info->evq_hw_ring;
	txq->tso_tcp_header_offset_limit = info->tso_tcp_header_offset_limit;

	*dp_txqp = &txq->dp;
	return 0;

fail_tsoh_alloc:
	rte_free(txq->sw_ring);

fail_sw_ring_alloc:
	rte_free(txq);

fail_txq_alloc:
fail_bad_args:
	return rc;
}

static sfc_dp_tx_qdestroy_t sfc_ef10_tx_qdestroy;
static void
sfc_ef10_tx_qdestroy(struct sfc_dp_txq *dp_txq)
{
	struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq);

	rte_free(txq->tsoh);
	rte_free(txq->sw_ring);
	rte_free(txq);
}

static sfc_dp_tx_qstart_t sfc_ef10_tx_qstart;
static int
sfc_ef10_tx_qstart(struct sfc_dp_txq *dp_txq, unsigned int evq_read_ptr,
		   unsigned int txq_desc_index)
{
	struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq);

	txq->evq_read_ptr = evq_read_ptr;
	txq->added = txq->completed = txq_desc_index;

	txq->flags |= SFC_EF10_TXQ_STARTED;
	txq->flags &= ~(SFC_EF10_TXQ_NOT_RUNNING | SFC_EF10_TXQ_EXCEPTION);

	return 0;
}

static sfc_dp_tx_qstop_t sfc_ef10_tx_qstop;
static void
sfc_ef10_tx_qstop(struct sfc_dp_txq *dp_txq, unsigned int *evq_read_ptr)
{
	struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq);

	txq->flags |= SFC_EF10_TXQ_NOT_RUNNING;

	*evq_read_ptr = txq->evq_read_ptr;
}

static sfc_dp_tx_qtx_ev_t sfc_ef10_tx_qtx_ev;
static bool
sfc_ef10_tx_qtx_ev(struct sfc_dp_txq *dp_txq, __rte_unused unsigned int id)
{
	__rte_unused struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq);

	SFC_ASSERT(txq->flags & SFC_EF10_TXQ_NOT_RUNNING);

	/*
	 * It is safe to ignore Tx event since we reap all mbufs on
	 * queue purge anyway.
	 */

	return false;
}

static sfc_dp_tx_qreap_t sfc_ef10_tx_qreap;
static void
sfc_ef10_tx_qreap(struct sfc_dp_txq *dp_txq)
{
	struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq);
	unsigned int completed;

	for (completed = txq->completed; completed != txq->added; ++completed) {
		struct sfc_ef10_tx_sw_desc *txd;

		txd = &txq->sw_ring[completed & txq->ptr_mask];
		if (txd->mbuf != NULL) {
			rte_pktmbuf_free_seg(txd->mbuf);
			txd->mbuf = NULL;
		}
	}

	txq->flags &= ~SFC_EF10_TXQ_STARTED;
}

static unsigned int
sfc_ef10_tx_qdesc_npending(struct sfc_ef10_txq *txq)
{
	const unsigned int curr_done = txq->completed - 1;
	unsigned int anew_done = curr_done;
	efx_qword_t tx_ev;
	const unsigned int evq_old_read_ptr = txq->evq_read_ptr;

	if (unlikely(txq->flags &
		     (SFC_EF10_TXQ_NOT_RUNNING | SFC_EF10_TXQ_EXCEPTION)))
		return 0;

	while (sfc_ef10_tx_get_event(txq, &tx_ev))
		anew_done = EFX_QWORD_FIELD(tx_ev, ESF_DZ_TX_DESCR_INDX);

	/*
	 * The function does not process events, so return event queue read
	 * pointer to the original position to allow the events that were
	 * read to be processed later
	 */
	txq->evq_read_ptr = evq_old_read_ptr;

	return (anew_done - curr_done) & txq->ptr_mask;
}

static sfc_dp_tx_qdesc_status_t sfc_ef10_tx_qdesc_status;
static int
sfc_ef10_tx_qdesc_status(struct sfc_dp_txq *dp_txq,
			 uint16_t offset)
{
	struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq);
	unsigned int npending = sfc_ef10_tx_qdesc_npending(txq);

	if (unlikely(offset > txq->ptr_mask))
		return -EINVAL;

	if (unlikely(offset >= txq->max_fill_level))
		return RTE_ETH_TX_DESC_UNAVAIL;

	if (unlikely(offset < npending))
		return RTE_ETH_TX_DESC_FULL;

	return RTE_ETH_TX_DESC_DONE;
}

struct sfc_dp_tx sfc_ef10_tx = {
	.dp = {
		.name		= SFC_KVARG_DATAPATH_EF10,
		.type		= SFC_DP_TX,
		.hw_fw_caps	= SFC_DP_HW_FW_CAP_EF10,
	},
	.features		= SFC_DP_TX_FEAT_MULTI_PROCESS,
	.dev_offload_capa	= DEV_TX_OFFLOAD_MULTI_SEGS,
	.queue_offload_capa	= DEV_TX_OFFLOAD_IPV4_CKSUM |
				  DEV_TX_OFFLOAD_UDP_CKSUM |
				  DEV_TX_OFFLOAD_TCP_CKSUM |
				  DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
				  DEV_TX_OFFLOAD_TCP_TSO |
				  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
				  DEV_TX_OFFLOAD_GENEVE_TNL_TSO,
	.get_dev_info		= sfc_ef10_get_dev_info,
	.qsize_up_rings		= sfc_ef10_tx_qsize_up_rings,
	.qcreate		= sfc_ef10_tx_qcreate,
	.qdestroy		= sfc_ef10_tx_qdestroy,
	.qstart			= sfc_ef10_tx_qstart,
	.qtx_ev			= sfc_ef10_tx_qtx_ev,
	.qstop			= sfc_ef10_tx_qstop,
	.qreap			= sfc_ef10_tx_qreap,
	.qdesc_status		= sfc_ef10_tx_qdesc_status,
	.pkt_prepare		= sfc_ef10_prepare_pkts,
	.pkt_burst		= sfc_ef10_xmit_pkts,
};

struct sfc_dp_tx sfc_ef10_simple_tx = {
	.dp = {
		.name		= SFC_KVARG_DATAPATH_EF10_SIMPLE,
		.type		= SFC_DP_TX,
	},
	.features		= SFC_DP_TX_FEAT_MULTI_PROCESS,
	.dev_offload_capa	= DEV_TX_OFFLOAD_MBUF_FAST_FREE,
	.queue_offload_capa	= DEV_TX_OFFLOAD_IPV4_CKSUM |
				  DEV_TX_OFFLOAD_UDP_CKSUM |
				  DEV_TX_OFFLOAD_TCP_CKSUM |
				  DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM,
	.get_dev_info		= sfc_ef10_get_dev_info,
	.qsize_up_rings		= sfc_ef10_tx_qsize_up_rings,
	.qcreate		= sfc_ef10_tx_qcreate,
	.qdestroy		= sfc_ef10_tx_qdestroy,
	.qstart			= sfc_ef10_tx_qstart,
	.qtx_ev			= sfc_ef10_tx_qtx_ev,
	.qstop			= sfc_ef10_tx_qstop,
	.qreap			= sfc_ef10_tx_qreap,
	.qdesc_status		= sfc_ef10_tx_qdesc_status,
#ifdef RTE_LIBRTE_SFC_EFX_DEBUG
	.pkt_prepare		= sfc_ef10_simple_prepare_pkts,
#endif
	.pkt_burst		= sfc_ef10_simple_xmit_pkts,
};