DPDK logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2010-2014 Intel Corporation
 */

#include <fcntl.h>
#include <errno.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/queue.h>

#include <rte_fbarray.h>
#include <rte_memory.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_eal_paging.h>
#include <rte_errno.h>
#include <rte_log.h>

#include "eal_memalloc.h"
#include "eal_private.h"
#include "eal_internal_cfg.h"
#include "eal_memcfg.h"
#include "eal_options.h"
#include "malloc_heap.h"

/*
 * Try to mmap *size bytes in /dev/zero. If it is successful, return the
 * pointer to the mmap'd area and keep *size unmodified. Else, retry
 * with a smaller zone: decrease *size by hugepage_sz until it reaches
 * 0. In this case, return NULL. Note: this function returns an address
 * which is a multiple of hugepage size.
 */

#define MEMSEG_LIST_FMT "memseg-%" PRIu64 "k-%i-%i"

static void *next_baseaddr;
static uint64_t system_page_sz;

#define MAX_MMAP_WITH_DEFINED_ADDR_TRIES 5
void *
eal_get_virtual_area(void *requested_addr, size_t *size,
	size_t page_sz, int flags, int reserve_flags)
{
	bool addr_is_hint, allow_shrink, unmap, no_align;
	uint64_t map_sz;
	void *mapped_addr, *aligned_addr;
	uint8_t try = 0;
	struct internal_config *internal_conf =
		eal_get_internal_configuration();

	if (system_page_sz == 0)
		system_page_sz = rte_mem_page_size();

	RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);

	addr_is_hint = (flags & EAL_VIRTUAL_AREA_ADDR_IS_HINT) > 0;
	allow_shrink = (flags & EAL_VIRTUAL_AREA_ALLOW_SHRINK) > 0;
	unmap = (flags & EAL_VIRTUAL_AREA_UNMAP) > 0;

	if (next_baseaddr == NULL && internal_conf->base_virtaddr != 0 &&
			rte_eal_process_type() == RTE_PROC_PRIMARY)
		next_baseaddr = (void *) internal_conf->base_virtaddr;

#ifdef RTE_ARCH_64
	if (next_baseaddr == NULL && internal_conf->base_virtaddr == 0 &&
			rte_eal_process_type() == RTE_PROC_PRIMARY)
		next_baseaddr = (void *) eal_get_baseaddr();
#endif
	if (requested_addr == NULL && next_baseaddr != NULL) {
		requested_addr = next_baseaddr;
		requested_addr = RTE_PTR_ALIGN(requested_addr, page_sz);
		addr_is_hint = true;
	}

	/* we don't need alignment of resulting pointer in the following cases:
	 *
	 * 1. page size is equal to system size
	 * 2. we have a requested address, and it is page-aligned, and we will
	 *    be discarding the address if we get a different one.
	 *
	 * for all other cases, alignment is potentially necessary.
	 */
	no_align = (requested_addr != NULL &&
		requested_addr == RTE_PTR_ALIGN(requested_addr, page_sz) &&
		!addr_is_hint) ||
		page_sz == system_page_sz;

	do {
		map_sz = no_align ? *size : *size + page_sz;
		if (map_sz > SIZE_MAX) {
			RTE_LOG(ERR, EAL, "Map size too big\n");
			rte_errno = E2BIG;
			return NULL;
		}

		mapped_addr = eal_mem_reserve(
			requested_addr, (size_t)map_sz, reserve_flags);
		if ((mapped_addr == NULL) && allow_shrink)
			*size -= page_sz;

		if ((mapped_addr != NULL) && addr_is_hint &&
				(mapped_addr != requested_addr)) {
			try++;
			next_baseaddr = RTE_PTR_ADD(next_baseaddr, page_sz);
			if (try <= MAX_MMAP_WITH_DEFINED_ADDR_TRIES) {
				/* hint was not used. Try with another offset */
				eal_mem_free(mapped_addr, map_sz);
				mapped_addr = NULL;
				requested_addr = next_baseaddr;
			}
		}
	} while ((allow_shrink || addr_is_hint) &&
		(mapped_addr == NULL) && (*size > 0));

	/* align resulting address - if map failed, we will ignore the value
	 * anyway, so no need to add additional checks.
	 */
	aligned_addr = no_align ? mapped_addr :
			RTE_PTR_ALIGN(mapped_addr, page_sz);

	if (*size == 0) {
		RTE_LOG(ERR, EAL, "Cannot get a virtual area of any size: %s\n",
			rte_strerror(rte_errno));
		return NULL;
	} else if (mapped_addr == NULL) {
		RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
			rte_strerror(rte_errno));
		return NULL;
	} else if (requested_addr != NULL && !addr_is_hint &&
			aligned_addr != requested_addr) {
		RTE_LOG(ERR, EAL, "Cannot get a virtual area at requested address: %p (got %p)\n",
			requested_addr, aligned_addr);
		eal_mem_free(mapped_addr, map_sz);
		rte_errno = EADDRNOTAVAIL;
		return NULL;
	} else if (requested_addr != NULL && addr_is_hint &&
			aligned_addr != requested_addr) {
		RTE_LOG(WARNING, EAL, "WARNING! Base virtual address hint (%p != %p) not respected!\n",
			requested_addr, aligned_addr);
		RTE_LOG(WARNING, EAL, "   This may cause issues with mapping memory into secondary processes\n");
	} else if (next_baseaddr != NULL) {
		next_baseaddr = RTE_PTR_ADD(aligned_addr, *size);
	}

	RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
		aligned_addr, *size);

	if (unmap) {
		eal_mem_free(mapped_addr, map_sz);
	} else if (!no_align) {
		void *map_end, *aligned_end;
		size_t before_len, after_len;

		/* when we reserve space with alignment, we add alignment to
		 * mapping size. On 32-bit, if 1GB alignment was requested, this
		 * would waste 1GB of address space, which is a luxury we cannot
		 * afford. so, if alignment was performed, check if any unneeded
		 * address space can be unmapped back.
		 */

		map_end = RTE_PTR_ADD(mapped_addr, (size_t)map_sz);
		aligned_end = RTE_PTR_ADD(aligned_addr, *size);

		/* unmap space before aligned mmap address */
		before_len = RTE_PTR_DIFF(aligned_addr, mapped_addr);
		if (before_len > 0)
			eal_mem_free(mapped_addr, before_len);

		/* unmap space after aligned end mmap address */
		after_len = RTE_PTR_DIFF(map_end, aligned_end);
		if (after_len > 0)
			eal_mem_free(aligned_end, after_len);
	}

	if (!unmap) {
		/* Exclude these pages from a core dump. */
		eal_mem_set_dump(aligned_addr, *size, false);
	}

	return aligned_addr;
}

int
eal_memseg_list_init_named(struct rte_memseg_list *msl, const char *name,
		uint64_t page_sz, int n_segs, int socket_id, bool heap)
{
	if (rte_fbarray_init(&msl->memseg_arr, name, n_segs,
			sizeof(struct rte_memseg))) {
		RTE_LOG(ERR, EAL, "Cannot allocate memseg list: %s\n",
			rte_strerror(rte_errno));
		return -1;
	}

	msl->page_sz = page_sz;
	msl->socket_id = socket_id;
	msl->base_va = NULL;
	msl->heap = heap;

	RTE_LOG(DEBUG, EAL,
		"Memseg list allocated at socket %i, page size 0x%"PRIx64"kB\n",
		socket_id, page_sz >> 10);

	return 0;
}

int
eal_memseg_list_init(struct rte_memseg_list *msl, uint64_t page_sz,
		int n_segs, int socket_id, int type_msl_idx, bool heap)
{
	char name[RTE_FBARRAY_NAME_LEN];

	snprintf(name, sizeof(name), MEMSEG_LIST_FMT, page_sz >> 10, socket_id,
		 type_msl_idx);

	return eal_memseg_list_init_named(
		msl, name, page_sz, n_segs, socket_id, heap);
}

int
eal_memseg_list_alloc(struct rte_memseg_list *msl, int reserve_flags)
{
	size_t page_sz, mem_sz;
	void *addr;

	page_sz = msl->page_sz;
	mem_sz = page_sz * msl->memseg_arr.len;

	addr = eal_get_virtual_area(
		msl->base_va, &mem_sz, page_sz, 0, reserve_flags);
	if (addr == NULL) {
#ifndef RTE_EXEC_ENV_WINDOWS
		/* The hint would be misleading on Windows, because address
		 * is by default system-selected (base VA = 0).
		 * However, this function is called from many places,
		 * including common code, so don't duplicate the message.
		 */
		if (rte_errno == EADDRNOTAVAIL)
			RTE_LOG(ERR, EAL, "Cannot reserve %llu bytes at [%p] - "
				"please use '--" OPT_BASE_VIRTADDR "' option\n",
				(unsigned long long)mem_sz, msl->base_va);
#endif
		return -1;
	}
	msl->base_va = addr;
	msl->len = mem_sz;

	RTE_LOG(DEBUG, EAL, "VA reserved for memseg list at %p, size %zx\n",
			addr, mem_sz);

	return 0;
}

void
eal_memseg_list_populate(struct rte_memseg_list *msl, void *addr, int n_segs)
{
	size_t page_sz = msl->page_sz;
	int i;

	for (i = 0; i < n_segs; i++) {
		struct rte_fbarray *arr = &msl->memseg_arr;
		struct rte_memseg *ms = rte_fbarray_get(arr, i);

		if (rte_eal_iova_mode() == RTE_IOVA_VA)
			ms->iova = (uintptr_t)addr;
		else
			ms->iova = RTE_BAD_IOVA;
		ms->addr = addr;
		ms->hugepage_sz = page_sz;
		ms->socket_id = 0;
		ms->len = page_sz;

		rte_fbarray_set_used(arr, i);

		addr = RTE_PTR_ADD(addr, page_sz);
	}
}

static struct rte_memseg *
virt2memseg(const void *addr, const struct rte_memseg_list *msl)
{
	const struct rte_fbarray *arr;
	void *start, *end;
	int ms_idx;

	if (msl == NULL)
		return NULL;

	/* a memseg list was specified, check if it's the right one */
	start = msl->base_va;
	end = RTE_PTR_ADD(start, msl->len);

	if (addr < start || addr >= end)
		return NULL;

	/* now, calculate index */
	arr = &msl->memseg_arr;
	ms_idx = RTE_PTR_DIFF(addr, msl->base_va) / msl->page_sz;
	return rte_fbarray_get(arr, ms_idx);
}

static struct rte_memseg_list *
virt2memseg_list(const void *addr)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	struct rte_memseg_list *msl;
	int msl_idx;

	for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
		void *start, *end;
		msl = &mcfg->memsegs[msl_idx];

		start = msl->base_va;
		end = RTE_PTR_ADD(start, msl->len);
		if (addr >= start && addr < end)
			break;
	}
	/* if we didn't find our memseg list */
	if (msl_idx == RTE_MAX_MEMSEG_LISTS)
		return NULL;
	return msl;
}

struct rte_memseg_list *
rte_mem_virt2memseg_list(const void *addr)
{
	return virt2memseg_list(addr);
}

struct virtiova {
	rte_iova_t iova;
	void *virt;
};
static int
find_virt(const struct rte_memseg_list *msl __rte_unused,
		const struct rte_memseg *ms, void *arg)
{
	struct virtiova *vi = arg;
	if (vi->iova >= ms->iova && vi->iova < (ms->iova + ms->len)) {
		size_t offset = vi->iova - ms->iova;
		vi->virt = RTE_PTR_ADD(ms->addr, offset);
		/* stop the walk */
		return 1;
	}
	return 0;
}
static int
find_virt_legacy(const struct rte_memseg_list *msl __rte_unused,
		const struct rte_memseg *ms, size_t len, void *arg)
{
	struct virtiova *vi = arg;
	if (vi->iova >= ms->iova && vi->iova < (ms->iova + len)) {
		size_t offset = vi->iova - ms->iova;
		vi->virt = RTE_PTR_ADD(ms->addr, offset);
		/* stop the walk */
		return 1;
	}
	return 0;
}

void *
rte_mem_iova2virt(rte_iova_t iova)
{
	struct virtiova vi;
	const struct internal_config *internal_conf =
		eal_get_internal_configuration();

	memset(&vi, 0, sizeof(vi));

	vi.iova = iova;
	/* for legacy mem, we can get away with scanning VA-contiguous segments,
	 * as we know they are PA-contiguous as well
	 */
	if (internal_conf->legacy_mem)
		rte_memseg_contig_walk(find_virt_legacy, &vi);
	else
		rte_memseg_walk(find_virt, &vi);

	return vi.virt;
}

struct rte_memseg *
rte_mem_virt2memseg(const void *addr, const struct rte_memseg_list *msl)
{
	return virt2memseg(addr, msl != NULL ? msl :
			rte_mem_virt2memseg_list(addr));
}

static int
physmem_size(const struct rte_memseg_list *msl, void *arg)
{
	uint64_t *total_len = arg;

	if (msl->external)
		return 0;

	*total_len += msl->memseg_arr.count * msl->page_sz;

	return 0;
}

/* get the total size of memory */
uint64_t
rte_eal_get_physmem_size(void)
{
	uint64_t total_len = 0;

	rte_memseg_list_walk(physmem_size, &total_len);

	return total_len;
}

static int
dump_memseg(const struct rte_memseg_list *msl, const struct rte_memseg *ms,
		void *arg)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	int msl_idx, ms_idx, fd;
	FILE *f = arg;

	msl_idx = msl - mcfg->memsegs;
	if (msl_idx < 0 || msl_idx >= RTE_MAX_MEMSEG_LISTS)
		return -1;

	ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
	if (ms_idx < 0)
		return -1;

	fd = eal_memalloc_get_seg_fd(msl_idx, ms_idx);
	fprintf(f, "Segment %i-%i: IOVA:0x%"PRIx64", len:%zu, "
			"virt:%p, socket_id:%"PRId32", "
			"hugepage_sz:%"PRIu64", nchannel:%"PRIx32", "
			"nrank:%"PRIx32" fd:%i\n",
			msl_idx, ms_idx,
			ms->iova,
			ms->len,
			ms->addr,
			ms->socket_id,
			ms->hugepage_sz,
			ms->nchannel,
			ms->nrank,
			fd);

	return 0;
}

/*
 * Defining here because declared in rte_memory.h, but the actual implementation
 * is in eal_common_memalloc.c, like all other memalloc internals.
 */
int
rte_mem_event_callback_register(const char *name, rte_mem_event_callback_t clb,
		void *arg)
{
	const struct internal_config *internal_conf =
		eal_get_internal_configuration();

	/* FreeBSD boots with legacy mem enabled by default */
	if (internal_conf->legacy_mem) {
		RTE_LOG(DEBUG, EAL, "Registering mem event callbacks not supported\n");
		rte_errno = ENOTSUP;
		return -1;
	}
	return eal_memalloc_mem_event_callback_register(name, clb, arg);
}

int
rte_mem_event_callback_unregister(const char *name, void *arg)
{
	const struct internal_config *internal_conf =
		eal_get_internal_configuration();

	/* FreeBSD boots with legacy mem enabled by default */
	if (internal_conf->legacy_mem) {
		RTE_LOG(DEBUG, EAL, "Registering mem event callbacks not supported\n");
		rte_errno = ENOTSUP;
		return -1;
	}
	return eal_memalloc_mem_event_callback_unregister(name, arg);
}

int
rte_mem_alloc_validator_register(const char *name,
		rte_mem_alloc_validator_t clb, int socket_id, size_t limit)
{
	const struct internal_config *internal_conf =
		eal_get_internal_configuration();

	/* FreeBSD boots with legacy mem enabled by default */
	if (internal_conf->legacy_mem) {
		RTE_LOG(DEBUG, EAL, "Registering mem alloc validators not supported\n");
		rte_errno = ENOTSUP;
		return -1;
	}
	return eal_memalloc_mem_alloc_validator_register(name, clb, socket_id,
			limit);
}

int
rte_mem_alloc_validator_unregister(const char *name, int socket_id)
{
	const struct internal_config *internal_conf =
		eal_get_internal_configuration();

	/* FreeBSD boots with legacy mem enabled by default */
	if (internal_conf->legacy_mem) {
		RTE_LOG(DEBUG, EAL, "Registering mem alloc validators not supported\n");
		rte_errno = ENOTSUP;
		return -1;
	}
	return eal_memalloc_mem_alloc_validator_unregister(name, socket_id);
}

/* Dump the physical memory layout on console */
void
rte_dump_physmem_layout(FILE *f)
{
	rte_memseg_walk(dump_memseg, f);
}

static int
check_iova(const struct rte_memseg_list *msl __rte_unused,
		const struct rte_memseg *ms, void *arg)
{
	uint64_t *mask = arg;
	rte_iova_t iova;

	/* higher address within segment */
	iova = (ms->iova + ms->len) - 1;
	if (!(iova & *mask))
		return 0;

	RTE_LOG(DEBUG, EAL, "memseg iova %"PRIx64", len %zx, out of range\n",
			    ms->iova, ms->len);

	RTE_LOG(DEBUG, EAL, "\tusing dma mask %"PRIx64"\n", *mask);
	return 1;
}

#define MAX_DMA_MASK_BITS 63

/* check memseg iovas are within the required range based on dma mask */
static int
check_dma_mask(uint8_t maskbits, bool thread_unsafe)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	uint64_t mask;
	int ret;

	/* Sanity check. We only check width can be managed with 64 bits
	 * variables. Indeed any higher value is likely wrong. */
	if (maskbits > MAX_DMA_MASK_BITS) {
		RTE_LOG(ERR, EAL, "wrong dma mask size %u (Max: %u)\n",
				   maskbits, MAX_DMA_MASK_BITS);
		return -1;
	}

	/* create dma mask */
	mask = ~((1ULL << maskbits) - 1);

	if (thread_unsafe)
		ret = rte_memseg_walk_thread_unsafe(check_iova, &mask);
	else
		ret = rte_memseg_walk(check_iova, &mask);

	if (ret)
		/*
		 * Dma mask precludes hugepage usage.
		 * This device can not be used and we do not need to keep
		 * the dma mask.
		 */
		return 1;

	/*
	 * we need to keep the more restricted maskbit for checking
	 * potential dynamic memory allocation in the future.
	 */
	mcfg->dma_maskbits = mcfg->dma_maskbits == 0 ? maskbits :
			     RTE_MIN(mcfg->dma_maskbits, maskbits);

	return 0;
}

int
rte_mem_check_dma_mask(uint8_t maskbits)
{
	return check_dma_mask(maskbits, false);
}

int
rte_mem_check_dma_mask_thread_unsafe(uint8_t maskbits)
{
	return check_dma_mask(maskbits, true);
}

/*
 * Set dma mask to use when memory initialization is done.
 *
 * This function should ONLY be used by code executed before the memory
 * initialization. PMDs should use rte_mem_check_dma_mask if addressing
 * limitations by the device.
 */
void
rte_mem_set_dma_mask(uint8_t maskbits)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;

	mcfg->dma_maskbits = mcfg->dma_maskbits == 0 ? maskbits :
			     RTE_MIN(mcfg->dma_maskbits, maskbits);
}

/* return the number of memory channels */
unsigned rte_memory_get_nchannel(void)
{
	return rte_eal_get_configuration()->mem_config->nchannel;
}

/* return the number of memory rank */
unsigned rte_memory_get_nrank(void)
{
	return rte_eal_get_configuration()->mem_config->nrank;
}

static int
rte_eal_memdevice_init(void)
{
	struct rte_config *config;
	const struct internal_config *internal_conf;

	if (rte_eal_process_type() == RTE_PROC_SECONDARY)
		return 0;

	internal_conf = eal_get_internal_configuration();
	config = rte_eal_get_configuration();
	config->mem_config->nchannel = internal_conf->force_nchannel;
	config->mem_config->nrank = internal_conf->force_nrank;

	return 0;
}

/* Lock page in physical memory and prevent from swapping. */
int
rte_mem_lock_page(const void *virt)
{
	uintptr_t virtual = (uintptr_t)virt;
	size_t page_size = rte_mem_page_size();
	uintptr_t aligned = RTE_PTR_ALIGN_FLOOR(virtual, page_size);
	return rte_mem_lock((void *)aligned, page_size);
}

int
rte_memseg_contig_walk_thread_unsafe(rte_memseg_contig_walk_t func, void *arg)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	int i, ms_idx, ret = 0;

	for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
		struct rte_memseg_list *msl = &mcfg->memsegs[i];
		const struct rte_memseg *ms;
		struct rte_fbarray *arr;

		if (msl->memseg_arr.count == 0)
			continue;

		arr = &msl->memseg_arr;

		ms_idx = rte_fbarray_find_next_used(arr, 0);
		while (ms_idx >= 0) {
			int n_segs;
			size_t len;

			ms = rte_fbarray_get(arr, ms_idx);

			/* find how many more segments there are, starting with
			 * this one.
			 */
			n_segs = rte_fbarray_find_contig_used(arr, ms_idx);
			len = n_segs * msl->page_sz;

			ret = func(msl, ms, len, arg);
			if (ret)
				return ret;
			ms_idx = rte_fbarray_find_next_used(arr,
					ms_idx + n_segs);
		}
	}
	return 0;
}

int
rte_memseg_contig_walk(rte_memseg_contig_walk_t func, void *arg)
{
	int ret = 0;

	/* do not allow allocations/frees/init while we iterate */
	rte_mcfg_mem_read_lock();
	ret = rte_memseg_contig_walk_thread_unsafe(func, arg);
	rte_mcfg_mem_read_unlock();

	return ret;
}

int
rte_memseg_walk_thread_unsafe(rte_memseg_walk_t func, void *arg)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	int i, ms_idx, ret = 0;

	for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
		struct rte_memseg_list *msl = &mcfg->memsegs[i];
		const struct rte_memseg *ms;
		struct rte_fbarray *arr;

		if (msl->memseg_arr.count == 0)
			continue;

		arr = &msl->memseg_arr;

		ms_idx = rte_fbarray_find_next_used(arr, 0);
		while (ms_idx >= 0) {
			ms = rte_fbarray_get(arr, ms_idx);
			ret = func(msl, ms, arg);
			if (ret)
				return ret;
			ms_idx = rte_fbarray_find_next_used(arr, ms_idx + 1);
		}
	}
	return 0;
}

int
rte_memseg_walk(rte_memseg_walk_t func, void *arg)
{
	int ret = 0;

	/* do not allow allocations/frees/init while we iterate */
	rte_mcfg_mem_read_lock();
	ret = rte_memseg_walk_thread_unsafe(func, arg);
	rte_mcfg_mem_read_unlock();

	return ret;
}

int
rte_memseg_list_walk_thread_unsafe(rte_memseg_list_walk_t func, void *arg)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	int i, ret = 0;

	for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
		struct rte_memseg_list *msl = &mcfg->memsegs[i];

		if (msl->base_va == NULL)
			continue;

		ret = func(msl, arg);
		if (ret)
			return ret;
	}
	return 0;
}

int
rte_memseg_list_walk(rte_memseg_list_walk_t func, void *arg)
{
	int ret = 0;

	/* do not allow allocations/frees/init while we iterate */
	rte_mcfg_mem_read_lock();
	ret = rte_memseg_list_walk_thread_unsafe(func, arg);
	rte_mcfg_mem_read_unlock();

	return ret;
}

int
rte_memseg_get_fd_thread_unsafe(const struct rte_memseg *ms)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	struct rte_memseg_list *msl;
	struct rte_fbarray *arr;
	int msl_idx, seg_idx, ret;

	if (ms == NULL) {
		rte_errno = EINVAL;
		return -1;
	}

	msl = rte_mem_virt2memseg_list(ms->addr);
	if (msl == NULL) {
		rte_errno = EINVAL;
		return -1;
	}
	arr = &msl->memseg_arr;

	msl_idx = msl - mcfg->memsegs;
	seg_idx = rte_fbarray_find_idx(arr, ms);

	if (!rte_fbarray_is_used(arr, seg_idx)) {
		rte_errno = ENOENT;
		return -1;
	}

	/* segment fd API is not supported for external segments */
	if (msl->external) {
		rte_errno = ENOTSUP;
		return -1;
	}

	ret = eal_memalloc_get_seg_fd(msl_idx, seg_idx);
	if (ret < 0) {
		rte_errno = -ret;
		ret = -1;
	}
	return ret;
}

int
rte_memseg_get_fd(const struct rte_memseg *ms)
{
	int ret;

	rte_mcfg_mem_read_lock();
	ret = rte_memseg_get_fd_thread_unsafe(ms);
	rte_mcfg_mem_read_unlock();

	return ret;
}

int
rte_memseg_get_fd_offset_thread_unsafe(const struct rte_memseg *ms,
		size_t *offset)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	struct rte_memseg_list *msl;
	struct rte_fbarray *arr;
	int msl_idx, seg_idx, ret;

	if (ms == NULL || offset == NULL) {
		rte_errno = EINVAL;
		return -1;
	}

	msl = rte_mem_virt2memseg_list(ms->addr);
	if (msl == NULL) {
		rte_errno = EINVAL;
		return -1;
	}
	arr = &msl->memseg_arr;

	msl_idx = msl - mcfg->memsegs;
	seg_idx = rte_fbarray_find_idx(arr, ms);

	if (!rte_fbarray_is_used(arr, seg_idx)) {
		rte_errno = ENOENT;
		return -1;
	}

	/* segment fd API is not supported for external segments */
	if (msl->external) {
		rte_errno = ENOTSUP;
		return -1;
	}

	ret = eal_memalloc_get_seg_fd_offset(msl_idx, seg_idx, offset);
	if (ret < 0) {
		rte_errno = -ret;
		ret = -1;
	}
	return ret;
}

int
rte_memseg_get_fd_offset(const struct rte_memseg *ms, size_t *offset)
{
	int ret;

	rte_mcfg_mem_read_lock();
	ret = rte_memseg_get_fd_offset_thread_unsafe(ms, offset);
	rte_mcfg_mem_read_unlock();

	return ret;
}

int
rte_extmem_register(void *va_addr, size_t len, rte_iova_t iova_addrs[],
		unsigned int n_pages, size_t page_sz)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	unsigned int socket_id, n;
	int ret = 0;

	if (va_addr == NULL || page_sz == 0 || len == 0 ||
			!rte_is_power_of_2(page_sz) ||
			RTE_ALIGN(len, page_sz) != len ||
			((len / page_sz) != n_pages && iova_addrs != NULL) ||
			!rte_is_aligned(va_addr, page_sz)) {
		rte_errno = EINVAL;
		return -1;
	}
	rte_mcfg_mem_write_lock();

	/* make sure the segment doesn't already exist */
	if (malloc_heap_find_external_seg(va_addr, len) != NULL) {
		rte_errno = EEXIST;
		ret = -1;
		goto unlock;
	}

	/* get next available socket ID */
	socket_id = mcfg->next_socket_id;
	if (socket_id > INT32_MAX) {
		RTE_LOG(ERR, EAL, "Cannot assign new socket ID's\n");
		rte_errno = ENOSPC;
		ret = -1;
		goto unlock;
	}

	/* we can create a new memseg */
	n = len / page_sz;
	if (malloc_heap_create_external_seg(va_addr, iova_addrs, n,
			page_sz, "extmem", socket_id) == NULL) {
		ret = -1;
		goto unlock;
	}

	/* memseg list successfully created - increment next socket ID */
	mcfg->next_socket_id++;
unlock:
	rte_mcfg_mem_write_unlock();
	return ret;
}

int
rte_extmem_unregister(void *va_addr, size_t len)
{
	struct rte_memseg_list *msl;
	int ret = 0;

	if (va_addr == NULL || len == 0) {
		rte_errno = EINVAL;
		return -1;
	}
	rte_mcfg_mem_write_lock();

	/* find our segment */
	msl = malloc_heap_find_external_seg(va_addr, len);
	if (msl == NULL) {
		rte_errno = ENOENT;
		ret = -1;
		goto unlock;
	}

	ret = malloc_heap_destroy_external_seg(msl);
unlock:
	rte_mcfg_mem_write_unlock();
	return ret;
}

static int
sync_memory(void *va_addr, size_t len, bool attach)
{
	struct rte_memseg_list *msl;
	int ret = 0;

	if (va_addr == NULL || len == 0) {
		rte_errno = EINVAL;
		return -1;
	}
	rte_mcfg_mem_write_lock();

	/* find our segment */
	msl = malloc_heap_find_external_seg(va_addr, len);
	if (msl == NULL) {
		rte_errno = ENOENT;
		ret = -1;
		goto unlock;
	}
	if (attach)
		ret = rte_fbarray_attach(&msl->memseg_arr);
	else
		ret = rte_fbarray_detach(&msl->memseg_arr);

unlock:
	rte_mcfg_mem_write_unlock();
	return ret;
}

int
rte_extmem_attach(void *va_addr, size_t len)
{
	return sync_memory(va_addr, len, true);
}

int
rte_extmem_detach(void *va_addr, size_t len)
{
	return sync_memory(va_addr, len, false);
}

/* init memory subsystem */
int
rte_eal_memory_init(void)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	const struct internal_config *internal_conf =
		eal_get_internal_configuration();

	int retval;
	RTE_LOG(DEBUG, EAL, "Setting up physically contiguous memory...\n");

	if (!mcfg)
		return -1;

	/* lock mem hotplug here, to prevent races while we init */
	rte_mcfg_mem_read_lock();

	if (rte_eal_memseg_init() < 0)
		goto fail;

	if (eal_memalloc_init() < 0)
		goto fail;

	retval = rte_eal_process_type() == RTE_PROC_PRIMARY ?
			rte_eal_hugepage_init() :
			rte_eal_hugepage_attach();
	if (retval < 0)
		goto fail;

	if (internal_conf->no_shconf == 0 && rte_eal_memdevice_init() < 0)
		goto fail;

	return 0;
fail:
	rte_mcfg_mem_read_unlock();
	return -1;
}