DPDK logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2010-2014 Intel Corporation.
 * Copyright(c) 2013 6WIND S.A.
 */

#include <errno.h>
#include <fcntl.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <inttypes.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/queue.h>
#include <sys/file.h>
#include <sys/resource.h>
#include <unistd.h>
#include <limits.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <signal.h>
#include <setjmp.h>
#ifdef F_ADD_SEALS /* if file sealing is supported, so is memfd */
#include <linux/memfd.h>
#define MEMFD_SUPPORTED
#endif
#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
#include <numa.h>
#include <numaif.h>
#endif

#include <rte_errno.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_common.h>
#include <rte_string_fns.h>

#include "eal_private.h"
#include "eal_memalloc.h"
#include "eal_memcfg.h"
#include "eal_internal_cfg.h"
#include "eal_filesystem.h"
#include "eal_hugepages.h"
#include "eal_options.h"

#define PFN_MASK_SIZE	8

/**
 * @file
 * Huge page mapping under linux
 *
 * To reserve a big contiguous amount of memory, we use the hugepage
 * feature of linux. For that, we need to have hugetlbfs mounted. This
 * code will create many files in this directory (one per page) and
 * map them in virtual memory. For each page, we will retrieve its
 * physical address and remap it in order to have a virtual contiguous
 * zone as well as a physical contiguous zone.
 */

static int phys_addrs_available = -1;

#define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space"

uint64_t eal_get_baseaddr(void)
{
	/*
	 * Linux kernel uses a really high address as starting address for
	 * serving mmaps calls. If there exists addressing limitations and IOVA
	 * mode is VA, this starting address is likely too high for those
	 * devices. However, it is possible to use a lower address in the
	 * process virtual address space as with 64 bits there is a lot of
	 * available space.
	 *
	 * Current known limitations are 39 or 40 bits. Setting the starting
	 * address at 4GB implies there are 508GB or 1020GB for mapping the
	 * available hugepages. This is likely enough for most systems, although
	 * a device with addressing limitations should call
	 * rte_mem_check_dma_mask for ensuring all memory is within supported
	 * range.
	 */
	return 0x100000000ULL;
}

/*
 * Get physical address of any mapped virtual address in the current process.
 */
phys_addr_t
rte_mem_virt2phy(const void *virtaddr)
{
	int fd, retval;
	uint64_t page, physaddr;
	unsigned long virt_pfn;
	int page_size;
	off_t offset;

	if (phys_addrs_available == 0)
		return RTE_BAD_IOVA;

	/* standard page size */
	page_size = getpagesize();

	fd = open("/proc/self/pagemap", O_RDONLY);
	if (fd < 0) {
		RTE_LOG(INFO, EAL, "%s(): cannot open /proc/self/pagemap: %s\n",
			__func__, strerror(errno));
		return RTE_BAD_IOVA;
	}

	virt_pfn = (unsigned long)virtaddr / page_size;
	offset = sizeof(uint64_t) * virt_pfn;
	if (lseek(fd, offset, SEEK_SET) == (off_t) -1) {
		RTE_LOG(INFO, EAL, "%s(): seek error in /proc/self/pagemap: %s\n",
				__func__, strerror(errno));
		close(fd);
		return RTE_BAD_IOVA;
	}

	retval = read(fd, &page, PFN_MASK_SIZE);
	close(fd);
	if (retval < 0) {
		RTE_LOG(INFO, EAL, "%s(): cannot read /proc/self/pagemap: %s\n",
				__func__, strerror(errno));
		return RTE_BAD_IOVA;
	} else if (retval != PFN_MASK_SIZE) {
		RTE_LOG(INFO, EAL, "%s(): read %d bytes from /proc/self/pagemap "
				"but expected %d:\n",
				__func__, retval, PFN_MASK_SIZE);
		return RTE_BAD_IOVA;
	}

	/*
	 * the pfn (page frame number) are bits 0-54 (see
	 * pagemap.txt in linux Documentation)
	 */
	if ((page & 0x7fffffffffffffULL) == 0)
		return RTE_BAD_IOVA;

	physaddr = ((page & 0x7fffffffffffffULL) * page_size)
		+ ((unsigned long)virtaddr % page_size);

	return physaddr;
}

rte_iova_t
rte_mem_virt2iova(const void *virtaddr)
{
	if (rte_eal_iova_mode() == RTE_IOVA_VA)
		return (uintptr_t)virtaddr;
	return rte_mem_virt2phy(virtaddr);
}

/*
 * For each hugepage in hugepg_tbl, fill the physaddr value. We find
 * it by browsing the /proc/self/pagemap special file.
 */
static int
find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
{
	unsigned int i;
	phys_addr_t addr;

	for (i = 0; i < hpi->num_pages[0]; i++) {
		addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va);
		if (addr == RTE_BAD_PHYS_ADDR)
			return -1;
		hugepg_tbl[i].physaddr = addr;
	}
	return 0;
}

/*
 * For each hugepage in hugepg_tbl, fill the physaddr value sequentially.
 */
static int
set_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
{
	unsigned int i;
	static phys_addr_t addr;

	for (i = 0; i < hpi->num_pages[0]; i++) {
		hugepg_tbl[i].physaddr = addr;
		addr += hugepg_tbl[i].size;
	}
	return 0;
}

/*
 * Check whether address-space layout randomization is enabled in
 * the kernel. This is important for multi-process as it can prevent
 * two processes mapping data to the same virtual address
 * Returns:
 *    0 - address space randomization disabled
 *    1/2 - address space randomization enabled
 *    negative error code on error
 */
static int
aslr_enabled(void)
{
	char c;
	int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY);
	if (fd < 0)
		return -errno;
	retval = read(fd, &c, 1);
	close(fd);
	if (retval < 0)
		return -errno;
	if (retval == 0)
		return -EIO;
	switch (c) {
		case '0' : return 0;
		case '1' : return 1;
		case '2' : return 2;
		default: return -EINVAL;
	}
}

static sigjmp_buf huge_jmpenv;

static void huge_sigbus_handler(int signo __rte_unused)
{
	siglongjmp(huge_jmpenv, 1);
}

/* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
 * non-static local variable in the stack frame calling sigsetjmp might be
 * clobbered by a call to longjmp.
 */
static int huge_wrap_sigsetjmp(void)
{
	return sigsetjmp(huge_jmpenv, 1);
}

#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
/* Callback for numa library. */
void numa_error(char *where)
{
	RTE_LOG(ERR, EAL, "%s failed: %s\n", where, strerror(errno));
}
#endif

/*
 * Mmap all hugepages of hugepage table: it first open a file in
 * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the
 * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored
 * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to
 * map contiguous physical blocks in contiguous virtual blocks.
 */
static unsigned
map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi,
		  uint64_t *essential_memory __rte_unused)
{
	int fd;
	unsigned i;
	void *virtaddr;
#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
	int node_id = -1;
	int essential_prev = 0;
	int oldpolicy;
	struct bitmask *oldmask = NULL;
	bool have_numa = true;
	unsigned long maxnode = 0;
	const struct internal_config *internal_conf =
		eal_get_internal_configuration();

	/* Check if kernel supports NUMA. */
	if (numa_available() != 0) {
		RTE_LOG(DEBUG, EAL, "NUMA is not supported.\n");
		have_numa = false;
	}

	if (have_numa) {
		RTE_LOG(DEBUG, EAL, "Trying to obtain current memory policy.\n");
		oldmask = numa_allocate_nodemask();
		if (get_mempolicy(&oldpolicy, oldmask->maskp,
				  oldmask->size + 1, 0, 0) < 0) {
			RTE_LOG(ERR, EAL,
				"Failed to get current mempolicy: %s. "
				"Assuming MPOL_DEFAULT.\n", strerror(errno));
			oldpolicy = MPOL_DEFAULT;
		}
		for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
			if (internal_conf->socket_mem[i])
				maxnode = i + 1;
	}
#endif

	for (i = 0; i < hpi->num_pages[0]; i++) {
		struct hugepage_file *hf = &hugepg_tbl[i];
		uint64_t hugepage_sz = hpi->hugepage_sz;

#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
		if (maxnode) {
			unsigned int j;

			for (j = 0; j < maxnode; j++)
				if (essential_memory[j])
					break;

			if (j == maxnode) {
				node_id = (node_id + 1) % maxnode;
				while (!internal_conf->socket_mem[node_id]) {
					node_id++;
					node_id %= maxnode;
				}
				essential_prev = 0;
			} else {
				node_id = j;
				essential_prev = essential_memory[j];

				if (essential_memory[j] < hugepage_sz)
					essential_memory[j] = 0;
				else
					essential_memory[j] -= hugepage_sz;
			}

			RTE_LOG(DEBUG, EAL,
				"Setting policy MPOL_PREFERRED for socket %d\n",
				node_id);
			numa_set_preferred(node_id);
		}
#endif

		hf->file_id = i;
		hf->size = hugepage_sz;
		eal_get_hugefile_path(hf->filepath, sizeof(hf->filepath),
				hpi->hugedir, hf->file_id);
		hf->filepath[sizeof(hf->filepath) - 1] = '\0';

		/* try to create hugepage file */
		fd = open(hf->filepath, O_CREAT | O_RDWR, 0600);
		if (fd < 0) {
			RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__,
					strerror(errno));
			goto out;
		}

		/* map the segment, and populate page tables,
		 * the kernel fills this segment with zeros. we don't care where
		 * this gets mapped - we already have contiguous memory areas
		 * ready for us to map into.
		 */
		virtaddr = mmap(NULL, hugepage_sz, PROT_READ | PROT_WRITE,
				MAP_SHARED | MAP_POPULATE, fd, 0);
		if (virtaddr == MAP_FAILED) {
			RTE_LOG(DEBUG, EAL, "%s(): mmap failed: %s\n", __func__,
					strerror(errno));
			close(fd);
			goto out;
		}

		hf->orig_va = virtaddr;

		/* In linux, hugetlb limitations, like cgroup, are
		 * enforced at fault time instead of mmap(), even
		 * with the option of MAP_POPULATE. Kernel will send
		 * a SIGBUS signal. To avoid to be killed, save stack
		 * environment here, if SIGBUS happens, we can jump
		 * back here.
		 */
		if (huge_wrap_sigsetjmp()) {
			RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more "
				"hugepages of size %u MB\n",
				(unsigned int)(hugepage_sz / 0x100000));
			munmap(virtaddr, hugepage_sz);
			close(fd);
			unlink(hugepg_tbl[i].filepath);
#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
			if (maxnode)
				essential_memory[node_id] =
					essential_prev;
#endif
			goto out;
		}
		*(int *)virtaddr = 0;

		/* set shared lock on the file. */
		if (flock(fd, LOCK_SH) < 0) {
			RTE_LOG(DEBUG, EAL, "%s(): Locking file failed:%s \n",
				__func__, strerror(errno));
			close(fd);
			goto out;
		}

		close(fd);
	}

out:
#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
	if (maxnode) {
		RTE_LOG(DEBUG, EAL,
			"Restoring previous memory policy: %d\n", oldpolicy);
		if (oldpolicy == MPOL_DEFAULT) {
			numa_set_localalloc();
		} else if (set_mempolicy(oldpolicy, oldmask->maskp,
					 oldmask->size + 1) < 0) {
			RTE_LOG(ERR, EAL, "Failed to restore mempolicy: %s\n",
				strerror(errno));
			numa_set_localalloc();
		}
	}
	if (oldmask != NULL)
		numa_free_cpumask(oldmask);
#endif
	return i;
}

/*
 * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge
 * page.
 */
static int
find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
{
	int socket_id;
	char *end, *nodestr;
	unsigned i, hp_count = 0;
	uint64_t virt_addr;
	char buf[BUFSIZ];
	char hugedir_str[PATH_MAX];
	FILE *f;

	f = fopen("/proc/self/numa_maps", "r");
	if (f == NULL) {
		RTE_LOG(NOTICE, EAL, "NUMA support not available"
			" consider that all memory is in socket_id 0\n");
		return 0;
	}

	snprintf(hugedir_str, sizeof(hugedir_str),
			"%s/%s", hpi->hugedir, eal_get_hugefile_prefix());

	/* parse numa map */
	while (fgets(buf, sizeof(buf), f) != NULL) {

		/* ignore non huge page */
		if (strstr(buf, " huge ") == NULL &&
				strstr(buf, hugedir_str) == NULL)
			continue;

		/* get zone addr */
		virt_addr = strtoull(buf, &end, 16);
		if (virt_addr == 0 || end == buf) {
			RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
			goto error;
		}

		/* get node id (socket id) */
		nodestr = strstr(buf, " N");
		if (nodestr == NULL) {
			RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
			goto error;
		}
		nodestr += 2;
		end = strstr(nodestr, "=");
		if (end == NULL) {
			RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
			goto error;
		}
		end[0] = '\0';
		end = NULL;

		socket_id = strtoul(nodestr, &end, 0);
		if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) {
			RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
			goto error;
		}

		/* if we find this page in our mappings, set socket_id */
		for (i = 0; i < hpi->num_pages[0]; i++) {
			void *va = (void *)(unsigned long)virt_addr;
			if (hugepg_tbl[i].orig_va == va) {
				hugepg_tbl[i].socket_id = socket_id;
				hp_count++;
#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
				RTE_LOG(DEBUG, EAL,
					"Hugepage %s is on socket %d\n",
					hugepg_tbl[i].filepath, socket_id);
#endif
			}
		}
	}

	if (hp_count < hpi->num_pages[0])
		goto error;

	fclose(f);
	return 0;

error:
	fclose(f);
	return -1;
}

static int
cmp_physaddr(const void *a, const void *b)
{
#ifndef RTE_ARCH_PPC_64
	const struct hugepage_file *p1 = a;
	const struct hugepage_file *p2 = b;
#else
	/* PowerPC needs memory sorted in reverse order from x86 */
	const struct hugepage_file *p1 = b;
	const struct hugepage_file *p2 = a;
#endif
	if (p1->physaddr < p2->physaddr)
		return -1;
	else if (p1->physaddr > p2->physaddr)
		return 1;
	else
		return 0;
}

/*
 * Uses mmap to create a shared memory area for storage of data
 * Used in this file to store the hugepage file map on disk
 */
static void *
create_shared_memory(const char *filename, const size_t mem_size)
{
	void *retval;
	int fd;
	const struct internal_config *internal_conf =
		eal_get_internal_configuration();

	/* if no shared files mode is used, create anonymous memory instead */
	if (internal_conf->no_shconf) {
		retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE,
				MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
		if (retval == MAP_FAILED)
			return NULL;
		return retval;
	}

	fd = open(filename, O_CREAT | O_RDWR, 0600);
	if (fd < 0)
		return NULL;
	if (ftruncate(fd, mem_size) < 0) {
		close(fd);
		return NULL;
	}
	retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
	close(fd);
	if (retval == MAP_FAILED)
		return NULL;
	return retval;
}

/*
 * this copies *active* hugepages from one hugepage table to another.
 * destination is typically the shared memory.
 */
static int
copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size,
		const struct hugepage_file * src, int src_size)
{
	int src_pos, dst_pos = 0;

	for (src_pos = 0; src_pos < src_size; src_pos++) {
		if (src[src_pos].orig_va != NULL) {
			/* error on overflow attempt */
			if (dst_pos == dest_size)
				return -1;
			memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file));
			dst_pos++;
		}
	}
	return 0;
}

static int
unlink_hugepage_files(struct hugepage_file *hugepg_tbl,
		unsigned num_hp_info)
{
	unsigned socket, size;
	int page, nrpages = 0;
	const struct internal_config *internal_conf =
		eal_get_internal_configuration();

	/* get total number of hugepages */
	for (size = 0; size < num_hp_info; size++)
		for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
			nrpages +=
			internal_conf->hugepage_info[size].num_pages[socket];

	for (page = 0; page < nrpages; page++) {
		struct hugepage_file *hp = &hugepg_tbl[page];

		if (hp->orig_va != NULL && unlink(hp->filepath)) {
			RTE_LOG(WARNING, EAL, "%s(): Removing %s failed: %s\n",
				__func__, hp->filepath, strerror(errno));
		}
	}
	return 0;
}

/*
 * unmaps hugepages that are not going to be used. since we originally allocate
 * ALL hugepages (not just those we need), additional unmapping needs to be done.
 */
static int
unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl,
		struct hugepage_info *hpi,
		unsigned num_hp_info)
{
	unsigned socket, size;
	int page, nrpages = 0;
	const struct internal_config *internal_conf =
		eal_get_internal_configuration();

	/* get total number of hugepages */
	for (size = 0; size < num_hp_info; size++)
		for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
			nrpages += internal_conf->hugepage_info[size].num_pages[socket];

	for (size = 0; size < num_hp_info; size++) {
		for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
			unsigned pages_found = 0;

			/* traverse until we have unmapped all the unused pages */
			for (page = 0; page < nrpages; page++) {
				struct hugepage_file *hp = &hugepg_tbl[page];

				/* find a page that matches the criteria */
				if ((hp->size == hpi[size].hugepage_sz) &&
						(hp->socket_id == (int) socket)) {

					/* if we skipped enough pages, unmap the rest */
					if (pages_found == hpi[size].num_pages[socket]) {
						uint64_t unmap_len;

						unmap_len = hp->size;

						/* get start addr and len of the remaining segment */
						munmap(hp->orig_va,
							(size_t)unmap_len);

						hp->orig_va = NULL;
						if (unlink(hp->filepath) == -1) {
							RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n",
									__func__, hp->filepath, strerror(errno));
							return -1;
						}
					} else {
						/* lock the page and skip */
						pages_found++;
					}

				} /* match page */
			} /* foreach page */
		} /* foreach socket */
	} /* foreach pagesize */

	return 0;
}

static int
remap_segment(struct hugepage_file *hugepages, int seg_start, int seg_end)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	struct rte_memseg_list *msl;
	struct rte_fbarray *arr;
	int cur_page, seg_len;
	unsigned int msl_idx;
	int ms_idx;
	uint64_t page_sz;
	size_t memseg_len;
	int socket_id;
#ifndef RTE_ARCH_64
	const struct internal_config *internal_conf =
		eal_get_internal_configuration();
#endif
	page_sz = hugepages[seg_start].size;
	socket_id = hugepages[seg_start].socket_id;
	seg_len = seg_end - seg_start;

	RTE_LOG(DEBUG, EAL, "Attempting to map %" PRIu64 "M on socket %i\n",
			(seg_len * page_sz) >> 20ULL, socket_id);

	/* find free space in memseg lists */
	for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
		bool empty;
		msl = &mcfg->memsegs[msl_idx];
		arr = &msl->memseg_arr;

		if (msl->page_sz != page_sz)
			continue;
		if (msl->socket_id != socket_id)
			continue;

		/* leave space for a hole if array is not empty */
		empty = arr->count == 0;
		ms_idx = rte_fbarray_find_next_n_free(arr, 0,
				seg_len + (empty ? 0 : 1));

		/* memseg list is full? */
		if (ms_idx < 0)
			continue;

		/* leave some space between memsegs, they are not IOVA
		 * contiguous, so they shouldn't be VA contiguous either.
		 */
		if (!empty)
			ms_idx++;
		break;
	}
	if (msl_idx == RTE_MAX_MEMSEG_LISTS) {
		RTE_LOG(ERR, EAL, "Could not find space for memseg. Please increase %s and/or %s in configuration.\n",
				RTE_STR(CONFIG_RTE_MAX_MEMSEG_PER_TYPE),
				RTE_STR(CONFIG_RTE_MAX_MEM_PER_TYPE));
		return -1;
	}

#ifdef RTE_ARCH_PPC_64
	/* for PPC64 we go through the list backwards */
	for (cur_page = seg_end - 1; cur_page >= seg_start;
			cur_page--, ms_idx++) {
#else
	for (cur_page = seg_start; cur_page < seg_end; cur_page++, ms_idx++) {
#endif
		struct hugepage_file *hfile = &hugepages[cur_page];
		struct rte_memseg *ms = rte_fbarray_get(arr, ms_idx);
		void *addr;
		int fd;

		fd = open(hfile->filepath, O_RDWR);
		if (fd < 0) {
			RTE_LOG(ERR, EAL, "Could not open '%s': %s\n",
					hfile->filepath, strerror(errno));
			return -1;
		}
		/* set shared lock on the file. */
		if (flock(fd, LOCK_SH) < 0) {
			RTE_LOG(DEBUG, EAL, "Could not lock '%s': %s\n",
					hfile->filepath, strerror(errno));
			close(fd);
			return -1;
		}
		memseg_len = (size_t)page_sz;
		addr = RTE_PTR_ADD(msl->base_va, ms_idx * memseg_len);

		/* we know this address is already mmapped by memseg list, so
		 * using MAP_FIXED here is safe
		 */
		addr = mmap(addr, page_sz, PROT_READ | PROT_WRITE,
				MAP_SHARED | MAP_POPULATE | MAP_FIXED, fd, 0);
		if (addr == MAP_FAILED) {
			RTE_LOG(ERR, EAL, "Couldn't remap '%s': %s\n",
					hfile->filepath, strerror(errno));
			close(fd);
			return -1;
		}

		/* we have a new address, so unmap previous one */
#ifndef RTE_ARCH_64
		/* in 32-bit legacy mode, we have already unmapped the page */
		if (!internal_conf->legacy_mem)
			munmap(hfile->orig_va, page_sz);
#else
		munmap(hfile->orig_va, page_sz);
#endif

		hfile->orig_va = NULL;
		hfile->final_va = addr;

		/* rewrite physical addresses in IOVA as VA mode */
		if (rte_eal_iova_mode() == RTE_IOVA_VA)
			hfile->physaddr = (uintptr_t)addr;

		/* set up memseg data */
		ms->addr = addr;
		ms->hugepage_sz = page_sz;
		ms->len = memseg_len;
		ms->iova = hfile->physaddr;
		ms->socket_id = hfile->socket_id;
		ms->nchannel = rte_memory_get_nchannel();
		ms->nrank = rte_memory_get_nrank();

		rte_fbarray_set_used(arr, ms_idx);

		/* store segment fd internally */
		if (eal_memalloc_set_seg_fd(msl_idx, ms_idx, fd) < 0)
			RTE_LOG(ERR, EAL, "Could not store segment fd: %s\n",
				rte_strerror(rte_errno));
	}
	RTE_LOG(DEBUG, EAL, "Allocated %" PRIu64 "M on socket %i\n",
			(seg_len * page_sz) >> 20, socket_id);
	return 0;
}

static uint64_t
get_mem_amount(uint64_t page_sz, uint64_t max_mem)
{
	uint64_t area_sz, max_pages;

	/* limit to RTE_MAX_MEMSEG_PER_LIST pages or RTE_MAX_MEM_MB_PER_LIST */
	max_pages = RTE_MAX_MEMSEG_PER_LIST;
	max_mem = RTE_MIN((uint64_t)RTE_MAX_MEM_MB_PER_LIST << 20, max_mem);

	area_sz = RTE_MIN(page_sz * max_pages, max_mem);

	/* make sure the list isn't smaller than the page size */
	area_sz = RTE_MAX(area_sz, page_sz);

	return RTE_ALIGN(area_sz, page_sz);
}

static int
memseg_list_free(struct rte_memseg_list *msl)
{
	if (rte_fbarray_destroy(&msl->memseg_arr)) {
		RTE_LOG(ERR, EAL, "Cannot destroy memseg list\n");
		return -1;
	}
	memset(msl, 0, sizeof(*msl));
	return 0;
}

/*
 * Our VA space is not preallocated yet, so preallocate it here. We need to know
 * how many segments there are in order to map all pages into one address space,
 * and leave appropriate holes between segments so that rte_malloc does not
 * concatenate them into one big segment.
 *
 * we also need to unmap original pages to free up address space.
 */
static int __rte_unused
prealloc_segments(struct hugepage_file *hugepages, int n_pages)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	int cur_page, seg_start_page, end_seg, new_memseg;
	unsigned int hpi_idx, socket, i;
	int n_contig_segs, n_segs;
	int msl_idx;
	const struct internal_config *internal_conf =
		eal_get_internal_configuration();

	/* before we preallocate segments, we need to free up our VA space.
	 * we're not removing files, and we already have information about
	 * PA-contiguousness, so it is safe to unmap everything.
	 */
	for (cur_page = 0; cur_page < n_pages; cur_page++) {
		struct hugepage_file *hpi = &hugepages[cur_page];
		munmap(hpi->orig_va, hpi->size);
		hpi->orig_va = NULL;
	}

	/* we cannot know how many page sizes and sockets we have discovered, so
	 * loop over all of them
	 */
	for (hpi_idx = 0; hpi_idx < internal_conf->num_hugepage_sizes;
			hpi_idx++) {
		uint64_t page_sz =
			internal_conf->hugepage_info[hpi_idx].hugepage_sz;

		for (i = 0; i < rte_socket_count(); i++) {
			struct rte_memseg_list *msl;

			socket = rte_socket_id_by_idx(i);
			n_contig_segs = 0;
			n_segs = 0;
			seg_start_page = -1;

			for (cur_page = 0; cur_page < n_pages; cur_page++) {
				struct hugepage_file *prev, *cur;
				int prev_seg_start_page = -1;

				cur = &hugepages[cur_page];
				prev = cur_page == 0 ? NULL :
						&hugepages[cur_page - 1];

				new_memseg = 0;
				end_seg = 0;

				if (cur->size == 0)
					end_seg = 1;
				else if (cur->socket_id != (int) socket)
					end_seg = 1;
				else if (cur->size != page_sz)
					end_seg = 1;
				else if (cur_page == 0)
					new_memseg = 1;
#ifdef RTE_ARCH_PPC_64
				/* On PPC64 architecture, the mmap always start
				 * from higher address to lower address. Here,
				 * physical addresses are in descending order.
				 */
				else if ((prev->physaddr - cur->physaddr) !=
						cur->size)
					new_memseg = 1;
#else
				else if ((cur->physaddr - prev->physaddr) !=
						cur->size)
					new_memseg = 1;
#endif
				if (new_memseg) {
					/* if we're already inside a segment,
					 * new segment means end of current one
					 */
					if (seg_start_page != -1) {
						end_seg = 1;
						prev_seg_start_page =
								seg_start_page;
					}
					seg_start_page = cur_page;
				}

				if (end_seg) {
					if (prev_seg_start_page != -1) {
						/* we've found a new segment */
						n_contig_segs++;
						n_segs += cur_page -
							prev_seg_start_page;
					} else if (seg_start_page != -1) {
						/* we didn't find new segment,
						 * but did end current one
						 */
						n_contig_segs++;
						n_segs += cur_page -
								seg_start_page;
						seg_start_page = -1;
						continue;
					} else {
						/* we're skipping this page */
						continue;
					}
				}
				/* segment continues */
			}
			/* check if we missed last segment */
			if (seg_start_page != -1) {
				n_contig_segs++;
				n_segs += cur_page - seg_start_page;
			}

			/* if no segments were found, do not preallocate */
			if (n_segs == 0)
				continue;

			/* we now have total number of pages that we will
			 * allocate for this segment list. add separator pages
			 * to the total count, and preallocate VA space.
			 */
			n_segs += n_contig_segs - 1;

			/* now, preallocate VA space for these segments */

			/* first, find suitable memseg list for this */
			for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS;
					msl_idx++) {
				msl = &mcfg->memsegs[msl_idx];

				if (msl->base_va != NULL)
					continue;
				break;
			}
			if (msl_idx == RTE_MAX_MEMSEG_LISTS) {
				RTE_LOG(ERR, EAL, "Not enough space in memseg lists, please increase %s\n",
					RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
				return -1;
			}

			/* now, allocate fbarray itself */
			if (eal_memseg_list_init(msl, page_sz, n_segs,
					socket, msl_idx, true) < 0)
				return -1;

			/* finally, allocate VA space */
			if (eal_memseg_list_alloc(msl, 0) < 0) {
				RTE_LOG(ERR, EAL, "Cannot preallocate 0x%"PRIx64"kB hugepages\n",
					page_sz >> 10);
				return -1;
			}
		}
	}
	return 0;
}

/*
 * We cannot reallocate memseg lists on the fly because PPC64 stores pages
 * backwards, therefore we have to process the entire memseg first before
 * remapping it into memseg list VA space.
 */
static int
remap_needed_hugepages(struct hugepage_file *hugepages, int n_pages)
{
	int cur_page, seg_start_page, new_memseg, ret;

	seg_start_page = 0;
	for (cur_page = 0; cur_page < n_pages; cur_page++) {
		struct hugepage_file *prev, *cur;

		new_memseg = 0;

		cur = &hugepages[cur_page];
		prev = cur_page == 0 ? NULL : &hugepages[cur_page - 1];

		/* if size is zero, no more pages left */
		if (cur->size == 0)
			break;

		if (cur_page == 0)
			new_memseg = 1;
		else if (cur->socket_id != prev->socket_id)
			new_memseg = 1;
		else if (cur->size != prev->size)
			new_memseg = 1;
#ifdef RTE_ARCH_PPC_64
		/* On PPC64 architecture, the mmap always start from higher
		 * address to lower address. Here, physical addresses are in
		 * descending order.
		 */
		else if ((prev->physaddr - cur->physaddr) != cur->size)
			new_memseg = 1;
#else
		else if ((cur->physaddr - prev->physaddr) != cur->size)
			new_memseg = 1;
#endif

		if (new_memseg) {
			/* if this isn't the first time, remap segment */
			if (cur_page != 0) {
				ret = remap_segment(hugepages, seg_start_page,
						cur_page);
				if (ret != 0)
					return -1;
			}
			/* remember where we started */
			seg_start_page = cur_page;
		}
		/* continuation of previous memseg */
	}
	/* we were stopped, but we didn't remap the last segment, do it now */
	if (cur_page != 0) {
		ret = remap_segment(hugepages, seg_start_page,
				cur_page);
		if (ret != 0)
			return -1;
	}
	return 0;
}

static inline size_t
eal_get_hugepage_mem_size(void)
{
	uint64_t size = 0;
	unsigned i, j;
	struct internal_config *internal_conf =
		eal_get_internal_configuration();

	for (i = 0; i < internal_conf->num_hugepage_sizes; i++) {
		struct hugepage_info *hpi = &internal_conf->hugepage_info[i];
		if (strnlen(hpi->hugedir, sizeof(hpi->hugedir)) != 0) {
			for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
				size += hpi->hugepage_sz * hpi->num_pages[j];
			}
		}
	}

	return (size < SIZE_MAX) ? (size_t)(size) : SIZE_MAX;
}

static struct sigaction huge_action_old;
static int huge_need_recover;

static void
huge_register_sigbus(void)
{
	sigset_t mask;
	struct sigaction action;

	sigemptyset(&mask);
	sigaddset(&mask, SIGBUS);
	action.sa_flags = 0;
	action.sa_mask = mask;
	action.sa_handler = huge_sigbus_handler;

	huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
}

static void
huge_recover_sigbus(void)
{
	if (huge_need_recover) {
		sigaction(SIGBUS, &huge_action_old, NULL);
		huge_need_recover = 0;
	}
}

/*
 * Prepare physical memory mapping: fill configuration structure with
 * these infos, return 0 on success.
 *  1. map N huge pages in separate files in hugetlbfs
 *  2. find associated physical addr
 *  3. find associated NUMA socket ID
 *  4. sort all huge pages by physical address
 *  5. remap these N huge pages in the correct order
 *  6. unmap the first mapping
 *  7. fill memsegs in configuration with contiguous zones
 */
static int
eal_legacy_hugepage_init(void)
{
	struct rte_mem_config *mcfg;
	struct hugepage_file *hugepage = NULL, *tmp_hp = NULL;
	struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
	struct internal_config *internal_conf =
		eal_get_internal_configuration();

	uint64_t memory[RTE_MAX_NUMA_NODES];

	unsigned hp_offset;
	int i, j;
	int nr_hugefiles, nr_hugepages = 0;
	void *addr;

	memset(used_hp, 0, sizeof(used_hp));

	/* get pointer to global configuration */
	mcfg = rte_eal_get_configuration()->mem_config;

	/* hugetlbfs can be disabled */
	if (internal_conf->no_hugetlbfs) {
		void *prealloc_addr;
		size_t mem_sz;
		struct rte_memseg_list *msl;
		int n_segs, fd, flags;
#ifdef MEMFD_SUPPORTED
		int memfd;
#endif
		uint64_t page_sz;

		/* nohuge mode is legacy mode */
		internal_conf->legacy_mem = 1;

		/* nohuge mode is single-file segments mode */
		internal_conf->single_file_segments = 1;

		/* create a memseg list */
		msl = &mcfg->memsegs[0];

		mem_sz = internal_conf->memory;
		page_sz = RTE_PGSIZE_4K;
		n_segs = mem_sz / page_sz;

		if (eal_memseg_list_init_named(
				msl, "nohugemem", page_sz, n_segs, 0, true)) {
			return -1;
		}

		/* set up parameters for anonymous mmap */
		fd = -1;
		flags = MAP_PRIVATE | MAP_ANONYMOUS;

#ifdef MEMFD_SUPPORTED
		/* create a memfd and store it in the segment fd table */
		memfd = memfd_create("nohuge", 0);
		if (memfd < 0) {
			RTE_LOG(DEBUG, EAL, "Cannot create memfd: %s\n",
					strerror(errno));
			RTE_LOG(DEBUG, EAL, "Falling back to anonymous map\n");
		} else {
			/* we got an fd - now resize it */
			if (ftruncate(memfd, internal_conf->memory) < 0) {
				RTE_LOG(ERR, EAL, "Cannot resize memfd: %s\n",
						strerror(errno));
				RTE_LOG(ERR, EAL, "Falling back to anonymous map\n");
				close(memfd);
			} else {
				/* creating memfd-backed file was successful.
				 * we want changes to memfd to be visible to
				 * other processes (such as vhost backend), so
				 * map it as shared memory.
				 */
				RTE_LOG(DEBUG, EAL, "Using memfd for anonymous memory\n");
				fd = memfd;
				flags = MAP_SHARED;
			}
		}
#endif
		/* preallocate address space for the memory, so that it can be
		 * fit into the DMA mask.
		 */
		if (eal_memseg_list_alloc(msl, 0)) {
			RTE_LOG(ERR, EAL, "Cannot preallocate VA space for hugepage memory\n");
			return -1;
		}

		prealloc_addr = msl->base_va;
		addr = mmap(prealloc_addr, mem_sz, PROT_READ | PROT_WRITE,
				flags | MAP_FIXED, fd, 0);
		if (addr == MAP_FAILED || addr != prealloc_addr) {
			RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__,
					strerror(errno));
			munmap(prealloc_addr, mem_sz);
			return -1;
		}

		/* we're in single-file segments mode, so only the segment list
		 * fd needs to be set up.
		 */
		if (fd != -1) {
			if (eal_memalloc_set_seg_list_fd(0, fd) < 0) {
				RTE_LOG(ERR, EAL, "Cannot set up segment list fd\n");
				/* not a serious error, proceed */
			}
		}

		eal_memseg_list_populate(msl, addr, n_segs);

		if (mcfg->dma_maskbits &&
		    rte_mem_check_dma_mask_thread_unsafe(mcfg->dma_maskbits)) {
			RTE_LOG(ERR, EAL,
				"%s(): couldn't allocate memory due to IOVA exceeding limits of current DMA mask.\n",
				__func__);
			if (rte_eal_iova_mode() == RTE_IOVA_VA &&
			    rte_eal_using_phys_addrs())
				RTE_LOG(ERR, EAL,
					"%s(): Please try initializing EAL with --iova-mode=pa parameter.\n",
					__func__);
			goto fail;
		}
		return 0;
	}

	/* calculate total number of hugepages available. at this point we haven't
	 * yet started sorting them so they all are on socket 0 */
	for (i = 0; i < (int) internal_conf->num_hugepage_sizes; i++) {
		/* meanwhile, also initialize used_hp hugepage sizes in used_hp */
		used_hp[i].hugepage_sz = internal_conf->hugepage_info[i].hugepage_sz;

		nr_hugepages += internal_conf->hugepage_info[i].num_pages[0];
	}

	/*
	 * allocate a memory area for hugepage table.
	 * this isn't shared memory yet. due to the fact that we need some
	 * processing done on these pages, shared memory will be created
	 * at a later stage.
	 */
	tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file));
	if (tmp_hp == NULL)
		goto fail;

	memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file));

	hp_offset = 0; /* where we start the current page size entries */

	huge_register_sigbus();

	/* make a copy of socket_mem, needed for balanced allocation. */
	for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
		memory[i] = internal_conf->socket_mem[i];

	/* map all hugepages and sort them */
	for (i = 0; i < (int)internal_conf->num_hugepage_sizes; i++) {
		unsigned pages_old, pages_new;
		struct hugepage_info *hpi;

		/*
		 * we don't yet mark hugepages as used at this stage, so
		 * we just map all hugepages available to the system
		 * all hugepages are still located on socket 0
		 */
		hpi = &internal_conf->hugepage_info[i];

		if (hpi->num_pages[0] == 0)
			continue;

		/* map all hugepages available */
		pages_old = hpi->num_pages[0];
		pages_new = map_all_hugepages(&tmp_hp[hp_offset], hpi, memory);
		if (pages_new < pages_old) {
			RTE_LOG(DEBUG, EAL,
				"%d not %d hugepages of size %u MB allocated\n",
				pages_new, pages_old,
				(unsigned)(hpi->hugepage_sz / 0x100000));

			int pages = pages_old - pages_new;

			nr_hugepages -= pages;
			hpi->num_pages[0] = pages_new;
			if (pages_new == 0)
				continue;
		}

		if (rte_eal_using_phys_addrs() &&
				rte_eal_iova_mode() != RTE_IOVA_VA) {
			/* find physical addresses for each hugepage */
			if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
				RTE_LOG(DEBUG, EAL, "Failed to find phys addr "
					"for %u MB pages\n",
					(unsigned int)(hpi->hugepage_sz / 0x100000));
				goto fail;
			}
		} else {
			/* set physical addresses for each hugepage */
			if (set_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
				RTE_LOG(DEBUG, EAL, "Failed to set phys addr "
					"for %u MB pages\n",
					(unsigned int)(hpi->hugepage_sz / 0x100000));
				goto fail;
			}
		}

		if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){
			RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n",
					(unsigned)(hpi->hugepage_sz / 0x100000));
			goto fail;
		}

		qsort(&tmp_hp[hp_offset], hpi->num_pages[0],
		      sizeof(struct hugepage_file), cmp_physaddr);

		/* we have processed a num of hugepages of this size, so inc offset */
		hp_offset += hpi->num_pages[0];
	}

	huge_recover_sigbus();

	if (internal_conf->memory == 0 && internal_conf->force_sockets == 0)
		internal_conf->memory = eal_get_hugepage_mem_size();

	nr_hugefiles = nr_hugepages;


	/* clean out the numbers of pages */
	for (i = 0; i < (int) internal_conf->num_hugepage_sizes; i++)
		for (j = 0; j < RTE_MAX_NUMA_NODES; j++)
			internal_conf->hugepage_info[i].num_pages[j] = 0;

	/* get hugepages for each socket */
	for (i = 0; i < nr_hugefiles; i++) {
		int socket = tmp_hp[i].socket_id;

		/* find a hugepage info with right size and increment num_pages */
		const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES,
				(int)internal_conf->num_hugepage_sizes);
		for (j = 0; j < nb_hpsizes; j++) {
			if (tmp_hp[i].size ==
					internal_conf->hugepage_info[j].hugepage_sz) {
				internal_conf->hugepage_info[j].num_pages[socket]++;
			}
		}
	}

	/* make a copy of socket_mem, needed for number of pages calculation */
	for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
		memory[i] = internal_conf->socket_mem[i];

	/* calculate final number of pages */
	nr_hugepages = eal_dynmem_calc_num_pages_per_socket(memory,
			internal_conf->hugepage_info, used_hp,
			internal_conf->num_hugepage_sizes);

	/* error if not enough memory available */
	if (nr_hugepages < 0)
		goto fail;

	/* reporting in! */
	for (i = 0; i < (int) internal_conf->num_hugepage_sizes; i++) {
		for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
			if (used_hp[i].num_pages[j] > 0) {
				RTE_LOG(DEBUG, EAL,
					"Requesting %u pages of size %uMB"
					" from socket %i\n",
					used_hp[i].num_pages[j],
					(unsigned)
					(used_hp[i].hugepage_sz / 0x100000),
					j);
			}
		}
	}

	/* create shared memory */
	hugepage = create_shared_memory(eal_hugepage_data_path(),
			nr_hugefiles * sizeof(struct hugepage_file));

	if (hugepage == NULL) {
		RTE_LOG(ERR, EAL, "Failed to create shared memory!\n");
		goto fail;
	}
	memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file));

	/*
	 * unmap pages that we won't need (looks at used_hp).
	 * also, sets final_va to NULL on pages that were unmapped.
	 */
	if (unmap_unneeded_hugepages(tmp_hp, used_hp,
			internal_conf->num_hugepage_sizes) < 0) {
		RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n");
		goto fail;
	}

	/*
	 * copy stuff from malloc'd hugepage* to the actual shared memory.
	 * this procedure only copies those hugepages that have orig_va
	 * not NULL. has overflow protection.
	 */
	if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles,
			tmp_hp, nr_hugefiles) < 0) {
		RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n");
		goto fail;
	}

#ifndef RTE_ARCH_64
	/* for legacy 32-bit mode, we did not preallocate VA space, so do it */
	if (internal_conf->legacy_mem &&
			prealloc_segments(hugepage, nr_hugefiles)) {
		RTE_LOG(ERR, EAL, "Could not preallocate VA space for hugepages\n");
		goto fail;
	}
#endif

	/* remap all pages we do need into memseg list VA space, so that those
	 * pages become first-class citizens in DPDK memory subsystem
	 */
	if (remap_needed_hugepages(hugepage, nr_hugefiles)) {
		RTE_LOG(ERR, EAL, "Couldn't remap hugepage files into memseg lists\n");
		goto fail;
	}

	/* free the hugepage backing files */
	if (internal_conf->hugepage_unlink &&
		unlink_hugepage_files(tmp_hp, internal_conf->num_hugepage_sizes) < 0) {
		RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n");
		goto fail;
	}

	/* free the temporary hugepage table */
	free(tmp_hp);
	tmp_hp = NULL;

	munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
	hugepage = NULL;

	/* we're not going to allocate more pages, so release VA space for
	 * unused memseg lists
	 */
	for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
		struct rte_memseg_list *msl = &mcfg->memsegs[i];
		size_t mem_sz;

		/* skip inactive lists */
		if (msl->base_va == NULL)
			continue;
		/* skip lists where there is at least one page allocated */
		if (msl->memseg_arr.count > 0)
			continue;
		/* this is an unused list, deallocate it */
		mem_sz = msl->len;
		munmap(msl->base_va, mem_sz);
		msl->base_va = NULL;
		msl->heap = 0;

		/* destroy backing fbarray */
		rte_fbarray_destroy(&msl->memseg_arr);
	}

	if (mcfg->dma_maskbits &&
	    rte_mem_check_dma_mask_thread_unsafe(mcfg->dma_maskbits)) {
		RTE_LOG(ERR, EAL,
			"%s(): couldn't allocate memory due to IOVA exceeding limits of current DMA mask.\n",
			__func__);
		goto fail;
	}

	return 0;

fail:
	huge_recover_sigbus();
	free(tmp_hp);
	if (hugepage != NULL)
		munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));

	return -1;
}

/*
 * uses fstat to report the size of a file on disk
 */
static off_t
getFileSize(int fd)
{
	struct stat st;
	if (fstat(fd, &st) < 0)
		return 0;
	return st.st_size;
}

/*
 * This creates the memory mappings in the secondary process to match that of
 * the server process. It goes through each memory segment in the DPDK runtime
 * configuration and finds the hugepages which form that segment, mapping them
 * in order to form a contiguous block in the virtual memory space
 */
static int
eal_legacy_hugepage_attach(void)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	struct hugepage_file *hp = NULL;
	unsigned int num_hp = 0;
	unsigned int i = 0;
	unsigned int cur_seg;
	off_t size = 0;
	int fd, fd_hugepage = -1;

	if (aslr_enabled() > 0) {
		RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization "
				"(ASLR) is enabled in the kernel.\n");
		RTE_LOG(WARNING, EAL, "   This may cause issues with mapping memory "
				"into secondary processes\n");
	}

	fd_hugepage = open(eal_hugepage_data_path(), O_RDONLY);
	if (fd_hugepage < 0) {
		RTE_LOG(ERR, EAL, "Could not open %s\n",
				eal_hugepage_data_path());
		goto error;
	}

	size = getFileSize(fd_hugepage);
	hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0);
	if (hp == MAP_FAILED) {
		RTE_LOG(ERR, EAL, "Could not mmap %s\n",
				eal_hugepage_data_path());
		goto error;
	}

	num_hp = size / sizeof(struct hugepage_file);
	RTE_LOG(DEBUG, EAL, "Analysing %u files\n", num_hp);

	/* map all segments into memory to make sure we get the addrs. the
	 * segments themselves are already in memseg list (which is shared and
	 * has its VA space already preallocated), so we just need to map
	 * everything into correct addresses.
	 */
	for (i = 0; i < num_hp; i++) {
		struct hugepage_file *hf = &hp[i];
		size_t map_sz = hf->size;
		void *map_addr = hf->final_va;
		int msl_idx, ms_idx;
		struct rte_memseg_list *msl;
		struct rte_memseg *ms;

		/* if size is zero, no more pages left */
		if (map_sz == 0)
			break;

		fd = open(hf->filepath, O_RDWR);
		if (fd < 0) {
			RTE_LOG(ERR, EAL, "Could not open %s: %s\n",
				hf->filepath, strerror(errno));
			goto error;
		}

		map_addr = mmap(map_addr, map_sz, PROT_READ | PROT_WRITE,
				MAP_SHARED | MAP_FIXED, fd, 0);
		if (map_addr == MAP_FAILED) {
			RTE_LOG(ERR, EAL, "Could not map %s: %s\n",
				hf->filepath, strerror(errno));
			goto fd_error;
		}

		/* set shared lock on the file. */
		if (flock(fd, LOCK_SH) < 0) {
			RTE_LOG(DEBUG, EAL, "%s(): Locking file failed: %s\n",
				__func__, strerror(errno));
			goto mmap_error;
		}

		/* find segment data */
		msl = rte_mem_virt2memseg_list(map_addr);
		if (msl == NULL) {
			RTE_LOG(DEBUG, EAL, "%s(): Cannot find memseg list\n",
				__func__);
			goto mmap_error;
		}
		ms = rte_mem_virt2memseg(map_addr, msl);
		if (ms == NULL) {
			RTE_LOG(DEBUG, EAL, "%s(): Cannot find memseg\n",
				__func__);
			goto mmap_error;
		}

		msl_idx = msl - mcfg->memsegs;
		ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
		if (ms_idx < 0) {
			RTE_LOG(DEBUG, EAL, "%s(): Cannot find memseg idx\n",
				__func__);
			goto mmap_error;
		}

		/* store segment fd internally */
		if (eal_memalloc_set_seg_fd(msl_idx, ms_idx, fd) < 0)
			RTE_LOG(ERR, EAL, "Could not store segment fd: %s\n",
				rte_strerror(rte_errno));
	}
	/* unmap the hugepage config file, since we are done using it */
	munmap(hp, size);
	close(fd_hugepage);
	return 0;

mmap_error:
	munmap(hp[i].final_va, hp[i].size);
fd_error:
	close(fd);
error:
	/* unwind mmap's done so far */
	for (cur_seg = 0; cur_seg < i; cur_seg++)
		munmap(hp[cur_seg].final_va, hp[cur_seg].size);

	if (hp != NULL && hp != MAP_FAILED)
		munmap(hp, size);
	if (fd_hugepage >= 0)
		close(fd_hugepage);
	return -1;
}

static int
eal_hugepage_attach(void)
{
	if (eal_memalloc_sync_with_primary()) {
		RTE_LOG(ERR, EAL, "Could not map memory from primary process\n");
		if (aslr_enabled() > 0)
			RTE_LOG(ERR, EAL, "It is recommended to disable ASLR in the kernel and retry running both primary and secondary processes\n");
		return -1;
	}
	return 0;
}

int
rte_eal_hugepage_init(void)
{
	const struct internal_config *internal_conf =
		eal_get_internal_configuration();

	return internal_conf->legacy_mem ?
			eal_legacy_hugepage_init() :
			eal_dynmem_hugepage_init();
}

int
rte_eal_hugepage_attach(void)
{
	const struct internal_config *internal_conf =
		eal_get_internal_configuration();

	return internal_conf->legacy_mem ?
			eal_legacy_hugepage_attach() :
			eal_hugepage_attach();
}

int
rte_eal_using_phys_addrs(void)
{
	if (phys_addrs_available == -1) {
		uint64_t tmp = 0;

		if (rte_eal_has_hugepages() != 0 &&
		    rte_mem_virt2phy(&tmp) != RTE_BAD_PHYS_ADDR)
			phys_addrs_available = 1;
		else
			phys_addrs_available = 0;
	}
	return phys_addrs_available;
}

static int __rte_unused
memseg_primary_init_32(void)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	int active_sockets, hpi_idx, msl_idx = 0;
	unsigned int socket_id, i;
	struct rte_memseg_list *msl;
	uint64_t extra_mem_per_socket, total_extra_mem, total_requested_mem;
	uint64_t max_mem;
	struct internal_config *internal_conf =
		eal_get_internal_configuration();

	/* no-huge does not need this at all */
	if (internal_conf->no_hugetlbfs)
		return 0;

	/* this is a giant hack, but desperate times call for desperate
	 * measures. in legacy 32-bit mode, we cannot preallocate VA space,
	 * because having upwards of 2 gigabytes of VA space already mapped will
	 * interfere with our ability to map and sort hugepages.
	 *
	 * therefore, in legacy 32-bit mode, we will be initializing memseg
	 * lists much later - in eal_memory.c, right after we unmap all the
	 * unneeded pages. this will not affect secondary processes, as those
	 * should be able to mmap the space without (too many) problems.
	 */
	if (internal_conf->legacy_mem)
		return 0;

	/* 32-bit mode is a very special case. we cannot know in advance where
	 * the user will want to allocate their memory, so we have to do some
	 * heuristics.
	 */
	active_sockets = 0;
	total_requested_mem = 0;
	if (internal_conf->force_sockets)
		for (i = 0; i < rte_socket_count(); i++) {
			uint64_t mem;

			socket_id = rte_socket_id_by_idx(i);
			mem = internal_conf->socket_mem[socket_id];

			if (mem == 0)
				continue;

			active_sockets++;
			total_requested_mem += mem;
		}
	else
		total_requested_mem = internal_conf->memory;

	max_mem = (uint64_t)RTE_MAX_MEM_MB << 20;
	if (total_requested_mem > max_mem) {
		RTE_LOG(ERR, EAL, "Invalid parameters: 32-bit process can at most use %uM of memory\n",
				(unsigned int)(max_mem >> 20));
		return -1;
	}
	total_extra_mem = max_mem - total_requested_mem;
	extra_mem_per_socket = active_sockets == 0 ? total_extra_mem :
			total_extra_mem / active_sockets;

	/* the allocation logic is a little bit convoluted, but here's how it
	 * works, in a nutshell:
	 *  - if user hasn't specified on which sockets to allocate memory via
	 *    --socket-mem, we allocate all of our memory on master core socket.
	 *  - if user has specified sockets to allocate memory on, there may be
	 *    some "unused" memory left (e.g. if user has specified --socket-mem
	 *    such that not all memory adds up to 2 gigabytes), so add it to all
	 *    sockets that are in use equally.
	 *
	 * page sizes are sorted by size in descending order, so we can safely
	 * assume that we dispense with bigger page sizes first.
	 */

	/* create memseg lists */
	for (i = 0; i < rte_socket_count(); i++) {
		int hp_sizes = (int) internal_conf->num_hugepage_sizes;
		uint64_t max_socket_mem, cur_socket_mem;
		unsigned int master_lcore_socket;
		struct rte_config *cfg = rte_eal_get_configuration();
		bool skip;

		socket_id = rte_socket_id_by_idx(i);

#ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES
		/* we can still sort pages by socket in legacy mode */
		if (!internal_conf->legacy_mem && socket_id > 0)
			break;
#endif

		/* if we didn't specifically request memory on this socket */
		skip = active_sockets != 0 &&
				internal_conf->socket_mem[socket_id] == 0;
		/* ...or if we didn't specifically request memory on *any*
		 * socket, and this is not master lcore
		 */
		master_lcore_socket = rte_lcore_to_socket_id(cfg->master_lcore);
		skip |= active_sockets == 0 && socket_id != master_lcore_socket;

		if (skip) {
			RTE_LOG(DEBUG, EAL, "Will not preallocate memory on socket %u\n",
					socket_id);
			continue;
		}

		/* max amount of memory on this socket */
		max_socket_mem = (active_sockets != 0 ?
					internal_conf->socket_mem[socket_id] :
					internal_conf->memory) +
					extra_mem_per_socket;
		cur_socket_mem = 0;

		for (hpi_idx = 0; hpi_idx < hp_sizes; hpi_idx++) {
			uint64_t max_pagesz_mem, cur_pagesz_mem = 0;
			uint64_t hugepage_sz;
			struct hugepage_info *hpi;
			int type_msl_idx, max_segs, total_segs = 0;

			hpi = &internal_conf->hugepage_info[hpi_idx];
			hugepage_sz = hpi->hugepage_sz;

			/* check if pages are actually available */
			if (hpi->num_pages[socket_id] == 0)
				continue;

			max_segs = RTE_MAX_MEMSEG_PER_TYPE;
			max_pagesz_mem = max_socket_mem - cur_socket_mem;

			/* make it multiple of page size */
			max_pagesz_mem = RTE_ALIGN_FLOOR(max_pagesz_mem,
					hugepage_sz);

			RTE_LOG(DEBUG, EAL, "Attempting to preallocate "
					"%" PRIu64 "M on socket %i\n",
					max_pagesz_mem >> 20, socket_id);

			type_msl_idx = 0;
			while (cur_pagesz_mem < max_pagesz_mem &&
					total_segs < max_segs) {
				uint64_t cur_mem;
				unsigned int n_segs;

				if (msl_idx >= RTE_MAX_MEMSEG_LISTS) {
					RTE_LOG(ERR, EAL,
						"No more space in memseg lists, please increase %s\n",
						RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
					return -1;
				}

				msl = &mcfg->memsegs[msl_idx];

				cur_mem = get_mem_amount(hugepage_sz,
						max_pagesz_mem);
				n_segs = cur_mem / hugepage_sz;

				if (eal_memseg_list_init(msl, hugepage_sz,
						n_segs, socket_id, type_msl_idx,
						true)) {
					/* failing to allocate a memseg list is
					 * a serious error.
					 */
					RTE_LOG(ERR, EAL, "Cannot allocate memseg list\n");
					return -1;
				}

				if (eal_memseg_list_alloc(msl, 0)) {
					/* if we couldn't allocate VA space, we
					 * can try with smaller page sizes.
					 */
					RTE_LOG(ERR, EAL, "Cannot allocate VA space for memseg list, retrying with different page size\n");
					/* deallocate memseg list */
					if (memseg_list_free(msl))
						return -1;
					break;
				}

				total_segs += msl->memseg_arr.len;
				cur_pagesz_mem = total_segs * hugepage_sz;
				type_msl_idx++;
				msl_idx++;
			}
			cur_socket_mem += cur_pagesz_mem;
		}
		if (cur_socket_mem == 0) {
			RTE_LOG(ERR, EAL, "Cannot allocate VA space on socket %u\n",
				socket_id);
			return -1;
		}
	}

	return 0;
}

static int __rte_unused
memseg_primary_init(void)
{
	return eal_dynmem_memseg_lists_init();
}

static int
memseg_secondary_init(void)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	int msl_idx = 0;
	struct rte_memseg_list *msl;

	for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {

		msl = &mcfg->memsegs[msl_idx];

		/* skip empty memseg lists */
		if (msl->memseg_arr.len == 0)
			continue;

		if (rte_fbarray_attach(&msl->memseg_arr)) {
			RTE_LOG(ERR, EAL, "Cannot attach to primary process memseg lists\n");
			return -1;
		}

		/* preallocate VA space */
		if (eal_memseg_list_alloc(msl, 0)) {
			RTE_LOG(ERR, EAL, "Cannot preallocate VA space for hugepage memory\n");
			return -1;
		}
	}

	return 0;
}

int
rte_eal_memseg_init(void)
{
	/* increase rlimit to maximum */
	struct rlimit lim;

#ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES
	const struct internal_config *internal_conf =
		eal_get_internal_configuration();
#endif
	if (getrlimit(RLIMIT_NOFILE, &lim) == 0) {
		/* set limit to maximum */
		lim.rlim_cur = lim.rlim_max;

		if (setrlimit(RLIMIT_NOFILE, &lim) < 0) {
			RTE_LOG(DEBUG, EAL, "Setting maximum number of open files failed: %s\n",
					strerror(errno));
		} else {
			RTE_LOG(DEBUG, EAL, "Setting maximum number of open files to %"
					PRIu64 "\n",
					(uint64_t)lim.rlim_cur);
		}
	} else {
		RTE_LOG(ERR, EAL, "Cannot get current resource limits\n");
	}
#ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES
	if (!internal_conf->legacy_mem && rte_socket_count() > 1) {
		RTE_LOG(WARNING, EAL, "DPDK is running on a NUMA system, but is compiled without NUMA support.\n");
		RTE_LOG(WARNING, EAL, "This will have adverse consequences for performance and usability.\n");
		RTE_LOG(WARNING, EAL, "Please use --"OPT_LEGACY_MEM" option, or recompile with NUMA support.\n");
	}
#endif

	return rte_eal_process_type() == RTE_PROC_PRIMARY ?
#ifndef RTE_ARCH_64
			memseg_primary_init_32() :
#else
			memseg_primary_init() :
#endif
			memseg_secondary_init();
}