DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2018-2020 Intel Corporation
 */

#include <rte_ipsec.h>
#include <rte_esp.h>
#include <rte_ip.h>
#include <rte_errno.h>
#include <rte_cryptodev.h>

#include "sa.h"
#include "ipsec_sqn.h"
#include "crypto.h"
#include "iph.h"
#include "misc.h"
#include "pad.h"

typedef uint16_t (*esp_inb_process_t)(const struct rte_ipsec_sa *sa,
	struct rte_mbuf *mb[], uint32_t sqn[], uint32_t dr[], uint16_t num,
	uint8_t sqh_len);

/*
 * helper function to fill crypto_sym op for cipher+auth algorithms.
 * used by inb_cop_prepare(), see below.
 */
static inline void
sop_ciph_auth_prepare(struct rte_crypto_sym_op *sop,
	const struct rte_ipsec_sa *sa, const union sym_op_data *icv,
	uint32_t pofs, uint32_t plen)
{
	sop->cipher.data.offset = pofs + sa->ctp.cipher.offset;
	sop->cipher.data.length = plen - sa->ctp.cipher.length;
	sop->auth.data.offset = pofs + sa->ctp.auth.offset;
	sop->auth.data.length = plen - sa->ctp.auth.length;
	sop->auth.digest.data = icv->va;
	sop->auth.digest.phys_addr = icv->pa;
}

/*
 * helper function to fill crypto_sym op for aead algorithms
 * used by inb_cop_prepare(), see below.
 */
static inline void
sop_aead_prepare(struct rte_crypto_sym_op *sop,
	const struct rte_ipsec_sa *sa, const union sym_op_data *icv,
	uint32_t pofs, uint32_t plen)
{
	sop->aead.data.offset = pofs + sa->ctp.cipher.offset;
	sop->aead.data.length = plen - sa->ctp.cipher.length;
	sop->aead.digest.data = icv->va;
	sop->aead.digest.phys_addr = icv->pa;
	sop->aead.aad.data = icv->va + sa->icv_len;
	sop->aead.aad.phys_addr = icv->pa + sa->icv_len;
}

/*
 * setup crypto op and crypto sym op for ESP inbound packet.
 */
static inline void
inb_cop_prepare(struct rte_crypto_op *cop,
	const struct rte_ipsec_sa *sa, struct rte_mbuf *mb,
	const union sym_op_data *icv, uint32_t pofs, uint32_t plen)
{
	struct rte_crypto_sym_op *sop;
	struct aead_gcm_iv *gcm;
	struct aesctr_cnt_blk *ctr;
	uint64_t *ivc, *ivp;
	uint32_t algo;

	algo = sa->algo_type;
	ivp = rte_pktmbuf_mtod_offset(mb, uint64_t *,
		pofs + sizeof(struct rte_esp_hdr));

	/* fill sym op fields */
	sop = cop->sym;

	switch (algo) {
	case ALGO_TYPE_AES_GCM:
		sop_aead_prepare(sop, sa, icv, pofs, plen);

		/* fill AAD IV (located inside crypto op) */
		gcm = rte_crypto_op_ctod_offset(cop, struct aead_gcm_iv *,
			sa->iv_ofs);
		aead_gcm_iv_fill(gcm, ivp[0], sa->salt);
		break;
	case ALGO_TYPE_AES_CBC:
	case ALGO_TYPE_3DES_CBC:
		sop_ciph_auth_prepare(sop, sa, icv, pofs, plen);

		/* copy iv from the input packet to the cop */
		ivc = rte_crypto_op_ctod_offset(cop, uint64_t *, sa->iv_ofs);
		copy_iv(ivc, ivp, sa->iv_len);
		break;
	case ALGO_TYPE_AES_CTR:
		sop_ciph_auth_prepare(sop, sa, icv, pofs, plen);

		/* fill CTR block (located inside crypto op) */
		ctr = rte_crypto_op_ctod_offset(cop, struct aesctr_cnt_blk *,
			sa->iv_ofs);
		aes_ctr_cnt_blk_fill(ctr, ivp[0], sa->salt);
		break;
	case ALGO_TYPE_NULL:
		sop_ciph_auth_prepare(sop, sa, icv, pofs, plen);
		break;
	}
}

static inline uint32_t
inb_cpu_crypto_prepare(const struct rte_ipsec_sa *sa, struct rte_mbuf *mb,
	uint32_t *pofs, uint32_t plen, void *iv)
{
	struct aead_gcm_iv *gcm;
	struct aesctr_cnt_blk *ctr;
	uint64_t *ivp;
	uint32_t clen;

	ivp = rte_pktmbuf_mtod_offset(mb, uint64_t *,
		*pofs + sizeof(struct rte_esp_hdr));
	clen = 0;

	switch (sa->algo_type) {
	case ALGO_TYPE_AES_GCM:
		gcm = (struct aead_gcm_iv *)iv;
		aead_gcm_iv_fill(gcm, ivp[0], sa->salt);
		break;
	case ALGO_TYPE_AES_CBC:
	case ALGO_TYPE_3DES_CBC:
		copy_iv(iv, ivp, sa->iv_len);
		break;
	case ALGO_TYPE_AES_CTR:
		ctr = (struct aesctr_cnt_blk *)iv;
		aes_ctr_cnt_blk_fill(ctr, ivp[0], sa->salt);
		break;
	}

	*pofs += sa->ctp.auth.offset;
	clen = plen - sa->ctp.auth.length;
	return clen;
}

/*
 * Helper function for prepare() to deal with situation when
 * ICV is spread by two segments. Tries to move ICV completely into the
 * last segment.
 */
static struct rte_mbuf *
move_icv(struct rte_mbuf *ml, uint32_t ofs)
{
	uint32_t n;
	struct rte_mbuf *ms;
	const void *prev;
	void *new;

	ms = ml->next;
	n = ml->data_len - ofs;

	prev = rte_pktmbuf_mtod_offset(ml, const void *, ofs);
	new = rte_pktmbuf_prepend(ms, n);
	if (new == NULL)
		return NULL;

	/* move n ICV bytes from ml into ms */
	rte_memcpy(new, prev, n);
	ml->data_len -= n;

	return ms;
}

/*
 * for pure cryptodev (lookaside none) depending on SA settings,
 * we might have to write some extra data to the packet.
 */
static inline void
inb_pkt_xprepare(const struct rte_ipsec_sa *sa, rte_be64_t sqc,
	const union sym_op_data *icv)
{
	struct aead_gcm_aad *aad;

	/* insert SQN.hi between ESP trailer and ICV */
	if (sa->sqh_len != 0)
		insert_sqh(sqn_hi32(sqc), icv->va, sa->icv_len);

	/*
	 * fill AAD fields, if any (aad fields are placed after icv),
	 * right now we support only one AEAD algorithm: AES-GCM.
	 */
	if (sa->aad_len != 0) {
		aad = (struct aead_gcm_aad *)(icv->va + sa->icv_len);
		aead_gcm_aad_fill(aad, sa->spi, sqc, IS_ESN(sa));
	}
}

static inline int
inb_get_sqn(const struct rte_ipsec_sa *sa, const struct replay_sqn *rsn,
	struct rte_mbuf *mb, uint32_t hlen, rte_be64_t *sqc)
{
	int32_t rc;
	uint64_t sqn;
	struct rte_esp_hdr *esph;

	esph = rte_pktmbuf_mtod_offset(mb, struct rte_esp_hdr *, hlen);

	/*
	 * retrieve and reconstruct SQN, then check it, then
	 * convert it back into network byte order.
	 */
	sqn = rte_be_to_cpu_32(esph->seq);
	if (IS_ESN(sa))
		sqn = reconstruct_esn(rsn->sqn, sqn, sa->replay.win_sz);
	*sqc = rte_cpu_to_be_64(sqn);

	/* check IPsec window */
	rc = esn_inb_check_sqn(rsn, sa, sqn);

	return rc;
}

/* prepare packet for upcoming processing */
static inline int32_t
inb_prepare(const struct rte_ipsec_sa *sa, struct rte_mbuf *mb,
	uint32_t hlen, union sym_op_data *icv)
{
	uint32_t clen, icv_len, icv_ofs, plen;
	struct rte_mbuf *ml;

	/* start packet manipulation */
	plen = mb->pkt_len;
	plen = plen - hlen;

	/* check that packet has a valid length */
	clen = plen - sa->ctp.cipher.length;
	if ((int32_t)clen < 0 || (clen & (sa->pad_align - 1)) != 0)
		return -EBADMSG;

	/* find ICV location */
	icv_len = sa->icv_len;
	icv_ofs = mb->pkt_len - icv_len;

	ml = mbuf_get_seg_ofs(mb, &icv_ofs);

	/*
	 * if ICV is spread by two segments, then try to
	 * move ICV completely into the last segment.
	 */
	if (ml->data_len < icv_ofs + icv_len) {

		ml = move_icv(ml, icv_ofs);
		if (ml == NULL)
			return -ENOSPC;

		/* new ICV location */
		icv_ofs = 0;
	}

	icv_ofs += sa->sqh_len;

	/*
	 * we have to allocate space for AAD somewhere,
	 * right now - just use free trailing space at the last segment.
	 * Would probably be more convenient to reserve space for AAD
	 * inside rte_crypto_op itself
	 * (again for IV space is already reserved inside cop).
	 */
	if (sa->aad_len + sa->sqh_len > rte_pktmbuf_tailroom(ml))
		return -ENOSPC;

	icv->va = rte_pktmbuf_mtod_offset(ml, void *, icv_ofs);
	icv->pa = rte_pktmbuf_iova_offset(ml, icv_ofs);

	/*
	 * if esn is used then high-order 32 bits are also used in ICV
	 * calculation but are not transmitted, update packet length
	 * to be consistent with auth data length and offset, this will
	 * be subtracted from packet length in post crypto processing
	 */
	mb->pkt_len += sa->sqh_len;
	ml->data_len += sa->sqh_len;

	return plen;
}

static inline int32_t
inb_pkt_prepare(const struct rte_ipsec_sa *sa, const struct replay_sqn *rsn,
	struct rte_mbuf *mb, uint32_t hlen, union sym_op_data *icv)
{
	int rc;
	rte_be64_t sqn;

	rc = inb_get_sqn(sa, rsn, mb, hlen, &sqn);
	if (rc != 0)
		return rc;

	rc = inb_prepare(sa, mb, hlen, icv);
	if (rc < 0)
		return rc;

	inb_pkt_xprepare(sa, sqn, icv);
	return rc;
}

/*
 * setup/update packets and crypto ops for ESP inbound case.
 */
uint16_t
esp_inb_pkt_prepare(const struct rte_ipsec_session *ss, struct rte_mbuf *mb[],
	struct rte_crypto_op *cop[], uint16_t num)
{
	int32_t rc;
	uint32_t i, k, hl;
	struct rte_ipsec_sa *sa;
	struct rte_cryptodev_sym_session *cs;
	struct replay_sqn *rsn;
	union sym_op_data icv;
	uint32_t dr[num];

	sa = ss->sa;
	cs = ss->crypto.ses;
	rsn = rsn_acquire(sa);

	k = 0;
	for (i = 0; i != num; i++) {

		hl = mb[i]->l2_len + mb[i]->l3_len;
		rc = inb_pkt_prepare(sa, rsn, mb[i], hl, &icv);
		if (rc >= 0) {
			lksd_none_cop_prepare(cop[k], cs, mb[i]);
			inb_cop_prepare(cop[k], sa, mb[i], &icv, hl, rc);
			k++;
		} else {
			dr[i - k] = i;
			rte_errno = -rc;
		}
	}

	rsn_release(sa, rsn);

	/* copy not prepared mbufs beyond good ones */
	if (k != num && k != 0)
		move_bad_mbufs(mb, dr, num, num - k);

	return k;
}

/*
 * Start with processing inbound packet.
 * This is common part for both tunnel and transport mode.
 * Extract information that will be needed later from mbuf metadata and
 * actual packet data:
 * - mbuf for packet's last segment
 * - length of the L2/L3 headers
 * - esp tail structure
 */
static inline void
process_step1(struct rte_mbuf *mb, uint32_t tlen, struct rte_mbuf **ml,
	struct rte_esp_tail *espt, uint32_t *hlen, uint32_t *tofs)
{
	const struct rte_esp_tail *pt;
	uint32_t ofs;

	ofs = mb->pkt_len - tlen;
	hlen[0] = mb->l2_len + mb->l3_len;
	ml[0] = mbuf_get_seg_ofs(mb, &ofs);
	pt = rte_pktmbuf_mtod_offset(ml[0], const struct rte_esp_tail *, ofs);
	tofs[0] = ofs;
	espt[0] = pt[0];
}

/*
 * Helper function to check pad bytes values.
 * Note that pad bytes can be spread across multiple segments.
 */
static inline int
check_pad_bytes(struct rte_mbuf *mb, uint32_t ofs, uint32_t len)
{
	const uint8_t *pd;
	uint32_t k, n;

	for (n = 0; n != len; n += k, mb = mb->next) {
		k = mb->data_len - ofs;
		k = RTE_MIN(k, len - n);
		pd = rte_pktmbuf_mtod_offset(mb, const uint8_t *, ofs);
		if (memcmp(pd, esp_pad_bytes + n, k) != 0)
			break;
		ofs = 0;
	}

	return len - n;
}

/*
 * packet checks for transport mode:
 * - no reported IPsec related failures in ol_flags
 * - tail and header lengths are valid
 * - padding bytes are valid
 * apart from checks, function also updates tail offset (and segment)
 * by taking into account pad length.
 */
static inline int32_t
trs_process_check(struct rte_mbuf *mb, struct rte_mbuf **ml,
	uint32_t *tofs, struct rte_esp_tail espt, uint32_t hlen, uint32_t tlen)
{
	if ((mb->ol_flags & PKT_RX_SEC_OFFLOAD_FAILED) != 0 ||
			tlen + hlen > mb->pkt_len)
		return -EBADMSG;

	/* padding bytes are spread over multiple segments */
	if (tofs[0] < espt.pad_len) {
		tofs[0] = mb->pkt_len - tlen;
		ml[0] = mbuf_get_seg_ofs(mb, tofs);
	} else
		tofs[0] -= espt.pad_len;

	return check_pad_bytes(ml[0], tofs[0], espt.pad_len);
}

/*
 * packet checks for tunnel mode:
 * - same as for trasnport mode
 * - esp tail next proto contains expected for that SA value
 */
static inline int32_t
tun_process_check(struct rte_mbuf *mb, struct rte_mbuf **ml,
	uint32_t *tofs, struct rte_esp_tail espt, uint32_t hlen, uint32_t tlen,
	uint8_t proto)
{
	return (trs_process_check(mb, ml, tofs, espt, hlen, tlen) ||
		espt.next_proto != proto);
}

/*
 * step two for tunnel mode:
 * - read SQN value (for future use)
 * - cut of ICV, ESP tail and padding bytes
 * - cut of ESP header and IV, also if needed - L2/L3 headers
 *   (controlled by *adj* value)
 */
static inline void *
tun_process_step2(struct rte_mbuf *mb, struct rte_mbuf *ml, uint32_t hlen,
	uint32_t adj, uint32_t tofs, uint32_t tlen, uint32_t *sqn)
{
	const struct rte_esp_hdr *ph;

	/* read SQN value */
	ph = rte_pktmbuf_mtod_offset(mb, const struct rte_esp_hdr *, hlen);
	sqn[0] = ph->seq;

	/* cut of ICV, ESP tail and padding bytes */
	mbuf_cut_seg_ofs(mb, ml, tofs, tlen);

	/* cut of L2/L3 headers, ESP header and IV */
	return rte_pktmbuf_adj(mb, adj);
}

/*
 * step two for transport mode:
 * - read SQN value (for future use)
 * - cut of ICV, ESP tail and padding bytes
 * - cut of ESP header and IV
 * - move L2/L3 header to fill the gap after ESP header removal
 */
static inline void *
trs_process_step2(struct rte_mbuf *mb, struct rte_mbuf *ml, uint32_t hlen,
	uint32_t adj, uint32_t tofs, uint32_t tlen, uint32_t *sqn)
{
	char *np, *op;

	/* get start of the packet before modifications */
	op = rte_pktmbuf_mtod(mb, char *);

	/* cut off ESP header and IV */
	np = tun_process_step2(mb, ml, hlen, adj, tofs, tlen, sqn);

	/* move header bytes to fill the gap after ESP header removal */
	remove_esph(np, op, hlen);
	return np;
}

/*
 * step three for transport mode:
 * update mbuf metadata:
 * - packet_type
 * - ol_flags
 */
static inline void
trs_process_step3(struct rte_mbuf *mb)
{
	/* reset mbuf packet type */
	mb->packet_type &= (RTE_PTYPE_L2_MASK | RTE_PTYPE_L3_MASK);

	/* clear the PKT_RX_SEC_OFFLOAD flag if set */
	mb->ol_flags &= ~PKT_RX_SEC_OFFLOAD;
}

/*
 * step three for tunnel mode:
 * update mbuf metadata:
 * - packet_type
 * - ol_flags
 * - tx_offload
 */
static inline void
tun_process_step3(struct rte_mbuf *mb, uint64_t txof_msk, uint64_t txof_val)
{
	/* reset mbuf metatdata: L2/L3 len, packet type */
	mb->packet_type = RTE_PTYPE_UNKNOWN;
	mb->tx_offload = (mb->tx_offload & txof_msk) | txof_val;

	/* clear the PKT_RX_SEC_OFFLOAD flag if set */
	mb->ol_flags &= ~PKT_RX_SEC_OFFLOAD;
}

/*
 * *process* function for tunnel packets
 */
static inline uint16_t
tun_process(const struct rte_ipsec_sa *sa, struct rte_mbuf *mb[],
	    uint32_t sqn[], uint32_t dr[], uint16_t num, uint8_t sqh_len)
{
	uint32_t adj, i, k, tl;
	uint32_t hl[num], to[num];
	struct rte_esp_tail espt[num];
	struct rte_mbuf *ml[num];
	const void *outh;
	void *inh;

	/*
	 * remove icv, esp trailer and high-order
	 * 32 bits of esn from packet length
	 */
	const uint32_t tlen = sa->icv_len + sizeof(espt[0]) + sqh_len;
	const uint32_t cofs = sa->ctp.cipher.offset;

	/*
	 * to minimize stalls due to load latency,
	 * read mbufs metadata and esp tail first.
	 */
	for (i = 0; i != num; i++)
		process_step1(mb[i], tlen, &ml[i], &espt[i], &hl[i], &to[i]);

	k = 0;
	for (i = 0; i != num; i++) {

		adj = hl[i] + cofs;
		tl = tlen + espt[i].pad_len;

		/* check that packet is valid */
		if (tun_process_check(mb[i], &ml[i], &to[i], espt[i], adj, tl,
					sa->proto) == 0) {

			outh = rte_pktmbuf_mtod_offset(mb[i], uint8_t *,
					mb[i]->l2_len);

			/* modify packet's layout */
			inh = tun_process_step2(mb[i], ml[i], hl[i], adj,
					to[i], tl, sqn + k);

			/* update inner ip header */
			update_tun_inb_l3hdr(sa, outh, inh);

			/* update mbuf's metadata */
			tun_process_step3(mb[i], sa->tx_offload.msk,
				sa->tx_offload.val);
			k++;
		} else
			dr[i - k] = i;
	}

	return k;
}

/*
 * *process* function for tunnel packets
 */
static inline uint16_t
trs_process(const struct rte_ipsec_sa *sa, struct rte_mbuf *mb[],
	uint32_t sqn[], uint32_t dr[], uint16_t num, uint8_t sqh_len)
{
	char *np;
	uint32_t i, k, l2, tl;
	uint32_t hl[num], to[num];
	struct rte_esp_tail espt[num];
	struct rte_mbuf *ml[num];

	/*
	 * remove icv, esp trailer and high-order
	 * 32 bits of esn from packet length
	 */
	const uint32_t tlen = sa->icv_len + sizeof(espt[0]) + sqh_len;
	const uint32_t cofs = sa->ctp.cipher.offset;

	/*
	 * to minimize stalls due to load latency,
	 * read mbufs metadata and esp tail first.
	 */
	for (i = 0; i != num; i++)
		process_step1(mb[i], tlen, &ml[i], &espt[i], &hl[i], &to[i]);

	k = 0;
	for (i = 0; i != num; i++) {

		tl = tlen + espt[i].pad_len;
		l2 = mb[i]->l2_len;

		/* check that packet is valid */
		if (trs_process_check(mb[i], &ml[i], &to[i], espt[i],
				hl[i] + cofs, tl) == 0) {

			/* modify packet's layout */
			np = trs_process_step2(mb[i], ml[i], hl[i], cofs,
				to[i], tl, sqn + k);
			update_trs_l3hdr(sa, np + l2, mb[i]->pkt_len,
				l2, hl[i] - l2, espt[i].next_proto);

			/* update mbuf's metadata */
			trs_process_step3(mb[i]);
			k++;
		} else
			dr[i - k] = i;
	}

	return k;
}

/*
 * for group of ESP inbound packets perform SQN check and update.
 */
static inline uint16_t
esp_inb_rsn_update(struct rte_ipsec_sa *sa, const uint32_t sqn[],
	uint32_t dr[], uint16_t num)
{
	uint32_t i, k;
	struct replay_sqn *rsn;

	/* replay not enabled */
	if (sa->replay.win_sz == 0)
		return num;

	rsn = rsn_update_start(sa);

	k = 0;
	for (i = 0; i != num; i++) {
		if (esn_inb_update_sqn(rsn, sa, rte_be_to_cpu_32(sqn[i])) == 0)
			k++;
		else
			dr[i - k] = i;
	}

	rsn_update_finish(sa, rsn);
	return k;
}

/*
 * process group of ESP inbound packets.
 */
static inline uint16_t
esp_inb_pkt_process(struct rte_ipsec_sa *sa, struct rte_mbuf *mb[],
	uint16_t num, uint8_t sqh_len, esp_inb_process_t process)
{
	uint32_t k, n;
	uint32_t sqn[num];
	uint32_t dr[num];

	/* process packets, extract seq numbers */
	k = process(sa, mb, sqn, dr, num, sqh_len);

	/* handle unprocessed mbufs */
	if (k != num && k != 0)
		move_bad_mbufs(mb, dr, num, num - k);

	/* update SQN and replay window */
	n = esp_inb_rsn_update(sa, sqn, dr, k);

	/* handle mbufs with wrong SQN */
	if (n != k && n != 0)
		move_bad_mbufs(mb, dr, k, k - n);

	if (n != num)
		rte_errno = EBADMSG;

	return n;
}

/*
 * Prepare (plus actual crypto/auth) routine for inbound CPU-CRYPTO
 * (synchronous mode).
 */
uint16_t
cpu_inb_pkt_prepare(const struct rte_ipsec_session *ss,
	struct rte_mbuf *mb[], uint16_t num)
{
	int32_t rc;
	uint32_t i, k;
	struct rte_ipsec_sa *sa;
	struct replay_sqn *rsn;
	union sym_op_data icv;
	void *iv[num];
	void *aad[num];
	void *dgst[num];
	uint32_t dr[num];
	uint32_t l4ofs[num];
	uint32_t clen[num];
	uint64_t ivbuf[num][IPSEC_MAX_IV_QWORD];

	sa = ss->sa;

	/* grab rsn lock */
	rsn = rsn_acquire(sa);

	/* do preparation for all packets */
	for (i = 0, k = 0; i != num; i++) {

		/* calculate ESP header offset */
		l4ofs[k] = mb[i]->l2_len + mb[i]->l3_len;

		/* prepare ESP packet for processing */
		rc = inb_pkt_prepare(sa, rsn, mb[i], l4ofs[k], &icv);
		if (rc >= 0) {
			/* get encrypted data offset and length */
			clen[k] = inb_cpu_crypto_prepare(sa, mb[i],
				l4ofs + k, rc, ivbuf[k]);

			/* fill iv, digest and aad */
			iv[k] = ivbuf[k];
			aad[k] = icv.va + sa->icv_len;
			dgst[k++] = icv.va;
		} else {
			dr[i - k] = i;
			rte_errno = -rc;
		}
	}

	/* release rsn lock */
	rsn_release(sa, rsn);

	/* copy not prepared mbufs beyond good ones */
	if (k != num && k != 0)
		move_bad_mbufs(mb, dr, num, num - k);

	/* convert mbufs to iovecs and do actual crypto/auth processing */
	if (k != 0)
		cpu_crypto_bulk(ss, sa->cofs, mb, iv, aad, dgst,
			l4ofs, clen, k);
	return k;
}

/*
 * process group of ESP inbound tunnel packets.
 */
uint16_t
esp_inb_tun_pkt_process(const struct rte_ipsec_session *ss,
	struct rte_mbuf *mb[], uint16_t num)
{
	struct rte_ipsec_sa *sa = ss->sa;

	return esp_inb_pkt_process(sa, mb, num, sa->sqh_len, tun_process);
}

uint16_t
inline_inb_tun_pkt_process(const struct rte_ipsec_session *ss,
	struct rte_mbuf *mb[], uint16_t num)
{
	return esp_inb_pkt_process(ss->sa, mb, num, 0, tun_process);
}

/*
 * process group of ESP inbound transport packets.
 */
uint16_t
esp_inb_trs_pkt_process(const struct rte_ipsec_session *ss,
	struct rte_mbuf *mb[], uint16_t num)
{
	struct rte_ipsec_sa *sa = ss->sa;

	return esp_inb_pkt_process(sa, mb, num, sa->sqh_len, trs_process);
}

uint16_t
inline_inb_trs_pkt_process(const struct rte_ipsec_session *ss,
	struct rte_mbuf *mb[], uint16_t num)
{
	return esp_inb_pkt_process(ss->sa, mb, num, 0, trs_process);
}