DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2010-2014 Intel Corporation.
 * Copyright 2014 6WIND S.A.
 */

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdarg.h>
#include <inttypes.h>
#include <errno.h>
#include <ctype.h>
#include <sys/queue.h>

#include <rte_compat.h>
#include <rte_debug.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_branch_prediction.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_mbuf_pool_ops.h>
#include <rte_string_fns.h>
#include <rte_hexdump.h>
#include <rte_errno.h>
#include <rte_memcpy.h>

/*
 * pktmbuf pool constructor, given as a callback function to
 * rte_mempool_create(), or called directly if using
 * rte_mempool_create_empty()/rte_mempool_populate()
 */
void
rte_pktmbuf_pool_init(struct rte_mempool *mp, void *opaque_arg)
{
	struct rte_pktmbuf_pool_private *user_mbp_priv, *mbp_priv;
	struct rte_pktmbuf_pool_private default_mbp_priv;
	uint16_t roomsz;

	RTE_ASSERT(mp->elt_size >= sizeof(struct rte_mbuf));

	/* if no structure is provided, assume no mbuf private area */
	user_mbp_priv = opaque_arg;
	if (user_mbp_priv == NULL) {
		memset(&default_mbp_priv, 0, sizeof(default_mbp_priv));
		if (mp->elt_size > sizeof(struct rte_mbuf))
			roomsz = mp->elt_size - sizeof(struct rte_mbuf);
		else
			roomsz = 0;
		default_mbp_priv.mbuf_data_room_size = roomsz;
		user_mbp_priv = &default_mbp_priv;
	}

	RTE_ASSERT(mp->elt_size >= sizeof(struct rte_mbuf) +
		((user_mbp_priv->flags & RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF) ?
			sizeof(struct rte_mbuf_ext_shared_info) :
			user_mbp_priv->mbuf_data_room_size) +
		user_mbp_priv->mbuf_priv_size);
	RTE_ASSERT((user_mbp_priv->flags &
		    ~RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF) == 0);

	mbp_priv = rte_mempool_get_priv(mp);
	memcpy(mbp_priv, user_mbp_priv, sizeof(*mbp_priv));
}

/*
 * pktmbuf constructor, given as a callback function to
 * rte_mempool_obj_iter() or rte_mempool_create().
 * Set the fields of a packet mbuf to their default values.
 */
void
rte_pktmbuf_init(struct rte_mempool *mp,
		 __rte_unused void *opaque_arg,
		 void *_m,
		 __rte_unused unsigned i)
{
	struct rte_mbuf *m = _m;
	uint32_t mbuf_size, buf_len, priv_size;

	priv_size = rte_pktmbuf_priv_size(mp);
	mbuf_size = sizeof(struct rte_mbuf) + priv_size;
	buf_len = rte_pktmbuf_data_room_size(mp);

	RTE_ASSERT(RTE_ALIGN(priv_size, RTE_MBUF_PRIV_ALIGN) == priv_size);
	RTE_ASSERT(mp->elt_size >= mbuf_size);
	RTE_ASSERT(buf_len <= UINT16_MAX);

	memset(m, 0, mbuf_size);
	/* start of buffer is after mbuf structure and priv data */
	m->priv_size = priv_size;
	m->buf_addr = (char *)m + mbuf_size;
	m->buf_iova = rte_mempool_virt2iova(m) + mbuf_size;
	m->buf_len = (uint16_t)buf_len;

	/* keep some headroom between start of buffer and data */
	m->data_off = RTE_MIN(RTE_PKTMBUF_HEADROOM, (uint16_t)m->buf_len);

	/* init some constant fields */
	m->pool = mp;
	m->nb_segs = 1;
	m->port = MBUF_INVALID_PORT;
	rte_mbuf_refcnt_set(m, 1);
	m->next = NULL;
}

/*
 * @internal The callback routine called when reference counter in shinfo
 * for mbufs with pinned external buffer reaches zero. It means there is
 * no more reference to buffer backing mbuf and this one should be freed.
 * This routine is called for the regular (not with pinned external or
 * indirect buffer) mbufs on detaching from the mbuf with pinned external
 * buffer.
 */
static void
rte_pktmbuf_free_pinned_extmem(void *addr, void *opaque)
{
	struct rte_mbuf *m = opaque;

	RTE_SET_USED(addr);
	RTE_ASSERT(RTE_MBUF_HAS_EXTBUF(m));
	RTE_ASSERT(RTE_MBUF_HAS_PINNED_EXTBUF(m));
	RTE_ASSERT(m->shinfo->fcb_opaque == m);

	rte_mbuf_ext_refcnt_set(m->shinfo, 1);
	m->ol_flags = EXT_ATTACHED_MBUF;
	if (m->next != NULL) {
		m->next = NULL;
		m->nb_segs = 1;
	}
	rte_mbuf_raw_free(m);
}

/** The context to initialize the mbufs with pinned external buffers. */
struct rte_pktmbuf_extmem_init_ctx {
	const struct rte_pktmbuf_extmem *ext_mem; /* descriptor array. */
	unsigned int ext_num; /* number of descriptors in array. */
	unsigned int ext; /* loop descriptor index. */
	size_t off; /* loop buffer offset. */
};

/**
 * @internal Packet mbuf constructor for pools with pinned external memory.
 *
 * This function initializes some fields in the mbuf structure that are
 * not modified by the user once created (origin pool, buffer start
 * address, and so on). This function is given as a callback function to
 * rte_mempool_obj_iter() called from rte_mempool_create_extmem().
 *
 * @param mp
 *   The mempool from which mbufs originate.
 * @param opaque_arg
 *   A pointer to the rte_pktmbuf_extmem_init_ctx - initialization
 *   context structure
 * @param m
 *   The mbuf to initialize.
 * @param i
 *   The index of the mbuf in the pool table.
 */
static void
__rte_pktmbuf_init_extmem(struct rte_mempool *mp,
			  void *opaque_arg,
			  void *_m,
			  __rte_unused unsigned int i)
{
	struct rte_mbuf *m = _m;
	struct rte_pktmbuf_extmem_init_ctx *ctx = opaque_arg;
	const struct rte_pktmbuf_extmem *ext_mem;
	uint32_t mbuf_size, buf_len, priv_size;
	struct rte_mbuf_ext_shared_info *shinfo;

	priv_size = rte_pktmbuf_priv_size(mp);
	mbuf_size = sizeof(struct rte_mbuf) + priv_size;
	buf_len = rte_pktmbuf_data_room_size(mp);

	RTE_ASSERT(RTE_ALIGN(priv_size, RTE_MBUF_PRIV_ALIGN) == priv_size);
	RTE_ASSERT(mp->elt_size >= mbuf_size);
	RTE_ASSERT(buf_len <= UINT16_MAX);

	memset(m, 0, mbuf_size);
	m->priv_size = priv_size;
	m->buf_len = (uint16_t)buf_len;

	/* set the data buffer pointers to external memory */
	ext_mem = ctx->ext_mem + ctx->ext;

	RTE_ASSERT(ctx->ext < ctx->ext_num);
	RTE_ASSERT(ctx->off + ext_mem->elt_size <= ext_mem->buf_len);

	m->buf_addr = RTE_PTR_ADD(ext_mem->buf_ptr, ctx->off);
	m->buf_iova = ext_mem->buf_iova == RTE_BAD_IOVA ?
		      RTE_BAD_IOVA : (ext_mem->buf_iova + ctx->off);

	ctx->off += ext_mem->elt_size;
	if (ctx->off + ext_mem->elt_size > ext_mem->buf_len) {
		ctx->off = 0;
		++ctx->ext;
	}
	/* keep some headroom between start of buffer and data */
	m->data_off = RTE_MIN(RTE_PKTMBUF_HEADROOM, (uint16_t)m->buf_len);

	/* init some constant fields */
	m->pool = mp;
	m->nb_segs = 1;
	m->port = MBUF_INVALID_PORT;
	m->ol_flags = EXT_ATTACHED_MBUF;
	rte_mbuf_refcnt_set(m, 1);
	m->next = NULL;

	/* init external buffer shared info items */
	shinfo = RTE_PTR_ADD(m, mbuf_size);
	m->shinfo = shinfo;
	shinfo->free_cb = rte_pktmbuf_free_pinned_extmem;
	shinfo->fcb_opaque = m;
	rte_mbuf_ext_refcnt_set(shinfo, 1);
}

/* Helper to create a mbuf pool with given mempool ops name*/
struct rte_mempool *
rte_pktmbuf_pool_create_by_ops(const char *name, unsigned int n,
	unsigned int cache_size, uint16_t priv_size, uint16_t data_room_size,
	int socket_id, const char *ops_name)
{
	struct rte_mempool *mp;
	struct rte_pktmbuf_pool_private mbp_priv;
	const char *mp_ops_name = ops_name;
	unsigned elt_size;
	int ret;

	if (RTE_ALIGN(priv_size, RTE_MBUF_PRIV_ALIGN) != priv_size) {
		RTE_LOG(ERR, MBUF, "mbuf priv_size=%u is not aligned\n",
			priv_size);
		rte_errno = EINVAL;
		return NULL;
	}
	elt_size = sizeof(struct rte_mbuf) + (unsigned)priv_size +
		(unsigned)data_room_size;
	memset(&mbp_priv, 0, sizeof(mbp_priv));
	mbp_priv.mbuf_data_room_size = data_room_size;
	mbp_priv.mbuf_priv_size = priv_size;

	mp = rte_mempool_create_empty(name, n, elt_size, cache_size,
		 sizeof(struct rte_pktmbuf_pool_private), socket_id, 0);
	if (mp == NULL)
		return NULL;

	if (mp_ops_name == NULL)
		mp_ops_name = rte_mbuf_best_mempool_ops();
	ret = rte_mempool_set_ops_byname(mp, mp_ops_name, NULL);
	if (ret != 0) {
		RTE_LOG(ERR, MBUF, "error setting mempool handler\n");
		rte_mempool_free(mp);
		rte_errno = -ret;
		return NULL;
	}
	rte_pktmbuf_pool_init(mp, &mbp_priv);

	ret = rte_mempool_populate_default(mp);
	if (ret < 0) {
		rte_mempool_free(mp);
		rte_errno = -ret;
		return NULL;
	}

	rte_mempool_obj_iter(mp, rte_pktmbuf_init, NULL);

	return mp;
}

/* helper to create a mbuf pool */
struct rte_mempool *
rte_pktmbuf_pool_create(const char *name, unsigned int n,
	unsigned int cache_size, uint16_t priv_size, uint16_t data_room_size,
	int socket_id)
{
	return rte_pktmbuf_pool_create_by_ops(name, n, cache_size, priv_size,
			data_room_size, socket_id, NULL);
}

/* Helper to create a mbuf pool with pinned external data buffers. */
struct rte_mempool *
rte_pktmbuf_pool_create_extbuf(const char *name, unsigned int n,
	unsigned int cache_size, uint16_t priv_size,
	uint16_t data_room_size, int socket_id,
	const struct rte_pktmbuf_extmem *ext_mem,
	unsigned int ext_num)
{
	struct rte_mempool *mp;
	struct rte_pktmbuf_pool_private mbp_priv;
	struct rte_pktmbuf_extmem_init_ctx init_ctx;
	const char *mp_ops_name;
	unsigned int elt_size;
	unsigned int i, n_elts = 0;
	int ret;

	if (RTE_ALIGN(priv_size, RTE_MBUF_PRIV_ALIGN) != priv_size) {
		RTE_LOG(ERR, MBUF, "mbuf priv_size=%u is not aligned\n",
			priv_size);
		rte_errno = EINVAL;
		return NULL;
	}
	/* Check the external memory descriptors. */
	for (i = 0; i < ext_num; i++) {
		const struct rte_pktmbuf_extmem *extm = ext_mem + i;

		if (!extm->elt_size || !extm->buf_len || !extm->buf_ptr) {
			RTE_LOG(ERR, MBUF, "invalid extmem descriptor\n");
			rte_errno = EINVAL;
			return NULL;
		}
		if (data_room_size > extm->elt_size) {
			RTE_LOG(ERR, MBUF, "ext elt_size=%u is too small\n",
				priv_size);
			rte_errno = EINVAL;
			return NULL;
		}
		n_elts += extm->buf_len / extm->elt_size;
	}
	/* Check whether enough external memory provided. */
	if (n_elts < n) {
		RTE_LOG(ERR, MBUF, "not enough extmem\n");
		rte_errno = ENOMEM;
		return NULL;
	}
	elt_size = sizeof(struct rte_mbuf) +
		   (unsigned int)priv_size +
		   sizeof(struct rte_mbuf_ext_shared_info);

	memset(&mbp_priv, 0, sizeof(mbp_priv));
	mbp_priv.mbuf_data_room_size = data_room_size;
	mbp_priv.mbuf_priv_size = priv_size;
	mbp_priv.flags = RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF;

	mp = rte_mempool_create_empty(name, n, elt_size, cache_size,
		 sizeof(struct rte_pktmbuf_pool_private), socket_id, 0);
	if (mp == NULL)
		return NULL;

	mp_ops_name = rte_mbuf_best_mempool_ops();
	ret = rte_mempool_set_ops_byname(mp, mp_ops_name, NULL);
	if (ret != 0) {
		RTE_LOG(ERR, MBUF, "error setting mempool handler\n");
		rte_mempool_free(mp);
		rte_errno = -ret;
		return NULL;
	}
	rte_pktmbuf_pool_init(mp, &mbp_priv);

	ret = rte_mempool_populate_default(mp);
	if (ret < 0) {
		rte_mempool_free(mp);
		rte_errno = -ret;
		return NULL;
	}

	init_ctx = (struct rte_pktmbuf_extmem_init_ctx){
		.ext_mem = ext_mem,
		.ext_num = ext_num,
		.ext = 0,
		.off = 0,
	};
	rte_mempool_obj_iter(mp, __rte_pktmbuf_init_extmem, &init_ctx);

	return mp;
}

/* do some sanity checks on a mbuf: panic if it fails */
void
rte_mbuf_sanity_check(const struct rte_mbuf *m, int is_header)
{
	const char *reason;

	if (rte_mbuf_check(m, is_header, &reason))
		rte_panic("%s\n", reason);
}

int rte_mbuf_check(const struct rte_mbuf *m, int is_header,
		   const char **reason)
{
	unsigned int nb_segs, pkt_len;

	if (m == NULL) {
		*reason = "mbuf is NULL";
		return -1;
	}

	/* generic checks */
	if (m->pool == NULL) {
		*reason = "bad mbuf pool";
		return -1;
	}
	if (m->buf_iova == 0) {
		*reason = "bad IO addr";
		return -1;
	}
	if (m->buf_addr == NULL) {
		*reason = "bad virt addr";
		return -1;
	}

	uint16_t cnt = rte_mbuf_refcnt_read(m);
	if ((cnt == 0) || (cnt == UINT16_MAX)) {
		*reason = "bad ref cnt";
		return -1;
	}

	/* nothing to check for sub-segments */
	if (is_header == 0)
		return 0;

	/* data_len is supposed to be not more than pkt_len */
	if (m->data_len > m->pkt_len) {
		*reason = "bad data_len";
		return -1;
	}

	nb_segs = m->nb_segs;
	pkt_len = m->pkt_len;

	do {
		if (m->data_off > m->buf_len) {
			*reason = "data offset too big in mbuf segment";
			return -1;
		}
		if (m->data_off + m->data_len > m->buf_len) {
			*reason = "data length too big in mbuf segment";
			return -1;
		}
		nb_segs -= 1;
		pkt_len -= m->data_len;
	} while ((m = m->next) != NULL);

	if (nb_segs) {
		*reason = "bad nb_segs";
		return -1;
	}
	if (pkt_len) {
		*reason = "bad pkt_len";
		return -1;
	}

	return 0;
}

/**
 * @internal helper function for freeing a bulk of packet mbuf segments
 * via an array holding the packet mbuf segments from the same mempool
 * pending to be freed.
 *
 * @param m
 *  The packet mbuf segment to be freed.
 * @param pending
 *  Pointer to the array of packet mbuf segments pending to be freed.
 * @param nb_pending
 *  Pointer to the number of elements held in the array.
 * @param pending_sz
 *  Number of elements the array can hold.
 *  Note: The compiler should optimize this parameter away when using a
 *  constant value, such as RTE_PKTMBUF_FREE_PENDING_SZ.
 */
static void
__rte_pktmbuf_free_seg_via_array(struct rte_mbuf *m,
	struct rte_mbuf ** const pending, unsigned int * const nb_pending,
	const unsigned int pending_sz)
{
	m = rte_pktmbuf_prefree_seg(m);
	if (likely(m != NULL)) {
		if (*nb_pending == pending_sz ||
		    (*nb_pending > 0 && m->pool != pending[0]->pool)) {
			rte_mempool_put_bulk(pending[0]->pool,
					(void **)pending, *nb_pending);
			*nb_pending = 0;
		}

		pending[(*nb_pending)++] = m;
	}
}

/**
 * Size of the array holding mbufs from the same mempool pending to be freed
 * in bulk.
 */
#define RTE_PKTMBUF_FREE_PENDING_SZ 64

/* Free a bulk of packet mbufs back into their original mempools. */
void rte_pktmbuf_free_bulk(struct rte_mbuf **mbufs, unsigned int count)
{
	struct rte_mbuf *m, *m_next, *pending[RTE_PKTMBUF_FREE_PENDING_SZ];
	unsigned int idx, nb_pending = 0;

	for (idx = 0; idx < count; idx++) {
		m = mbufs[idx];
		if (unlikely(m == NULL))
			continue;

		__rte_mbuf_sanity_check(m, 1);

		do {
			m_next = m->next;
			__rte_pktmbuf_free_seg_via_array(m,
					pending, &nb_pending,
					RTE_PKTMBUF_FREE_PENDING_SZ);
			m = m_next;
		} while (m != NULL);
	}

	if (nb_pending > 0)
		rte_mempool_put_bulk(pending[0]->pool, (void **)pending, nb_pending);
}

/* Creates a shallow copy of mbuf */
struct rte_mbuf *
rte_pktmbuf_clone(struct rte_mbuf *md, struct rte_mempool *mp)
{
	struct rte_mbuf *mc, *mi, **prev;
	uint32_t pktlen;
	uint16_t nseg;

	mc = rte_pktmbuf_alloc(mp);
	if (unlikely(mc == NULL))
		return NULL;

	mi = mc;
	prev = &mi->next;
	pktlen = md->pkt_len;
	nseg = 0;

	do {
		nseg++;
		rte_pktmbuf_attach(mi, md);
		*prev = mi;
		prev = &mi->next;
	} while ((md = md->next) != NULL &&
	    (mi = rte_pktmbuf_alloc(mp)) != NULL);

	*prev = NULL;
	mc->nb_segs = nseg;
	mc->pkt_len = pktlen;

	/* Allocation of new indirect segment failed */
	if (unlikely(mi == NULL)) {
		rte_pktmbuf_free(mc);
		return NULL;
	}

	__rte_mbuf_sanity_check(mc, 1);
	return mc;
}

/* convert multi-segment mbuf to single mbuf */
int
__rte_pktmbuf_linearize(struct rte_mbuf *mbuf)
{
	size_t seg_len, copy_len;
	struct rte_mbuf *m;
	struct rte_mbuf *m_next;
	char *buffer;

	/* Extend first segment to the total packet length */
	copy_len = rte_pktmbuf_pkt_len(mbuf) - rte_pktmbuf_data_len(mbuf);

	if (unlikely(copy_len > rte_pktmbuf_tailroom(mbuf)))
		return -1;

	buffer = rte_pktmbuf_mtod_offset(mbuf, char *, mbuf->data_len);
	mbuf->data_len = (uint16_t)(mbuf->pkt_len);

	/* Append data from next segments to the first one */
	m = mbuf->next;
	while (m != NULL) {
		m_next = m->next;

		seg_len = rte_pktmbuf_data_len(m);
		rte_memcpy(buffer, rte_pktmbuf_mtod(m, char *), seg_len);
		buffer += seg_len;

		rte_pktmbuf_free_seg(m);
		m = m_next;
	}

	mbuf->next = NULL;
	mbuf->nb_segs = 1;

	return 0;
}

/* Create a deep copy of mbuf */
struct rte_mbuf *
rte_pktmbuf_copy(const struct rte_mbuf *m, struct rte_mempool *mp,
		 uint32_t off, uint32_t len)
{
	const struct rte_mbuf *seg = m;
	struct rte_mbuf *mc, *m_last, **prev;

	/* garbage in check */
	__rte_mbuf_sanity_check(m, 1);

	/* check for request to copy at offset past end of mbuf */
	if (unlikely(off >= m->pkt_len))
		return NULL;

	mc = rte_pktmbuf_alloc(mp);
	if (unlikely(mc == NULL))
		return NULL;

	/* truncate requested length to available data */
	if (len > m->pkt_len - off)
		len = m->pkt_len - off;

	__rte_pktmbuf_copy_hdr(mc, m);

	/* copied mbuf is not indirect or external */
	mc->ol_flags = m->ol_flags & ~(IND_ATTACHED_MBUF|EXT_ATTACHED_MBUF);

	prev = &mc->next;
	m_last = mc;
	while (len > 0) {
		uint32_t copy_len;

		/* skip leading mbuf segments */
		while (off >= seg->data_len) {
			off -= seg->data_len;
			seg = seg->next;
		}

		/* current buffer is full, chain a new one */
		if (rte_pktmbuf_tailroom(m_last) == 0) {
			m_last = rte_pktmbuf_alloc(mp);
			if (unlikely(m_last == NULL)) {
				rte_pktmbuf_free(mc);
				return NULL;
			}
			++mc->nb_segs;
			*prev = m_last;
			prev = &m_last->next;
		}

		/*
		 * copy the min of data in input segment (seg)
		 * vs space available in output (m_last)
		 */
		copy_len = RTE_MIN(seg->data_len - off, len);
		if (copy_len > rte_pktmbuf_tailroom(m_last))
			copy_len = rte_pktmbuf_tailroom(m_last);

		/* append from seg to m_last */
		rte_memcpy(rte_pktmbuf_mtod_offset(m_last, char *,
						   m_last->data_len),
			   rte_pktmbuf_mtod_offset(seg, char *, off),
			   copy_len);

		/* update offsets and lengths */
		m_last->data_len += copy_len;
		mc->pkt_len += copy_len;
		off += copy_len;
		len -= copy_len;
	}

	/* garbage out check */
	__rte_mbuf_sanity_check(mc, 1);
	return mc;
}

/* dump a mbuf on console */
void
rte_pktmbuf_dump(FILE *f, const struct rte_mbuf *m, unsigned dump_len)
{
	unsigned int len;
	unsigned int nb_segs;

	__rte_mbuf_sanity_check(m, 1);

	fprintf(f, "dump mbuf at %p, iova=%#"PRIx64", buf_len=%u\n",
		m, m->buf_iova, m->buf_len);
	fprintf(f, "  pkt_len=%u, ol_flags=%#"PRIx64", nb_segs=%u, port=%u",
		m->pkt_len, m->ol_flags, m->nb_segs, m->port);

	if (m->ol_flags & (PKT_RX_VLAN | PKT_TX_VLAN))
		fprintf(f, ", vlan_tci=%u", m->vlan_tci);

	fprintf(f, ", ptype=%#"PRIx32"\n", m->packet_type);

	nb_segs = m->nb_segs;

	while (m && nb_segs != 0) {
		__rte_mbuf_sanity_check(m, 0);

		fprintf(f, "  segment at %p, data=%p, len=%u, off=%u, refcnt=%u\n",
			m, rte_pktmbuf_mtod(m, void *),
			m->data_len, m->data_off, rte_mbuf_refcnt_read(m));

		len = dump_len;
		if (len > m->data_len)
			len = m->data_len;
		if (len != 0)
			rte_hexdump(f, NULL, rte_pktmbuf_mtod(m, void *), len);
		dump_len -= len;
		m = m->next;
		nb_segs --;
	}
}

/* read len data bytes in a mbuf at specified offset (internal) */
const void *__rte_pktmbuf_read(const struct rte_mbuf *m, uint32_t off,
	uint32_t len, void *buf)
{
	const struct rte_mbuf *seg = m;
	uint32_t buf_off = 0, copy_len;

	if (off + len > rte_pktmbuf_pkt_len(m))
		return NULL;

	while (off >= rte_pktmbuf_data_len(seg)) {
		off -= rte_pktmbuf_data_len(seg);
		seg = seg->next;
	}

	if (off + len <= rte_pktmbuf_data_len(seg))
		return rte_pktmbuf_mtod_offset(seg, char *, off);

	/* rare case: header is split among several segments */
	while (len > 0) {
		copy_len = rte_pktmbuf_data_len(seg) - off;
		if (copy_len > len)
			copy_len = len;
		rte_memcpy((char *)buf + buf_off,
			rte_pktmbuf_mtod_offset(seg, char *, off), copy_len);
		off = 0;
		buf_off += copy_len;
		len -= copy_len;
		seg = seg->next;
	}

	return buf;
}

/*
 * Get the name of a RX offload flag. Must be kept synchronized with flag
 * definitions in rte_mbuf.h.
 */
const char *rte_get_rx_ol_flag_name(uint64_t mask)
{
	switch (mask) {
	case PKT_RX_VLAN: return "PKT_RX_VLAN";
	case PKT_RX_RSS_HASH: return "PKT_RX_RSS_HASH";
	case PKT_RX_FDIR: return "PKT_RX_FDIR";
	case PKT_RX_L4_CKSUM_BAD: return "PKT_RX_L4_CKSUM_BAD";
	case PKT_RX_L4_CKSUM_GOOD: return "PKT_RX_L4_CKSUM_GOOD";
	case PKT_RX_L4_CKSUM_NONE: return "PKT_RX_L4_CKSUM_NONE";
	case PKT_RX_IP_CKSUM_BAD: return "PKT_RX_IP_CKSUM_BAD";
	case PKT_RX_IP_CKSUM_GOOD: return "PKT_RX_IP_CKSUM_GOOD";
	case PKT_RX_IP_CKSUM_NONE: return "PKT_RX_IP_CKSUM_NONE";
	case PKT_RX_EIP_CKSUM_BAD: return "PKT_RX_EIP_CKSUM_BAD";
	case PKT_RX_VLAN_STRIPPED: return "PKT_RX_VLAN_STRIPPED";
	case PKT_RX_IEEE1588_PTP: return "PKT_RX_IEEE1588_PTP";
	case PKT_RX_IEEE1588_TMST: return "PKT_RX_IEEE1588_TMST";
	case PKT_RX_FDIR_ID: return "PKT_RX_FDIR_ID";
	case PKT_RX_FDIR_FLX: return "PKT_RX_FDIR_FLX";
	case PKT_RX_QINQ_STRIPPED: return "PKT_RX_QINQ_STRIPPED";
	case PKT_RX_QINQ: return "PKT_RX_QINQ";
	case PKT_RX_LRO: return "PKT_RX_LRO";
	case PKT_RX_TIMESTAMP: return "PKT_RX_TIMESTAMP";
	case PKT_RX_SEC_OFFLOAD: return "PKT_RX_SEC_OFFLOAD";
	case PKT_RX_SEC_OFFLOAD_FAILED: return "PKT_RX_SEC_OFFLOAD_FAILED";
	case PKT_RX_OUTER_L4_CKSUM_BAD: return "PKT_RX_OUTER_L4_CKSUM_BAD";
	case PKT_RX_OUTER_L4_CKSUM_GOOD: return "PKT_RX_OUTER_L4_CKSUM_GOOD";
	case PKT_RX_OUTER_L4_CKSUM_INVALID:
		return "PKT_RX_OUTER_L4_CKSUM_INVALID";

	default: return NULL;
	}
}

struct flag_mask {
	uint64_t flag;
	uint64_t mask;
	const char *default_name;
};

/* write the list of rx ol flags in buffer buf */
int
rte_get_rx_ol_flag_list(uint64_t mask, char *buf, size_t buflen)
{
	const struct flag_mask rx_flags[] = {
		{ PKT_RX_VLAN, PKT_RX_VLAN, NULL },
		{ PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, NULL },
		{ PKT_RX_FDIR, PKT_RX_FDIR, NULL },
		{ PKT_RX_L4_CKSUM_BAD, PKT_RX_L4_CKSUM_MASK, NULL },
		{ PKT_RX_L4_CKSUM_GOOD, PKT_RX_L4_CKSUM_MASK, NULL },
		{ PKT_RX_L4_CKSUM_NONE, PKT_RX_L4_CKSUM_MASK, NULL },
		{ PKT_RX_L4_CKSUM_UNKNOWN, PKT_RX_L4_CKSUM_MASK,
		  "PKT_RX_L4_CKSUM_UNKNOWN" },
		{ PKT_RX_IP_CKSUM_BAD, PKT_RX_IP_CKSUM_MASK, NULL },
		{ PKT_RX_IP_CKSUM_GOOD, PKT_RX_IP_CKSUM_MASK, NULL },
		{ PKT_RX_IP_CKSUM_NONE, PKT_RX_IP_CKSUM_MASK, NULL },
		{ PKT_RX_IP_CKSUM_UNKNOWN, PKT_RX_IP_CKSUM_MASK,
		  "PKT_RX_IP_CKSUM_UNKNOWN" },
		{ PKT_RX_EIP_CKSUM_BAD, PKT_RX_EIP_CKSUM_BAD, NULL },
		{ PKT_RX_VLAN_STRIPPED, PKT_RX_VLAN_STRIPPED, NULL },
		{ PKT_RX_IEEE1588_PTP, PKT_RX_IEEE1588_PTP, NULL },
		{ PKT_RX_IEEE1588_TMST, PKT_RX_IEEE1588_TMST, NULL },
		{ PKT_RX_FDIR_ID, PKT_RX_FDIR_ID, NULL },
		{ PKT_RX_FDIR_FLX, PKT_RX_FDIR_FLX, NULL },
		{ PKT_RX_QINQ_STRIPPED, PKT_RX_QINQ_STRIPPED, NULL },
		{ PKT_RX_LRO, PKT_RX_LRO, NULL },
		{ PKT_RX_TIMESTAMP, PKT_RX_TIMESTAMP, NULL },
		{ PKT_RX_SEC_OFFLOAD, PKT_RX_SEC_OFFLOAD, NULL },
		{ PKT_RX_SEC_OFFLOAD_FAILED, PKT_RX_SEC_OFFLOAD_FAILED, NULL },
		{ PKT_RX_QINQ, PKT_RX_QINQ, NULL },
		{ PKT_RX_OUTER_L4_CKSUM_BAD, PKT_RX_OUTER_L4_CKSUM_MASK, NULL },
		{ PKT_RX_OUTER_L4_CKSUM_GOOD, PKT_RX_OUTER_L4_CKSUM_MASK,
		  NULL },
		{ PKT_RX_OUTER_L4_CKSUM_INVALID, PKT_RX_OUTER_L4_CKSUM_MASK,
		  NULL },
		{ PKT_RX_OUTER_L4_CKSUM_UNKNOWN, PKT_RX_OUTER_L4_CKSUM_MASK,
		  "PKT_RX_OUTER_L4_CKSUM_UNKNOWN" },
	};
	const char *name;
	unsigned int i;
	int ret;

	if (buflen == 0)
		return -1;

	buf[0] = '\0';
	for (i = 0; i < RTE_DIM(rx_flags); i++) {
		if ((mask & rx_flags[i].mask) != rx_flags[i].flag)
			continue;
		name = rte_get_rx_ol_flag_name(rx_flags[i].flag);
		if (name == NULL)
			name = rx_flags[i].default_name;
		ret = snprintf(buf, buflen, "%s ", name);
		if (ret < 0)
			return -1;
		if ((size_t)ret >= buflen)
			return -1;
		buf += ret;
		buflen -= ret;
	}

	return 0;
}

/*
 * Get the name of a TX offload flag. Must be kept synchronized with flag
 * definitions in rte_mbuf.h.
 */
const char *rte_get_tx_ol_flag_name(uint64_t mask)
{
	switch (mask) {
	case PKT_TX_VLAN: return "PKT_TX_VLAN";
	case PKT_TX_IP_CKSUM: return "PKT_TX_IP_CKSUM";
	case PKT_TX_TCP_CKSUM: return "PKT_TX_TCP_CKSUM";
	case PKT_TX_SCTP_CKSUM: return "PKT_TX_SCTP_CKSUM";
	case PKT_TX_UDP_CKSUM: return "PKT_TX_UDP_CKSUM";
	case PKT_TX_IEEE1588_TMST: return "PKT_TX_IEEE1588_TMST";
	case PKT_TX_TCP_SEG: return "PKT_TX_TCP_SEG";
	case PKT_TX_IPV4: return "PKT_TX_IPV4";
	case PKT_TX_IPV6: return "PKT_TX_IPV6";
	case PKT_TX_OUTER_IP_CKSUM: return "PKT_TX_OUTER_IP_CKSUM";
	case PKT_TX_OUTER_IPV4: return "PKT_TX_OUTER_IPV4";
	case PKT_TX_OUTER_IPV6: return "PKT_TX_OUTER_IPV6";
	case PKT_TX_TUNNEL_VXLAN: return "PKT_TX_TUNNEL_VXLAN";
	case PKT_TX_TUNNEL_GTP: return "PKT_TX_TUNNEL_GTP";
	case PKT_TX_TUNNEL_GRE: return "PKT_TX_TUNNEL_GRE";
	case PKT_TX_TUNNEL_IPIP: return "PKT_TX_TUNNEL_IPIP";
	case PKT_TX_TUNNEL_GENEVE: return "PKT_TX_TUNNEL_GENEVE";
	case PKT_TX_TUNNEL_MPLSINUDP: return "PKT_TX_TUNNEL_MPLSINUDP";
	case PKT_TX_TUNNEL_VXLAN_GPE: return "PKT_TX_TUNNEL_VXLAN_GPE";
	case PKT_TX_TUNNEL_IP: return "PKT_TX_TUNNEL_IP";
	case PKT_TX_TUNNEL_UDP: return "PKT_TX_TUNNEL_UDP";
	case PKT_TX_QINQ: return "PKT_TX_QINQ";
	case PKT_TX_MACSEC: return "PKT_TX_MACSEC";
	case PKT_TX_SEC_OFFLOAD: return "PKT_TX_SEC_OFFLOAD";
	case PKT_TX_UDP_SEG: return "PKT_TX_UDP_SEG";
	case PKT_TX_OUTER_UDP_CKSUM: return "PKT_TX_OUTER_UDP_CKSUM";
	default: return NULL;
	}
}

/* write the list of tx ol flags in buffer buf */
int
rte_get_tx_ol_flag_list(uint64_t mask, char *buf, size_t buflen)
{
	const struct flag_mask tx_flags[] = {
		{ PKT_TX_VLAN, PKT_TX_VLAN, NULL },
		{ PKT_TX_IP_CKSUM, PKT_TX_IP_CKSUM, NULL },
		{ PKT_TX_TCP_CKSUM, PKT_TX_L4_MASK, NULL },
		{ PKT_TX_SCTP_CKSUM, PKT_TX_L4_MASK, NULL },
		{ PKT_TX_UDP_CKSUM, PKT_TX_L4_MASK, NULL },
		{ PKT_TX_L4_NO_CKSUM, PKT_TX_L4_MASK, "PKT_TX_L4_NO_CKSUM" },
		{ PKT_TX_IEEE1588_TMST, PKT_TX_IEEE1588_TMST, NULL },
		{ PKT_TX_TCP_SEG, PKT_TX_TCP_SEG, NULL },
		{ PKT_TX_IPV4, PKT_TX_IPV4, NULL },
		{ PKT_TX_IPV6, PKT_TX_IPV6, NULL },
		{ PKT_TX_OUTER_IP_CKSUM, PKT_TX_OUTER_IP_CKSUM, NULL },
		{ PKT_TX_OUTER_IPV4, PKT_TX_OUTER_IPV4, NULL },
		{ PKT_TX_OUTER_IPV6, PKT_TX_OUTER_IPV6, NULL },
		{ PKT_TX_TUNNEL_VXLAN, PKT_TX_TUNNEL_MASK, NULL },
		{ PKT_TX_TUNNEL_GTP, PKT_TX_TUNNEL_MASK, NULL },
		{ PKT_TX_TUNNEL_GRE, PKT_TX_TUNNEL_MASK, NULL },
		{ PKT_TX_TUNNEL_IPIP, PKT_TX_TUNNEL_MASK, NULL },
		{ PKT_TX_TUNNEL_GENEVE, PKT_TX_TUNNEL_MASK, NULL },
		{ PKT_TX_TUNNEL_MPLSINUDP, PKT_TX_TUNNEL_MASK, NULL },
		{ PKT_TX_TUNNEL_VXLAN_GPE, PKT_TX_TUNNEL_MASK, NULL },
		{ PKT_TX_TUNNEL_IP, PKT_TX_TUNNEL_MASK, NULL },
		{ PKT_TX_TUNNEL_UDP, PKT_TX_TUNNEL_MASK, NULL },
		{ PKT_TX_QINQ, PKT_TX_QINQ, NULL },
		{ PKT_TX_MACSEC, PKT_TX_MACSEC, NULL },
		{ PKT_TX_SEC_OFFLOAD, PKT_TX_SEC_OFFLOAD, NULL },
		{ PKT_TX_UDP_SEG, PKT_TX_UDP_SEG, NULL },
		{ PKT_TX_OUTER_UDP_CKSUM, PKT_TX_OUTER_UDP_CKSUM, NULL },
	};
	const char *name;
	unsigned int i;
	int ret;

	if (buflen == 0)
		return -1;

	buf[0] = '\0';
	for (i = 0; i < RTE_DIM(tx_flags); i++) {
		if ((mask & tx_flags[i].mask) != tx_flags[i].flag)
			continue;
		name = rte_get_tx_ol_flag_name(tx_flags[i].flag);
		if (name == NULL)
			name = tx_flags[i].default_name;
		ret = snprintf(buf, buflen, "%s ", name);
		if (ret < 0)
			return -1;
		if ((size_t)ret >= buflen)
			return -1;
		buf += ret;
		buflen -= ret;
	}

	return 0;
}