/*-
* BSD LICENSE
*
* Copyright(c) 2010-2013 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdarg.h>
#include <errno.h>
#include <dirent.h>
#include <limits.h>
#include <sys/queue.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include <rte_interrupts.h>
#include <rte_log.h>
#include <rte_pci.h>
#include <rte_common.h>
#include <rte_launch.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_tailq.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_malloc.h>
#include <rte_string_fns.h>
#include <rte_debug.h>
#include "eal_filesystem.h"
#include "eal_private.h"
/**
* @file
* PCI probing under linux
*
* This code is used to simulate a PCI probe by parsing information in
* sysfs. Moreover, when a registered driver matches a device, the
* kernel driver currently using it is unloaded and replaced by
* igb_uio module, which is a very minimal userland driver for Intel
* network card, only providing access to PCI BAR to applications, and
* enabling bus master.
*/
#define PROC_MODULES "/proc/modules"
#define IGB_UIO_NAME "igb_uio"
#define UIO_DRV_PATH "/sys/bus/pci/drivers/%s"
/* maximum time to wait that /dev/uioX appears */
#define UIO_DEV_WAIT_TIMEOUT 3 /* seconds */
/*
* For multi-process we need to reproduce all PCI mappings in secondary
* processes, so save them in a tailq.
*/
struct uio_resource {
TAILQ_ENTRY(uio_resource) next;
struct rte_pci_addr pci_addr;
void *addr;
char path[PATH_MAX];
unsigned long size;
unsigned long offset;
};
TAILQ_HEAD(uio_res_list, uio_resource);
static struct uio_res_list *uio_res_list = NULL;
/*
* Check that a kernel module is loaded. Returns 0 on success, or if the
* parameter is NULL, or -1 if the module is not loaded.
*/
static int
pci_uio_check_module(const char *module_name)
{
FILE *f;
unsigned i;
char buf[BUFSIZ];
if (module_name == NULL)
return 0;
f = fopen(PROC_MODULES, "r");
if (f == NULL) {
RTE_LOG(ERR, EAL, "Cannot open "PROC_MODULES": %s\n",
strerror(errno));
return -1;
}
while(fgets(buf, sizeof(buf), f) != NULL) {
for (i = 0; i < sizeof(buf) && buf[i] != '\0'; i++) {
if (isspace(buf[i]))
buf[i] = '\0';
}
if (strncmp(buf, module_name, sizeof(buf)) == 0) {
fclose(f);
return 0;
}
}
fclose(f);
return -1;
}
/* bind a PCI to the kernel module driver */
static int
pci_bind_device(struct rte_pci_device *dev, char dr_path[])
{
FILE *f;
int n;
char buf[BUFSIZ];
char dev_bind[PATH_MAX];
struct rte_pci_addr *loc = &dev->addr;
RTE_LOG(DEBUG, EAL, "bind PCI device "PCI_PRI_FMT"\n",
loc->domain, loc->bus, loc->devid, loc->function);
n = rte_snprintf(dev_bind, sizeof(dev_bind), "%s/bind", dr_path);
if ((n < 0) || (n >= (int)sizeof(buf))) {
RTE_LOG(ERR, EAL, "Cannot rte_snprintf device bind path\n");
return -1;
}
f = fopen(dev_bind, "w");
if (f == NULL) {
RTE_LOG(ERR, EAL, "Cannot open %s\n", dev->previous_dr);
return -1;
}
n = rte_snprintf(buf, sizeof(buf), PCI_PRI_FMT "\n",
loc->domain, loc->bus, loc->devid, loc->function);
if ((n < 0) || (n >= (int)sizeof(buf))) {
RTE_LOG(ERR, EAL, "Cannot rte_snprintf PCI infos\n");
fclose(f);
return -1;
}
if (fwrite(buf, n, 1, f) == 0) {
fclose(f);
return -1;
}
RTE_LOG(DEBUG, EAL, "Device bound\n");
fclose(f);
return 0;
}
static int
pci_uio_bind_device(struct rte_pci_device *dev, const char *module_name)
{
FILE *f;
int n;
char buf[BUFSIZ];
char uio_newid[PATH_MAX];
char uio_bind[PATH_MAX];
n = rte_snprintf(uio_newid, sizeof(uio_newid), UIO_DRV_PATH "/new_id", module_name);
if ((n < 0) || (n >= (int)sizeof(uio_newid))) {
RTE_LOG(ERR, EAL, "Cannot rte_snprintf uio_newid name\n");
return -1;
}
n = rte_snprintf(uio_bind, sizeof(uio_bind), UIO_DRV_PATH, module_name);
if ((n < 0) || (n >= (int)sizeof(uio_bind))) {
RTE_LOG(ERR, EAL, "Cannot rte_snprintf uio_bind name\n");
return -1;
}
n = rte_snprintf(buf, sizeof(buf), "%x %x\n",
dev->id.vendor_id, dev->id.device_id);
if ((n < 0) || (n >= (int)sizeof(buf))) {
RTE_LOG(ERR, EAL, "Cannot rte_snprintf vendor_id/device_id\n");
return -1;
}
f = fopen(uio_newid, "w");
if (f == NULL) {
RTE_LOG(ERR, EAL, "Cannot open %s\n", uio_newid);
return -1;
}
if (fwrite(buf, n, 1, f) == 0) {
fclose(f);
return -1;
}
fclose(f);
pci_bind_device(dev, uio_bind);
return 0;
}
/* map a particular resource from a file */
static void *
pci_map_resource(struct rte_pci_device *dev, void *requested_addr, const char *devname,
unsigned long offset, unsigned long size)
{
unsigned n;
int fd;
void *mapaddr;
/*
* open devname, and mmap it: it can take some time to
* appear, so we wait some time before returning an error
*/
for (n=0; n<UIO_DEV_WAIT_TIMEOUT*10; n++) {
fd = open(devname, O_RDWR);
if (fd >= 0)
break;
if (errno != ENOENT)
break;
usleep(100000);
}
if (fd < 0) {
RTE_LOG(ERR, EAL, "Cannot open %s: %s\n", devname, strerror(errno));
goto fail;
}
/* Map the PCI memory resource of device */
mapaddr = mmap(requested_addr, size, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, offset);
if (mapaddr == MAP_FAILED ||
(requested_addr != NULL && mapaddr != requested_addr)) {
RTE_LOG(ERR, EAL, "%s(): cannot mmap %s: %s\n", __func__,
devname, strerror(errno));
close(fd);
goto fail;
}
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
/* save fd if in primary process */
dev->intr_handle.fd = fd;
dev->intr_handle.type = RTE_INTR_HANDLE_UIO;
} else {
/* fd is not needed in slave process, close it */
dev->intr_handle.fd = -1;
dev->intr_handle.type = RTE_INTR_HANDLE_UNKNOWN;
close(fd);
}
RTE_LOG(DEBUG, EAL, "PCI memory mapped at %p\n", mapaddr);
return mapaddr;
fail:
dev->intr_handle.fd = -1;
dev->intr_handle.type = RTE_INTR_HANDLE_UNKNOWN;
return NULL;
}
/* map the PCI resource of a PCI device in virtual memory */
static int
pci_uio_map_resource(struct rte_pci_device *dev)
{
struct dirent *e;
DIR *dir;
char dirname[PATH_MAX];
char dirname2[PATH_MAX];
char filename[PATH_MAX];
char devname[PATH_MAX]; /* contains the /dev/uioX */
void *mapaddr;
unsigned uio_num;
unsigned long size, offset;
struct rte_pci_addr *loc = &dev->addr;
struct uio_resource *uio_res;
RTE_LOG(DEBUG, EAL, "map PCI resource for device "PCI_PRI_FMT"\n",
loc->domain, loc->bus, loc->devid, loc->function);
/* secondary processes - use already recorded details */
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
TAILQ_FOREACH(uio_res, uio_res_list, next) {
/* skip this element if it doesn't match our PCI address */
if (memcmp(&uio_res->pci_addr, &dev->addr, sizeof(dev->addr)))
continue;
if (pci_map_resource(dev, uio_res->addr, uio_res->path, \
uio_res->offset, uio_res->size) == uio_res->addr)
return 0;
else {
RTE_LOG(ERR, EAL, "Cannot mmap device resource\n");
return -1;
}
}
RTE_LOG(ERR, EAL, "Cannot find resource for device\n");
return -1;
}
/* depending on kernel version, uio can be located in uio/uioX
* or uio:uioX */
rte_snprintf(dirname, sizeof(dirname),
"/sys/bus/pci/devices/" PCI_PRI_FMT "/uio",
loc->domain, loc->bus, loc->devid, loc->function);
dir = opendir(dirname);
if (dir == NULL) {
/* retry with the parent directory */
rte_snprintf(dirname, sizeof(dirname),
"/sys/bus/pci/devices/" PCI_PRI_FMT,
loc->domain, loc->bus, loc->devid, loc->function);
dir = opendir(dirname);
if (dir == NULL) {
RTE_LOG(ERR, EAL, "Cannot opendir %s\n", dirname);
return -1;
}
}
/* take the first file starting with "uio" */
while ((e = readdir(dir)) != NULL) {
int shortprefix_len = sizeof("uio") - 1; /* format could be uio%d ...*/
int longprefix_len = sizeof("uio:uio") - 1; /* ... or uio:uio%d */
char *endptr;
if (strncmp(e->d_name, "uio", 3) != 0)
continue;
/* first try uio%d */
errno = 0;
uio_num = strtoull(e->d_name + shortprefix_len, &endptr, 10);
if (errno == 0 && endptr != e->d_name) {
rte_snprintf(dirname2, sizeof(dirname2),
"%s/uio%u", dirname, uio_num);
break;
}
/* then try uio:uio%d */
errno = 0;
uio_num = strtoull(e->d_name + longprefix_len, &endptr, 10);
if (errno == 0 && endptr != e->d_name) {
rte_snprintf(dirname2, sizeof(dirname2),
"%s/uio:uio%u", dirname, uio_num);
break;
}
}
closedir(dir);
/* No uio resource found */
if (e == NULL)
return 0;
/* get mapping offset */
rte_snprintf(filename, sizeof(filename),
"%s/maps/map0/offset", dirname2);
if (eal_parse_sysfs_value(filename, &offset) < 0) {
RTE_LOG(ERR, EAL, "%s(): cannot parse offset\n",
__func__);
return -1;
}
/* get mapping size */
rte_snprintf(filename, sizeof(filename),
"%s/maps/map0/size", dirname2);
if (eal_parse_sysfs_value(filename, &size) < 0) {
RTE_LOG(ERR, EAL, "%s(): cannot parse size\n",
__func__);
return -1;
}
/* open and mmap /dev/uioX */
rte_snprintf(devname, sizeof(devname), "/dev/uio%u", uio_num);
mapaddr = pci_map_resource(dev, NULL, devname, offset, size);
if (mapaddr == NULL)
return -1;
dev->mem_resource.addr = mapaddr;
/* save the mapping details for secondary processes*/
uio_res = rte_malloc("UIO_RES", sizeof(*uio_res), 0);
if (uio_res == NULL) {
RTE_LOG(ERR, EAL, "%s(): cannot store uio mmap details\n", __func__);
return -1;
}
uio_res->addr = mapaddr;
uio_res->offset = offset;
uio_res->size = size;
rte_snprintf(uio_res->path, sizeof(uio_res->path), "%s", devname);
memcpy(&uio_res->pci_addr, &dev->addr, sizeof(uio_res->pci_addr));
TAILQ_INSERT_TAIL(uio_res_list, uio_res, next);
return 0;
}
/* parse the "resource" sysfs file */
#define IORESOURCE_MEM 0x00000200
static int
pci_parse_sysfs_resource(const char *filename, struct rte_pci_device *dev)
{
FILE *f;
char buf[BUFSIZ];
union pci_resource_info {
struct {
char *phys_addr;
char *end_addr;
char *flags;
};
char *ptrs[PCI_RESOURCE_FMT_NVAL];
} res_info;
int i;
uint64_t phys_addr, end_addr, flags;
f = fopen(filename, "r");
if (f == NULL) {
RTE_LOG(ERR, EAL, "Cannot open sysfs resource\n");
return -1;
}
for (i = 0; i<PCI_MAX_RESOURCE; i++) {
if (fgets(buf, sizeof(buf), f) == NULL) {
RTE_LOG(ERR, EAL, "%s(): cannot read resource\n", __func__);
goto error;
}
if (rte_strsplit(buf, sizeof(buf), res_info.ptrs, 3, ' ') != 3) {
RTE_LOG(ERR, EAL, "%s(): bad resource format\n", __func__);
goto error;
}
errno = 0;
phys_addr = strtoull(res_info.phys_addr, NULL, 16);
end_addr = strtoull(res_info.end_addr, NULL, 16);
flags = strtoull(res_info.flags, NULL, 16);
if (errno != 0) {
RTE_LOG(ERR, EAL, "%s(): bad resource format\n", __func__);
goto error;
}
if (flags & IORESOURCE_MEM) {
dev->mem_resource.phys_addr = phys_addr;
dev->mem_resource.len = end_addr - phys_addr + 1;
dev->mem_resource.addr = NULL; /* not mapped for now */
break;
}
}
fclose(f);
return 0;
error:
fclose(f);
return -1;
}
/* Compare two PCI device addresses. */
static int
pci_addr_comparison(struct rte_pci_addr *addr, struct rte_pci_addr *addr2)
{
uint64_t dev_addr = (addr->domain << 24) + (addr->bus << 16) + (addr->devid << 8) + addr->function;
uint64_t dev_addr2 = (addr2->domain << 24) + (addr2->bus << 16) + (addr2->devid << 8) + addr2->function;
if (dev_addr > dev_addr2)
return 1;
else
return 0;
}
/* Scan one pci sysfs entry, and fill the devices list from it. */
static int
pci_scan_one(const char *dirname, uint16_t domain, uint8_t bus,
uint8_t devid, uint8_t function)
{
char filename[PATH_MAX];
unsigned long tmp;
struct rte_pci_device *dev;
dev = malloc(sizeof(*dev));
if (dev == NULL) {
return -1;
}
memset(dev, 0, sizeof(*dev));
dev->addr.domain = domain;
dev->addr.bus = bus;
dev->addr.devid = devid;
dev->addr.function = function;
/* get vendor id */
rte_snprintf(filename, sizeof(filename), "%s/vendor", dirname);
if (eal_parse_sysfs_value(filename, &tmp) < 0) {
free(dev);
return -1;
}
dev->id.vendor_id = (uint16_t)tmp;
/* get device id */
rte_snprintf(filename, sizeof(filename), "%s/device", dirname);
if (eal_parse_sysfs_value(filename, &tmp) < 0) {
free(dev);
return -1;
}
dev->id.device_id = (uint16_t)tmp;
/* get subsystem_vendor id */
rte_snprintf(filename, sizeof(filename), "%s/subsystem_vendor",
dirname);
if (eal_parse_sysfs_value(filename, &tmp) < 0) {
free(dev);
return -1;
}
dev->id.subsystem_vendor_id = (uint16_t)tmp;
/* get subsystem_device id */
rte_snprintf(filename, sizeof(filename), "%s/subsystem_device",
dirname);
if (eal_parse_sysfs_value(filename, &tmp) < 0) {
free(dev);
return -1;
}
dev->id.subsystem_device_id = (uint16_t)tmp;
/* parse resources */
rte_snprintf(filename, sizeof(filename), "%s/resource", dirname);
if (pci_parse_sysfs_resource(filename, dev) < 0) {
RTE_LOG(ERR, EAL, "%s(): cannot parse resource\n", __func__);
free(dev);
return -1;
}
/* device is valid, add in list (sorted) */
if (TAILQ_EMPTY(&device_list)) {
TAILQ_INSERT_TAIL(&device_list, dev, next);
}
else {
struct rte_pci_device *dev2 = NULL;
TAILQ_FOREACH(dev2, &device_list, next) {
if (pci_addr_comparison(&dev->addr, &dev2->addr))
continue;
else {
TAILQ_INSERT_BEFORE(dev2, dev, next);
return 0;
}
}
TAILQ_INSERT_TAIL(&device_list, dev, next);
}
return 0;
}
/*
* split up a pci address into its constituent parts.
*/
static int
parse_pci_addr_format(const char *buf, int bufsize, uint16_t *domain,
uint8_t *bus, uint8_t *devid, uint8_t *function)
{
/* first split on ':' */
union splitaddr {
struct {
char *domain;
char *bus;
char *devid;
char *function;
};
char *str[PCI_FMT_NVAL]; /* last element-separator is "." not ":" */
} splitaddr;
char *buf_copy = strndup(buf, bufsize);
if (buf_copy == NULL)
return -1;
if (rte_strsplit(buf_copy, bufsize, splitaddr.str, PCI_FMT_NVAL, ':')
!= PCI_FMT_NVAL - 1)
goto error;
/* final split is on '.' between devid and function */
splitaddr.function = strchr(splitaddr.devid,'.');
if (splitaddr.function == NULL)
goto error;
*splitaddr.function++ = '\0';
/* now convert to int values */
errno = 0;
*domain = (uint8_t)strtoul(splitaddr.domain, NULL, 16);
*bus = (uint8_t)strtoul(splitaddr.bus, NULL, 16);
*devid = (uint8_t)strtoul(splitaddr.devid, NULL, 16);
*function = (uint8_t)strtoul(splitaddr.function, NULL, 10);
if (errno != 0)
goto error;
free(buf_copy); /* free the copy made with strdup */
return 0;
error:
free(buf_copy);
return -1;
}
/*
* Scan the content of the PCI bus, and the devices in the devices
* list
*/
static int
pci_scan(void)
{
struct dirent *e;
DIR *dir;
char dirname[PATH_MAX];
uint16_t domain;
uint8_t bus, devid, function;
dir = opendir(SYSFS_PCI_DEVICES);
if (dir == NULL) {
RTE_LOG(ERR, EAL, "%s(): opendir failed: %s\n",
__func__, strerror(errno));
return -1;
}
while ((e = readdir(dir)) != NULL) {
if (e->d_name[0] == '.')
continue;
if (parse_pci_addr_format(e->d_name, sizeof(e->d_name), &domain,
&bus, &devid, &function) != 0)
continue;
rte_snprintf(dirname, sizeof(dirname), "%s/%s", SYSFS_PCI_DEVICES,
e->d_name);
if (pci_scan_one(dirname, domain, bus, devid, function) < 0)
goto error;
}
closedir(dir);
return 0;
error:
closedir(dir);
return -1;
}
/* unbind kernel driver for this device */
static int
pci_unbind_kernel_driver(struct rte_pci_device *dev)
{
int n;
FILE *f;
char filename[PATH_MAX];
char buf[BUFSIZ];
struct rte_pci_addr *loc = &dev->addr;
/* open /sys/bus/pci/devices/AAAA:BB:CC.D/driver */
rte_snprintf(filename, sizeof(filename),
SYSFS_PCI_DEVICES "/" PCI_PRI_FMT "/driver/unbind",
loc->domain, loc->bus, loc->devid, loc->function);
RTE_LOG(DEBUG, EAL, "unbind kernel driver %s\n", filename);
f = fopen(filename, "w");
if (f == NULL) /* device was not bound */
return 0;
n = rte_snprintf(buf, sizeof(buf), PCI_PRI_FMT "\n",
loc->domain, loc->bus, loc->devid, loc->function);
if ((n < 0) || (n >= (int)sizeof(buf))) {
RTE_LOG(ERR, EAL, "%s(): rte_snprintf failed\n", __func__);
goto error;
}
if (fwrite(buf, n, 1, f) == 0) {
RTE_LOG(ERR, EAL, "%s(): could not write to %s\n", __func__,
filename);
goto error;
}
fclose(f);
return 0;
error:
fclose(f);
return -1;
}
static int
pci_exit_process(struct rte_pci_device *dev)
{
if (munmap(dev->mem_resource.addr, dev->mem_resource.len) == -1){
RTE_LOG(ERR, EAL, "Error with munmap\n");
return -1;
}
if (close(dev->intr_handle.fd) == -1){
RTE_LOG(ERR, EAL, "Error closing interrupt handle\n");
return -1;
}
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
if (pci_unbind_kernel_driver(dev) < 0){
RTE_LOG(ERR, EAL, "Error unbinding\n");
return -1;
}
if (pci_bind_device(dev, dev->previous_dr) < 0){
RTE_LOG(ERR, EAL, "Error binding\n");
return -1;
}
}
return 0;
}
static void
pci_get_previous_driver_path(struct rte_pci_device *dev)
{
int n;
char dev_path[PATH_MAX];
char dr_path[PATH_MAX];
struct rte_pci_addr *loc = &dev->addr;
n = rte_snprintf(dev_path, sizeof(dev_path), SYSFS_PCI_DEVICES "/"
PCI_PRI_FMT "/driver", loc->domain, loc->bus, loc->devid, loc->function );
if ((n < 0) || (n >= (int)sizeof(dev_path)))
RTE_LOG(ERR, EAL, "Cannot rte_snprintf device filepath\n");
n = readlink(dev_path, dr_path, sizeof(dr_path));
if ((n < 0) || (n >= (int)sizeof(dr_path))){
RTE_LOG(ERR, EAL, "Cannot readlink driver filepath\n");
dev->previous_dr[0] = '\0';
return;
}
dr_path[n] = '\0';
if (dr_path[0] != '/')
n = rte_snprintf(dev->previous_dr, sizeof(dev->previous_dr),
SYSFS_PCI_DEVICES "/" PCI_PRI_FMT "/%s",
loc->domain, loc->bus, loc->devid, loc->function, dr_path);
else
n = rte_snprintf(dev->previous_dr, sizeof(dev->previous_dr),
"%s", dr_path);
if ((n < 0) || (n >= (int)sizeof(dev_path)))
RTE_LOG(ERR, EAL, "Cannot rte_snprintf driver filepath\n");
}
/*
* If vendor/device ID match, call the devinit() function of the
* driver.
*/
int
rte_eal_pci_probe_one_driver(struct rte_pci_driver *dr, struct rte_pci_device *dev)
{
struct rte_pci_id *id_table;
const char *module_name = NULL;
int uio_status = -1;
if (dr->drv_flags & RTE_PCI_DRV_NEED_IGB_UIO)
module_name = IGB_UIO_NAME;
for (id_table = dr->id_table ; id_table->vendor_id != 0; id_table++) {
/* check if device's identifiers match the driver's ones */
if (id_table->vendor_id != dev->id.vendor_id &&
id_table->vendor_id != PCI_ANY_ID)
continue;
if (id_table->device_id != dev->id.device_id &&
id_table->device_id != PCI_ANY_ID)
continue;
if (id_table->subsystem_vendor_id != dev->id.subsystem_vendor_id &&
id_table->subsystem_vendor_id != PCI_ANY_ID)
continue;
if (id_table->subsystem_device_id != dev->id.subsystem_device_id &&
id_table->subsystem_device_id != PCI_ANY_ID)
continue;
RTE_LOG(DEBUG, EAL, "probe driver: %x:%x %s\n", dev->id.vendor_id,
dev->id.device_id, dr->name);
/* reference driver structure */
dev->driver = dr;
/* no initialization when blacklisted, return without error */
if (dev->blacklisted)
return 0;
/* Unbind PCI devices if needed */
if (module_name != NULL) {
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
/* check that our driver is loaded */
if (uio_status != 0 &&
(uio_status = pci_uio_check_module(module_name)) != 0)
rte_exit(EXIT_FAILURE, "The %s module is required by the "
"%s driver\n", module_name, dr->name);
/* unbind current driver, bind ours */
pci_get_previous_driver_path(dev);
if (pci_unbind_kernel_driver(dev) < 0)
return -1;
if (pci_uio_bind_device(dev, module_name) < 0)
return -1;
}
/* map the NIC resources */
if (pci_uio_map_resource(dev) < 0)
return -1;
}
/* call the driver devinit() function */
return dr->devinit(dr, dev);
}
return -1;
}
/*Start the exit process for each dev in use*/
void
rte_eal_pci_exit(void)
{
struct rte_pci_device *dev = NULL;
TAILQ_FOREACH(dev, &device_list, next){
if (dev->previous_dr[0] == '\0')
continue;
if(pci_exit_process(dev) == 1)
RTE_LOG(ERR, EAL, "Exit process failure\n");
}
}
/* Init the PCI EAL subsystem */
int
rte_eal_pci_init(void)
{
TAILQ_INIT(&driver_list);
TAILQ_INIT(&device_list);
uio_res_list = RTE_TAILQ_RESERVE_BY_IDX(RTE_TAILQ_PCI, uio_res_list);
/* for debug purposes, PCI can be disabled */
if (internal_config.no_pci)
return 0;
if (pci_scan() < 0) {
RTE_LOG(ERR, EAL, "%s(): Cannot scan PCI bus\n", __func__);
return -1;
}
return 0;
}