/*-
* BSD LICENSE
*
* Copyright(c) 2010-2013 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* BSD LICENSE
*
* Copyright(c) 2013 6WIND.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of 6WIND S.A. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <errno.h>
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <inttypes.h>
#include <string.h>
#include <stdarg.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/queue.h>
#include <sys/file.h>
#include <unistd.h>
#include <limits.h>
#include <errno.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_launch.h>
#include <rte_tailq.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_common.h>
#include <rte_string_fns.h>
#include "eal_private.h"
#include "eal_internal_cfg.h"
#include "eal_filesystem.h"
#include "eal_hugepages.h"
/**
* @file
* Huge page mapping under linux
*
* To reserve a big contiguous amount of memory, we use the hugepage
* feature of linux. For that, we need to have hugetlbfs mounted. This
* code will create many files in this directory (one per page) and
* map them in virtual memory. For each page, we will retrieve its
* physical address and remap it in order to have a virtual contiguous
* zone as well as a physical contiguous zone.
*/
#define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space"
/*
* Check whether address-space layout randomization is enabled in
* the kernel. This is important for multi-process as it can prevent
* two processes mapping data to the same virtual address
* Returns:
* 0 - address space randomization disabled
* 1/2 - address space randomization enabled
* negative error code on error
*/
static int
aslr_enabled(void)
{
char c;
int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY);
if (fd < 0)
return -errno;
retval = read(fd, &c, 1);
close(fd);
if (retval < 0)
return -errno;
if (retval == 0)
return -EIO;
switch (c) {
case '0' : return 0;
case '1' : return 1;
case '2' : return 2;
default: return -EINVAL;
}
}
/*
* Try to mmap *size bytes in /dev/zero. If it is succesful, return the
* pointer to the mmap'd area and keep *size unmodified. Else, retry
* with a smaller zone: decrease *size by hugepage_sz until it reaches
* 0. In this case, return NULL. Note: this function returns an address
* which is a multiple of hugepage size.
*/
static void *
get_virtual_area(size_t *size, size_t hugepage_sz)
{
void *addr;
int fd;
long aligned_addr;
RTE_LOG(INFO, EAL, "Ask a virtual area of 0x%zu bytes\n", *size);
fd = open("/dev/zero", O_RDONLY);
if (fd < 0){
RTE_LOG(ERR, EAL, "Cannot open /dev/zero\n");
return NULL;
}
do {
addr = mmap(NULL, (*size) + hugepage_sz, PROT_READ, MAP_PRIVATE, fd, 0);
if (addr == MAP_FAILED)
*size -= hugepage_sz;
} while (addr == MAP_FAILED && *size > 0);
if (addr == MAP_FAILED) {
close(fd);
RTE_LOG(INFO, EAL, "Cannot get a virtual area\n");
return NULL;
}
munmap(addr, (*size) + hugepage_sz);
close(fd);
/* align addr to a huge page size boundary */
aligned_addr = (long)addr;
aligned_addr += (hugepage_sz - 1);
aligned_addr &= (~(hugepage_sz - 1));
addr = (void *)(aligned_addr);
RTE_LOG(INFO, EAL, "Virtual area found at %p (size = 0x%zx)\n",
addr, *size);
return addr;
}
/*
* Mmap all hugepages of hugepage table: it first open a file in
* hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the
* virtual address is stored in hugepg_tbl[i].orig_va, else it is stored
* in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to
* map continguous physical blocks in contiguous virtual blocks.
*/
static int
map_all_hugepages(struct hugepage *hugepg_tbl,
struct hugepage_info *hpi, int orig)
{
int fd;
unsigned i;
void *virtaddr;
void *vma_addr = NULL;
size_t vma_len = 0;
for (i = 0; i < hpi->num_pages[0]; i++) {
size_t hugepage_sz = hpi->hugepage_sz;
if (orig) {
hugepg_tbl[i].file_id = i;
hugepg_tbl[i].size = hugepage_sz;
eal_get_hugefile_path(hugepg_tbl[i].filepath,
sizeof(hugepg_tbl[i].filepath), hpi->hugedir,
hugepg_tbl[i].file_id);
hugepg_tbl[i].filepath[sizeof(hugepg_tbl[i].filepath) - 1] = '\0';
}
#ifndef RTE_ARCH_X86_64
/* for 32-bit systems, don't remap 1G pages, just reuse original
* map address as final map address.
*/
else if (hugepage_sz == RTE_PGSIZE_1G){
hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va;
hugepg_tbl[i].orig_va = NULL;
continue;
}
#endif
else if (vma_len == 0) {
unsigned j, num_pages;
/* reserve a virtual area for next contiguous
* physical block: count the number of
* contiguous physical pages. */
for (j = i+1; j < hpi->num_pages[0] ; j++) {
if (hugepg_tbl[j].physaddr !=
hugepg_tbl[j-1].physaddr + hugepage_sz)
break;
}
num_pages = j - i;
vma_len = num_pages * hugepage_sz;
/* get the biggest virtual memory area up to
* vma_len. If it fails, vma_addr is NULL, so
* let the kernel provide the address. */
vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz);
if (vma_addr == NULL)
vma_len = hugepage_sz;
}
/* try to create hugepage file */
fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0755);
if (fd < 0) {
RTE_LOG(ERR, EAL, "%s(): open failed: %s\n", __func__,
strerror(errno));
return -1;
}
virtaddr = mmap(vma_addr, hugepage_sz, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);
if (virtaddr == MAP_FAILED) {
RTE_LOG(ERR, EAL, "%s(): mmap failed: %s\n", __func__,
strerror(errno));
close(fd);
return -1;
}
if (orig) {
hugepg_tbl[i].orig_va = virtaddr;
memset(virtaddr, 0, hugepage_sz);
}
else {
hugepg_tbl[i].final_va = virtaddr;
}
/* set shared flock on the file. */
if (flock(fd, LOCK_SH | LOCK_NB) == -1) {
RTE_LOG(ERR, EAL, "%s(): Locking file failed:%s \n",
__func__, strerror(errno));
close(fd);
return -1;
}
close(fd);
vma_addr = (char *)vma_addr + hugepage_sz;
vma_len -= hugepage_sz;
}
return 0;
}
/* Unmap all hugepages from original mapping. */
static int
unmap_all_hugepages_orig(struct hugepage *hugepg_tbl, struct hugepage_info *hpi)
{
unsigned i;
for (i = 0; i < hpi->num_pages[0]; i++) {
if (hugepg_tbl[i].orig_va) {
munmap(hugepg_tbl[i].orig_va, hpi->hugepage_sz);
hugepg_tbl[i].orig_va = NULL;
}
}
return 0;
}
/*
* For each hugepage in hugepg_tbl, fill the physaddr value. We find
* it by browsing the /proc/self/pagemap special file.
*/
static int
find_physaddr(struct hugepage *hugepg_tbl, struct hugepage_info *hpi)
{
int fd;
unsigned i;
uint64_t page;
unsigned long virt_pfn;
int page_size;
/* standard page size */
page_size = getpagesize();
fd = open("/proc/self/pagemap", O_RDONLY);
if (fd < 0) {
RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s\n",
__func__, strerror(errno));
return -1;
}
for (i = 0; i < hpi->num_pages[0]; i++) {
off_t offset;
virt_pfn = (unsigned long)hugepg_tbl[i].orig_va /
page_size;
offset = sizeof(uint64_t) * virt_pfn;
if (lseek(fd, offset, SEEK_SET) == (off_t) -1) {
RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s\n",
__func__, strerror(errno));
close(fd);
return -1;
}
if (read(fd, &page, sizeof(uint64_t)) < 0) {
RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s\n",
__func__, strerror(errno));
close(fd);
return -1;
}
/*
* the pfn (page frame number) are bits 0-54 (see
* pagemap.txt in linux Documentation)
*/
hugepg_tbl[i].physaddr = ((page & 0x7fffffffffffffULL) * page_size);
}
close(fd);
return 0;
}
/*
* Parse /proc/self/numa_maps to get the NUMA socket ID for each huge
* page.
*/
static int
find_numasocket(struct hugepage *hugepg_tbl, struct hugepage_info *hpi)
{
int socket_id;
char *end, *nodestr;
unsigned i, hp_count = 0;
uint64_t virt_addr;
char buf[BUFSIZ];
char hugedir_str[PATH_MAX];
FILE *f;
f = fopen("/proc/self/numa_maps", "r");
if (f == NULL) {
RTE_LOG(INFO, EAL, "cannot open /proc/self/numa_maps,"
" consider that all memory is in socket_id 0\n");
return 0;
}
rte_snprintf(hugedir_str, sizeof(hugedir_str),
"%s/", hpi->hugedir);
/* parse numa map */
while (fgets(buf, sizeof(buf), f) != NULL) {
/* ignore non huge page */
if (strstr(buf, " huge ") == NULL &&
strstr(buf, hugedir_str) == NULL)
continue;
/* get zone addr */
virt_addr = strtoull(buf, &end, 16);
if (virt_addr == 0 || end == buf) {
RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
goto error;
}
/* get node id (socket id) */
nodestr = strstr(buf, " N");
if (nodestr == NULL) {
RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
goto error;
}
nodestr += 2;
end = strstr(nodestr, "=");
if (end == NULL) {
RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
goto error;
}
end[0] = '\0';
end = NULL;
socket_id = strtoul(nodestr, &end, 0);
if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) {
RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
goto error;
}
/* if we find this page in our mappings, set socket_id */
for (i = 0; i < hpi->num_pages[0]; i++) {
void *va = (void *)(unsigned long)virt_addr;
if (hugepg_tbl[i].orig_va == va) {
hugepg_tbl[i].socket_id = socket_id;
hp_count++;
}
}
}
if (hp_count < hpi->num_pages[0])
goto error;
fclose(f);
return 0;
error:
fclose(f);
return -1;
}
/*
* Sort the hugepg_tbl by physical address (lower addresses first). We
* use a slow algorithm, but we won't have millions of pages, and this
* is only done at init time.
*/
static int
sort_by_physaddr(struct hugepage *hugepg_tbl, struct hugepage_info *hpi)
{
unsigned i, j;
int smallest_idx;
uint64_t smallest_addr;
struct hugepage tmp;
for (i = 0; i < hpi->num_pages[0]; i++) {
smallest_addr = 0;
smallest_idx = -1;
/*
* browse all entries starting at 'i', and find the
* entry with the smallest addr
*/
for (j=i; j< hpi->num_pages[0]; j++) {
if (smallest_addr == 0 ||
hugepg_tbl[j].physaddr < smallest_addr) {
smallest_addr = hugepg_tbl[j].physaddr;
smallest_idx = j;
}
}
/* should not happen */
if (smallest_idx == -1) {
RTE_LOG(ERR, EAL, "%s(): error in physaddr sorting\n", __func__);
return -1;
}
/* swap the 2 entries in the table */
memcpy(&tmp, &hugepg_tbl[smallest_idx], sizeof(struct hugepage));
memcpy(&hugepg_tbl[smallest_idx], &hugepg_tbl[i],
sizeof(struct hugepage));
memcpy(&hugepg_tbl[i], &tmp, sizeof(struct hugepage));
}
return 0;
}
/*
* Uses mmap to create a shared memory area for storage of data
* Used in this file to store the hugepage file map on disk
*/
static void *
create_shared_memory(const char *filename, const size_t mem_size)
{
void *retval;
int fd = open(filename, O_CREAT | O_RDWR, 0666);
if (fd < 0)
return NULL;
if (ftruncate(fd, mem_size) < 0) {
close(fd);
return NULL;
}
retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
close(fd);
return retval;
}
/*
* this copies *active* hugepages from one hugepage table to another.
* destination is typically the shared memory.
*/
static int
copy_hugepages_to_shared_mem(struct hugepage * dst, int dest_size,
const struct hugepage * src, int src_size)
{
int src_pos, dst_pos = 0;
for (src_pos = 0; src_pos < src_size; src_pos++) {
if (src[src_pos].final_va != NULL) {
/* error on overflow attempt */
if (dst_pos == dest_size)
return -1;
memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage));
dst_pos++;
}
}
return 0;
}
/*
* unmaps hugepages that are not going to be used. since we originally allocate
* ALL hugepages (not just those we need), additional unmapping needs to be done.
*/
static int
unmap_unneeded_hugepages(struct hugepage *hugepg_tbl,
struct hugepage_info *hpi,
unsigned num_hp_info)
{
unsigned socket, size;
int page, nrpages = 0;
/* get total number of hugepages */
for (size = 0; size < num_hp_info; size++)
for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
nrpages += internal_config.hugepage_info[size].num_pages[socket];
for (size = 0; size < num_hp_info; size++) {
for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
unsigned pages_found = 0;
/* traverse until we have unmapped all the unused pages */
for (page = 0; page < nrpages; page++) {
struct hugepage *hp = &hugepg_tbl[page];
/* find a page that matches the criteria */
if ((hp->size == hpi[size].hugepage_sz) &&
(hp->socket_id == (int) socket)) {
/* if we skipped enough pages, unmap the rest */
if (pages_found == hpi[size].num_pages[socket]) {
munmap(hp->final_va, hp->size);
hp->final_va = NULL;
}
/* lock the page and skip */
else
pages_found++;
} /* match page */
} /* foreach page */
} /* foreach socket */
} /* foreach pagesize */
return 0;
}
static inline uint64_t
get_socket_mem_size(int socket)
{
uint64_t size = 0;
unsigned i;
for (i = 0; i < internal_config.num_hugepage_sizes; i++){
struct hugepage_info *hpi = &internal_config.hugepage_info[i];
if (hpi->hugedir != NULL)
size += hpi->hugepage_sz * hpi->num_pages[socket];
}
return (size);
}
/*
* This function is a NUMA-aware equivalent of calc_num_pages.
* It takes in the list of hugepage sizes and the
* number of pages thereof, and calculates the best number of
* pages of each size to fulfill the request for <memory> ram
*/
static int
calc_num_pages_per_socket(uint64_t * memory,
struct hugepage_info *hp_info,
struct hugepage_info *hp_used,
unsigned num_hp_info)
{
unsigned socket, j, i = 0;
unsigned requested, available;
int total_num_pages = 0;
uint64_t remaining_mem, cur_mem;
uint64_t total_mem = internal_config.memory;
if (num_hp_info == 0)
return -1;
for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) {
/* if specific memory amounts per socket weren't requested */
if (internal_config.force_sockets == 0) {
/* take whatever is available */
memory[socket] = RTE_MIN(get_socket_mem_size(socket),
total_mem);
}
/* skips if the memory on specific socket wasn't requested */
for (i = 0; i < num_hp_info && memory[socket] != 0; i++){
hp_used[i].hugedir = hp_info[i].hugedir;
hp_used[i].num_pages[socket] = RTE_MIN(
memory[socket] / hp_info[i].hugepage_sz,
hp_info[i].num_pages[socket]);
cur_mem = hp_used[i].num_pages[socket] *
hp_used[i].hugepage_sz;
memory[socket] -= cur_mem;
total_mem -= cur_mem;
total_num_pages += hp_used[i].num_pages[socket];
/* check if we have met all memory requests */
if (memory[socket] == 0)
break;
/* check if we have any more pages left at this size, if so
* move on to next size */
if (hp_used[i].num_pages[socket] == hp_info[i].num_pages[socket])
continue;
/* At this point we know that there are more pages available that are
* bigger than the memory we want, so lets see if we can get enough
* from other page sizes.
*/
remaining_mem = 0;
for (j = i+1; j < num_hp_info; j++)
remaining_mem += hp_info[j].hugepage_sz *
hp_info[j].num_pages[socket];
/* is there enough other memory, if not allocate another page and quit */
if (remaining_mem < memory[socket]){
cur_mem = RTE_MIN(memory[socket],
hp_info[i].hugepage_sz);
memory[socket] -= cur_mem;
total_mem -= cur_mem;
hp_used[i].num_pages[socket]++;
total_num_pages++;
break; /* we are done with this socket*/
}
}
/* if we didn't satisfy all memory requirements per socket */
if (memory[socket] > 0) {
/* to prevent icc errors */
requested = (unsigned) (internal_config.socket_mem[socket] /
0x100000);
available = requested -
((unsigned) (memory[socket] / 0x100000));
RTE_LOG(INFO, EAL, "Not enough memory available on socket %u! "
"Requested: %uMB, available: %uMB\n", socket,
requested, available);
return -1;
}
}
/* if we didn't satisfy total memory requirements */
if (total_mem > 0) {
requested = (unsigned) (internal_config.memory / 0x100000);
available = requested - (unsigned) (total_mem / 0x100000);
RTE_LOG(INFO, EAL, "Not enough memory available! Requested: %uMB,"
" available: %uMB\n", requested, available);
return -1;
}
return total_num_pages;
}
/*
* Prepare physical memory mapping: fill configuration structure with
* these infos, return 0 on success.
* 1. map N huge pages in separate files in hugetlbfs
* 2. find associated physical addr
* 3. find associated NUMA socket ID
* 4. sort all huge pages by physical address
* 5. remap these N huge pages in the correct order
* 6. unmap the first mapping
* 7. fill memsegs in configuration with contiguous zones
*/
static int
rte_eal_hugepage_init(void)
{
struct rte_mem_config *mcfg;
struct hugepage *hugepage, *tmp_hp = NULL;
struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
uint64_t memory[RTE_MAX_NUMA_NODES];
unsigned hp_offset;
int i, j, new_memseg;
int nrpages, total_pages = 0;
void *addr;
memset(used_hp, 0, sizeof(used_hp));
/* get pointer to global configuration */
mcfg = rte_eal_get_configuration()->mem_config;
/* for debug purposes, hugetlbfs can be disabled */
if (internal_config.no_hugetlbfs) {
addr = malloc(internal_config.memory);
mcfg->memseg[0].phys_addr = (phys_addr_t)(uintptr_t)addr;
mcfg->memseg[0].addr = addr;
mcfg->memseg[0].len = internal_config.memory;
mcfg->memseg[0].socket_id = 0;
return 0;
}
/* calculate total number of hugepages available. at this point we haven't
* yet started sorting them so they all are on socket 0 */
for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
/* meanwhile, also initialize used_hp hugepage sizes in used_hp */
used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz;
total_pages += internal_config.hugepage_info[i].num_pages[0];
}
/*
* allocate a memory area for hugepage table.
* this isn't shared memory yet. due to the fact that we need some
* processing done on these pages, shared memory will be created
* at a later stage.
*/
tmp_hp = malloc(total_pages * sizeof(struct hugepage));
if (tmp_hp == NULL)
goto fail;
memset(tmp_hp, 0, total_pages * sizeof(struct hugepage));
hp_offset = 0; /* where we start the current page size entries */
/* map all hugepages and sort them */
for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){
struct hugepage_info *hpi;
/*
* we don't yet mark hugepages as used at this stage, so
* we just map all hugepages available to the system
* all hugepages are still located on socket 0
*/
hpi = &internal_config.hugepage_info[i];
if (hpi->num_pages == 0)
continue;
/* map all hugepages available */
if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 1) < 0){
RTE_LOG(DEBUG, EAL, "Failed to mmap %u MB hugepages\n",
(unsigned)(hpi->hugepage_sz / 0x100000));
goto fail;
}
/* find physical addresses and sockets for each hugepage */
if (find_physaddr(&tmp_hp[hp_offset], hpi) < 0){
RTE_LOG(DEBUG, EAL, "Failed to find phys addr for %u MB pages\n",
(unsigned)(hpi->hugepage_sz / 0x100000));
goto fail;
}
if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){
RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n",
(unsigned)(hpi->hugepage_sz / 0x100000));
goto fail;
}
if (sort_by_physaddr(&tmp_hp[hp_offset], hpi) < 0)
goto fail;
/* remap all hugepages */
if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 0) < 0){
RTE_LOG(DEBUG, EAL, "Failed to remap %u MB pages\n",
(unsigned)(hpi->hugepage_sz / 0x100000));
goto fail;
}
/* unmap original mappings */
if (unmap_all_hugepages_orig(&tmp_hp[hp_offset], hpi) < 0)
goto fail;
/* we have processed a num of hugepages of this size, so inc offset */
hp_offset += hpi->num_pages[0];
}
/* clean out the numbers of pages */
for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++)
for (j = 0; j < RTE_MAX_NUMA_NODES; j++)
internal_config.hugepage_info[i].num_pages[j] = 0;
/* get hugepages for each socket */
for (i = 0; i < total_pages; i++) {
int socket = tmp_hp[i].socket_id;
/* find a hugepage info with right size and increment num_pages */
for (j = 0; j < (int) internal_config.num_hugepage_sizes; j++) {
if (tmp_hp[i].size ==
internal_config.hugepage_info[j].hugepage_sz) {
internal_config.hugepage_info[j].num_pages[socket]++;
}
}
}
/* make a copy of socket_mem, needed for number of pages calculation */
for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
memory[i] = internal_config.socket_mem[i];
/* calculate final number of pages */
nrpages = calc_num_pages_per_socket(memory,
internal_config.hugepage_info, used_hp,
internal_config.num_hugepage_sizes);
/* error if not enough memory available */
if (nrpages < 0)
goto fail;
/* reporting in! */
for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
if (used_hp[i].num_pages[j] > 0) {
RTE_LOG(INFO, EAL,
"Requesting %u pages of size %uMB"
" from socket %i\n",
used_hp[i].num_pages[j],
(unsigned)
(used_hp[i].hugepage_sz / 0x100000),
j);
}
}
}
/* create shared memory */
hugepage = create_shared_memory(eal_hugepage_info_path(),
nrpages * sizeof(struct hugepage));
if (hugepage == NULL) {
RTE_LOG(ERR, EAL, "Failed to create shared memory!\n");
goto fail;
}
/*
* unmap pages that we won't need (looks at used_hp).
* also, sets final_va to NULL on pages that were unmapped.
*/
if (unmap_unneeded_hugepages(tmp_hp, used_hp,
internal_config.num_hugepage_sizes) < 0) {
RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n");
goto fail;
}
/*
* copy stuff from malloc'd hugepage* to the actual shared memory.
* this procedure only copies those hugepages that have final_va
* not NULL. has overflow protection.
*/
if (copy_hugepages_to_shared_mem(hugepage, nrpages,
tmp_hp, total_pages) < 0) {
RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n");
goto fail;
}
/* free the temporary hugepage table */
free(tmp_hp);
tmp_hp = NULL;
memset(mcfg->memseg, 0, sizeof(mcfg->memseg));
j = -1;
for (i = 0; i < nrpages; i++) {
new_memseg = 0;
/* if this is a new section, create a new memseg */
if (i == 0)
new_memseg = 1;
else if (hugepage[i].socket_id != hugepage[i-1].socket_id)
new_memseg = 1;
else if (hugepage[i].size != hugepage[i-1].size)
new_memseg = 1;
else if ((hugepage[i].physaddr - hugepage[i-1].physaddr) !=
hugepage[i].size)
new_memseg = 1;
else if (((unsigned long)hugepage[i].final_va -
(unsigned long)hugepage[i-1].final_va) != hugepage[i].size)
new_memseg = 1;
if (new_memseg) {
j += 1;
if (j == RTE_MAX_MEMSEG)
break;
mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
mcfg->memseg[j].addr = hugepage[i].final_va;
mcfg->memseg[j].len = hugepage[i].size;
mcfg->memseg[j].socket_id = hugepage[i].socket_id;
mcfg->memseg[j].hugepage_sz = hugepage[i].size;
}
/* continuation of previous memseg */
else {
mcfg->memseg[j].len += mcfg->memseg[j].hugepage_sz;
}
hugepage[i].memseg_id = j;
}
if (i < nrpages) {
RTE_LOG(ERR, EAL, "Can only reserve %d pages "
"from %d requested\n"
"Current %s=%d is not enough\n"
"Please either increase it or request less amount "
"of memory.\n",
i, nrpages, RTE_STR(CONFIG_RTE_MAX_MEMSEG),
RTE_MAX_MEMSEG);
return (-ENOMEM);
}
return 0;
fail:
if (tmp_hp)
free(tmp_hp);
return -1;
}
/*
* uses fstat to report the size of a file on disk
*/
static off_t
getFileSize(int fd)
{
struct stat st;
if (fstat(fd, &st) < 0)
return 0;
return st.st_size;
}
/*
* This creates the memory mappings in the secondary process to match that of
* the server process. It goes through each memory segment in the DPDK runtime
* configuration and finds the hugepages which form that segment, mapping them
* in order to form a contiguous block in the virtual memory space
*/
static int
rte_eal_hugepage_attach(void)
{
const struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
const struct hugepage *hp = NULL;
unsigned num_hp = 0;
unsigned i, s = 0; /* s used to track the segment number */
off_t size;
int fd, fd_zero = -1, fd_hugepage = -1;
if (aslr_enabled() > 0) {
RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization "
"(ASLR) is enabled in the kernel.\n");
RTE_LOG(WARNING, EAL, " This may cause issues with mapping memory "
"into secondary processes\n");
}
fd_zero = open("/dev/zero", O_RDONLY);
if (fd_zero < 0) {
RTE_LOG(ERR, EAL, "Could not open /dev/zero\n");
goto error;
}
fd_hugepage = open(eal_hugepage_info_path(), O_RDONLY);
if (fd_hugepage < 0) {
RTE_LOG(ERR, EAL, "Could not open %s\n", eal_hugepage_info_path());
goto error;
}
/* map all segments into memory to make sure we get the addrs */
for (s = 0; s < RTE_MAX_MEMSEG; ++s) {
void *base_addr;
/*
* the first memory segment with len==0 is the one that
* follows the last valid segment.
*/
if (mcfg->memseg[s].len == 0)
break;
/*
* fdzero is mmapped to get a contiguous block of virtual
* addresses of the appropriate memseg size.
* use mmap to get identical addresses as the primary process.
*/
base_addr = mmap(mcfg->memseg[s].addr, mcfg->memseg[s].len,
PROT_READ, MAP_PRIVATE, fd_zero, 0);
if (base_addr == MAP_FAILED ||
base_addr != mcfg->memseg[s].addr) {
RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
"in /dev/zero to requested address [%p]\n",
(unsigned long long)mcfg->memseg[s].len,
mcfg->memseg[s].addr);
if (aslr_enabled() > 0) {
RTE_LOG(ERR, EAL, "It is recommended to "
"disable ASLR in the kernel "
"and retry running both primary "
"and secondary processes\n");
}
goto error;
}
}
size = getFileSize(fd_hugepage);
hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0);
if (hp == NULL) {
RTE_LOG(ERR, EAL, "Could not mmap %s\n", eal_hugepage_info_path());
goto error;
}
num_hp = size / sizeof(struct hugepage);
RTE_LOG(DEBUG, EAL, "Analysing %u hugepages\n", num_hp);
s = 0;
while (s < RTE_MAX_MEMSEG && mcfg->memseg[s].len > 0){
void *addr, *base_addr;
uintptr_t offset = 0;
/*
* free previously mapped memory so we can map the
* hugepages into the space
*/
base_addr = mcfg->memseg[s].addr;
munmap(base_addr, mcfg->memseg[s].len);
/* find the hugepages for this segment and map them
* we don't need to worry about order, as the server sorted the
* entries before it did the second mmap of them */
for (i = 0; i < num_hp && offset < mcfg->memseg[s].len; i++){
if (hp[i].memseg_id == (int)s){
fd = open(hp[i].filepath, O_RDWR);
if (fd < 0) {
RTE_LOG(ERR, EAL, "Could not open %s\n",
hp[i].filepath);
goto error;
}
addr = mmap(RTE_PTR_ADD(base_addr, offset),
hp[i].size, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_FIXED, fd, 0);
close(fd); /* close file both on success and on failure */
if (addr == MAP_FAILED) {
RTE_LOG(ERR, EAL, "Could not mmap %s\n",
hp[i].filepath);
goto error;
}
offset+=hp[i].size;
}
}
RTE_LOG(DEBUG, EAL, "Mapped segment %u of size 0x%llx\n", s,
(unsigned long long)mcfg->memseg[s].len);
s++;
}
/* unmap the hugepage config file, since we are done using it */
munmap((void *)(uintptr_t)hp, size);
close(fd_zero);
close(fd_hugepage);
return 0;
error:
if (fd_zero >= 0)
close(fd_zero);
if (fd_hugepage >= 0)
close(fd_hugepage);
return -1;
}
static int
rte_eal_memdevice_init(void)
{
struct rte_config *config;
if (rte_eal_process_type() == RTE_PROC_SECONDARY)
return 0;
config = rte_eal_get_configuration();
config->mem_config->nchannel = internal_config.force_nchannel;
config->mem_config->nrank = internal_config.force_nrank;
return 0;
}
/* init memory subsystem */
int
rte_eal_memory_init(void)
{
RTE_LOG(INFO, EAL, "Setting up hugepage memory...\n");
const int retval = rte_eal_process_type() == RTE_PROC_PRIMARY ?
rte_eal_hugepage_init() :
rte_eal_hugepage_attach();
if (retval < 0)
return -1;
if (internal_config.no_shconf == 0 && rte_eal_memdevice_init() < 0)
return -1;
return 0;
}