DPDK logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
/*-
 *   BSD LICENSE
 * 
 *   Copyright(c) 2010-2013 Intel Corporation. All rights reserved.
 *   All rights reserved.
 * 
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 * 
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of Intel Corporation nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 * 
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
/*   BSD LICENSE
 *
 *   Copyright(c) 2013 6WIND.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of 6WIND S.A. nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#define _FILE_OFFSET_BITS 64
#include <errno.h>
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <inttypes.h>
#include <string.h>
#include <stdarg.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/queue.h>
#include <sys/file.h>
#include <unistd.h>
#include <limits.h>
#include <errno.h>
#include <sys/ioctl.h>
#include <sys/time.h>

#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_launch.h>
#include <rte_tailq.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_common.h>
#include <rte_string_fns.h>

#include "eal_private.h"
#include "eal_internal_cfg.h"
#include "eal_filesystem.h"
#include "eal_hugepages.h"

/**
 * @file
 * Huge page mapping under linux
 *
 * To reserve a big contiguous amount of memory, we use the hugepage
 * feature of linux. For that, we need to have hugetlbfs mounted. This
 * code will create many files in this directory (one per page) and
 * map them in virtual memory. For each page, we will retrieve its
 * physical address and remap it in order to have a virtual contiguous
 * zone as well as a physical contiguous zone.
 */


#define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space"

/*
 * Check whether address-space layout randomization is enabled in
 * the kernel. This is important for multi-process as it can prevent
 * two processes mapping data to the same virtual address
 * Returns:
 *    0 - address space randomization disabled
 *    1/2 - address space randomization enabled
 *    negative error code on error
 */
static int
aslr_enabled(void)
{
	char c;
	int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY);
	if (fd < 0)
		return -errno;
	retval = read(fd, &c, 1);
	close(fd);
	if (retval < 0)
		return -errno;
	if (retval == 0)
		return -EIO;
	switch (c) {
		case '0' : return 0;
		case '1' : return 1;
		case '2' : return 2;
		default: return -EINVAL;
	}
}

/*
 * Try to mmap *size bytes in /dev/zero. If it is succesful, return the
 * pointer to the mmap'd area and keep *size unmodified. Else, retry
 * with a smaller zone: decrease *size by hugepage_sz until it reaches
 * 0. In this case, return NULL. Note: this function returns an address
 * which is a multiple of hugepage size.
 */
static void *
get_virtual_area(size_t *size, size_t hugepage_sz)
{
	void *addr;
	int fd;
	long aligned_addr;

	RTE_LOG(INFO, EAL, "Ask a virtual area of 0x%zu bytes\n", *size);

	fd = open("/dev/zero", O_RDONLY);
	if (fd < 0){
		RTE_LOG(ERR, EAL, "Cannot open /dev/zero\n");
		return NULL;
	}
	do {
		addr = mmap(NULL, (*size) + hugepage_sz, PROT_READ, MAP_PRIVATE, fd, 0);
		if (addr == MAP_FAILED)
			*size -= hugepage_sz;
	} while (addr == MAP_FAILED && *size > 0);

	if (addr == MAP_FAILED) {
		close(fd);
		RTE_LOG(INFO, EAL, "Cannot get a virtual area\n");
		return NULL;
	}

	munmap(addr, (*size) + hugepage_sz);
	close(fd);

	/* align addr to a huge page size boundary */
	aligned_addr = (long)addr;
	aligned_addr += (hugepage_sz - 1);
	aligned_addr &= (~(hugepage_sz - 1));
	addr = (void *)(aligned_addr);

	RTE_LOG(INFO, EAL, "Virtual area found at %p (size = 0x%zx)\n",
		addr, *size);

	return addr;
}

/*
 * Mmap all hugepages of hugepage table: it first open a file in
 * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the
 * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored
 * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to
 * map continguous physical blocks in contiguous virtual blocks.
 */
static int
map_all_hugepages(struct hugepage *hugepg_tbl,
		struct hugepage_info *hpi, int orig)
{
	int fd;
	unsigned i;
	void *virtaddr;
	void *vma_addr = NULL;
	size_t vma_len = 0;

	for (i = 0; i < hpi->num_pages[0]; i++) {
		size_t hugepage_sz = hpi->hugepage_sz;

		if (orig) {
			hugepg_tbl[i].file_id = i;
			hugepg_tbl[i].size = hugepage_sz;
			eal_get_hugefile_path(hugepg_tbl[i].filepath,
					sizeof(hugepg_tbl[i].filepath), hpi->hugedir,
					hugepg_tbl[i].file_id);
			hugepg_tbl[i].filepath[sizeof(hugepg_tbl[i].filepath) - 1] = '\0';
		}
#ifndef RTE_ARCH_X86_64
		/* for 32-bit systems, don't remap 1G pages, just reuse original
		 * map address as final map address.
		 */
		else if (hugepage_sz == RTE_PGSIZE_1G){
			hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va;
			hugepg_tbl[i].orig_va = NULL;
			continue;
		}
#endif
		else if (vma_len == 0) {
			unsigned j, num_pages;

			/* reserve a virtual area for next contiguous
			 * physical block: count the number of
			 * contiguous physical pages. */
			for (j = i+1; j < hpi->num_pages[0] ; j++) {
				if (hugepg_tbl[j].physaddr !=
				    hugepg_tbl[j-1].physaddr + hugepage_sz)
					break;
			}
			num_pages = j - i;
			vma_len = num_pages * hugepage_sz;

			/* get the biggest virtual memory area up to
			 * vma_len. If it fails, vma_addr is NULL, so
			 * let the kernel provide the address. */
			vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz);
			if (vma_addr == NULL)
				vma_len = hugepage_sz;
		}

		/* try to create hugepage file */
		fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0755);
		if (fd < 0) {
			RTE_LOG(ERR, EAL, "%s(): open failed: %s\n", __func__,
					strerror(errno));
			return -1;
		}

		virtaddr = mmap(vma_addr, hugepage_sz, PROT_READ | PROT_WRITE,
				MAP_SHARED, fd, 0);
		if (virtaddr == MAP_FAILED) {
			RTE_LOG(ERR, EAL, "%s(): mmap failed: %s\n", __func__,
					strerror(errno));
			close(fd);
			return -1;
		}

		if (orig) {
			hugepg_tbl[i].orig_va = virtaddr;
			memset(virtaddr, 0, hugepage_sz);
		}
		else {
			hugepg_tbl[i].final_va = virtaddr;
		}

		/* set shared flock on the file. */
		if (flock(fd, LOCK_SH | LOCK_NB) == -1) {
			RTE_LOG(ERR, EAL, "%s(): Locking file failed:%s \n",
				__func__, strerror(errno));
			close(fd);
			return -1;
		}

		close(fd);

		vma_addr = (char *)vma_addr + hugepage_sz;
		vma_len -= hugepage_sz;
	}
	return 0;
}

/* Unmap all hugepages from original mapping. */
static int
unmap_all_hugepages_orig(struct hugepage *hugepg_tbl, struct hugepage_info *hpi)
{
	unsigned i;
	for (i = 0; i < hpi->num_pages[0]; i++) {
		if (hugepg_tbl[i].orig_va) {
			munmap(hugepg_tbl[i].orig_va, hpi->hugepage_sz);
			hugepg_tbl[i].orig_va = NULL;
		}
	}
	return 0;
}

/* Lock page in physical memory and prevent from swapping. */
int
rte_mem_lock_page(const void *virt)
{
	unsigned long virtual = (unsigned long)virt;
	int page_size = getpagesize();
	unsigned long aligned = (virtual & ~ (page_size - 1));
	return mlock((void*)aligned, page_size);
}

/*
 * Get physical address of any mapped virtual address in the current process.
 */
phys_addr_t
rte_mem_virt2phy(const void *virt)
{
	int fdmem;
	uint64_t page;
	off_t offset;
	unsigned long virtual = (unsigned long)virt;
	int page_size = getpagesize();

	fdmem = open("/proc/self/pagemap", O_RDONLY);
	if (fdmem < 0) {
		RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s\n",
		                  __func__, strerror(errno));
		return RTE_BAD_PHYS_ADDR;
	}
	offset = (off_t) (virtual / page_size) * sizeof(uint64_t);
	if (lseek(fdmem, offset, SEEK_SET) == (off_t) -1) {
		RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s\n",
		                  __func__, strerror(errno));
		close(fdmem);
		return RTE_BAD_PHYS_ADDR;
	}
	if (read(fdmem, &page, sizeof(uint64_t)) <= 0) {
		RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s\n",
		                  __func__, strerror(errno));
		close(fdmem);
		return RTE_BAD_PHYS_ADDR;
	}
	close (fdmem);

	/* pfn (page frame number) are bits 0-54 (see pagemap.txt in Linux doc) */
	return ((page & 0x7fffffffffffffULL) * page_size) + (virtual % page_size);
}

/*
 * For each hugepage in hugepg_tbl, fill the physaddr value.
 */
static int
find_physaddr(struct hugepage *hugepg_tbl, struct hugepage_info *hpi)
{
	unsigned i;

	for (i = 0; i < hpi->num_pages[0]; i++) {
		hugepg_tbl[i].physaddr = rte_mem_virt2phy(hugepg_tbl[i].orig_va);
		if (hugepg_tbl[i].physaddr == RTE_BAD_PHYS_ADDR)
			return -1;
	}
	return 0;
}

/*
 * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge
 * page.
 */
static int
find_numasocket(struct hugepage *hugepg_tbl, struct hugepage_info *hpi)
{
	int socket_id;
	char *end, *nodestr;
	unsigned i, hp_count = 0;
	uint64_t virt_addr;
	char buf[BUFSIZ];
	char hugedir_str[PATH_MAX];
	FILE *f;

	f = fopen("/proc/self/numa_maps", "r");
	if (f == NULL) {
		RTE_LOG(INFO, EAL, "cannot open /proc/self/numa_maps,"
				" consider that all memory is in socket_id 0\n");
		return 0;
	}

	rte_snprintf(hugedir_str, sizeof(hugedir_str),
			"%s/", hpi->hugedir);

	/* parse numa map */
	while (fgets(buf, sizeof(buf), f) != NULL) {

		/* ignore non huge page */
		if (strstr(buf, " huge ") == NULL &&
				strstr(buf, hugedir_str) == NULL)
			continue;

		/* get zone addr */
		virt_addr = strtoull(buf, &end, 16);
		if (virt_addr == 0 || end == buf) {
			RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
			goto error;
		}

		/* get node id (socket id) */
		nodestr = strstr(buf, " N");
		if (nodestr == NULL) {
			RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
			goto error;
		}
		nodestr += 2;
		end = strstr(nodestr, "=");
		if (end == NULL) {
			RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
			goto error;
		}
		end[0] = '\0';
		end = NULL;

		socket_id = strtoul(nodestr, &end, 0);
		if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) {
			RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
			goto error;
		}

		/* if we find this page in our mappings, set socket_id */
		for (i = 0; i < hpi->num_pages[0]; i++) {
			void *va = (void *)(unsigned long)virt_addr;
			if (hugepg_tbl[i].orig_va == va) {
				hugepg_tbl[i].socket_id = socket_id;
				hp_count++;
			}
		}
	}

	if (hp_count < hpi->num_pages[0])
		goto error;

	fclose(f);
	return 0;

error:
	fclose(f);
	return -1;
}

/*
 * Sort the hugepg_tbl by physical address (lower addresses first). We
 * use a slow algorithm, but we won't have millions of pages, and this
 * is only done at init time.
 */
static int
sort_by_physaddr(struct hugepage *hugepg_tbl, struct hugepage_info *hpi)
{
	unsigned i, j;
	int smallest_idx;
	uint64_t smallest_addr;
	struct hugepage tmp;

	for (i = 0; i < hpi->num_pages[0]; i++) {
		smallest_addr = 0;
		smallest_idx = -1;

		/*
		 * browse all entries starting at 'i', and find the
		 * entry with the smallest addr
		 */
		for (j=i; j< hpi->num_pages[0]; j++) {

			if (smallest_addr == 0 ||
			    hugepg_tbl[j].physaddr < smallest_addr) {
				smallest_addr = hugepg_tbl[j].physaddr;
				smallest_idx = j;
			}
		}

		/* should not happen */
		if (smallest_idx == -1) {
			RTE_LOG(ERR, EAL, "%s(): error in physaddr sorting\n", __func__);
			return -1;
		}

		/* swap the 2 entries in the table */
		memcpy(&tmp, &hugepg_tbl[smallest_idx], sizeof(struct hugepage));
		memcpy(&hugepg_tbl[smallest_idx], &hugepg_tbl[i],
				sizeof(struct hugepage));
		memcpy(&hugepg_tbl[i], &tmp, sizeof(struct hugepage));
	}
	return 0;
}

/*
 * Uses mmap to create a shared memory area for storage of data
 * Used in this file to store the hugepage file map on disk
 */
static void *
create_shared_memory(const char *filename, const size_t mem_size)
{
	void *retval;
	int fd = open(filename, O_CREAT | O_RDWR, 0666);
	if (fd < 0)
		return NULL;
	if (ftruncate(fd, mem_size) < 0) {
		close(fd);
		return NULL;
	}
	retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
	close(fd);
	return retval;
}

/*
 * this copies *active* hugepages from one hugepage table to another.
 * destination is typically the shared memory.
 */
static int
copy_hugepages_to_shared_mem(struct hugepage * dst, int dest_size,
		const struct hugepage * src, int src_size)
{
	int src_pos, dst_pos = 0;

	for (src_pos = 0; src_pos < src_size; src_pos++) {
		if (src[src_pos].final_va != NULL) {
			/* error on overflow attempt */
			if (dst_pos == dest_size)
				return -1;
			memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage));
			dst_pos++;
		}
	}
	return 0;
}

/*
 * unmaps hugepages that are not going to be used. since we originally allocate
 * ALL hugepages (not just those we need), additional unmapping needs to be done.
 */
static int
unmap_unneeded_hugepages(struct hugepage *hugepg_tbl,
		struct hugepage_info *hpi,
		unsigned num_hp_info)
{
	unsigned socket, size;
	int page, nrpages = 0;

	/* get total number of hugepages */
	for (size = 0; size < num_hp_info; size++)
		for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
			nrpages += internal_config.hugepage_info[size].num_pages[socket];

	for (size = 0; size < num_hp_info; size++) {
		for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
			unsigned pages_found = 0;
			/* traverse until we have unmapped all the unused pages */
			for (page = 0; page < nrpages; page++) {
				struct hugepage *hp = &hugepg_tbl[page];

				/* find a page that matches the criteria */
				if ((hp->size == hpi[size].hugepage_sz) &&
						(hp->socket_id == (int) socket)) {

					/* if we skipped enough pages, unmap the rest */
					if (pages_found == hpi[size].num_pages[socket]) {
						munmap(hp->final_va, hp->size);
						hp->final_va = NULL;
						if (remove(hp->filepath) == -1) {
							RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n",
									__func__, hp->filepath, strerror(errno));
							return -1;
						}
					}
					/* lock the page and skip */
					else
						pages_found++;

				} /* match page */
			} /* foreach page */
		} /* foreach socket */
	} /* foreach pagesize */

	return 0;
}

static inline uint64_t
get_socket_mem_size(int socket)
{
	uint64_t size = 0;
	unsigned i;

	for (i = 0; i < internal_config.num_hugepage_sizes; i++){
		struct hugepage_info *hpi = &internal_config.hugepage_info[i];
		if (hpi->hugedir != NULL)
			size += hpi->hugepage_sz * hpi->num_pages[socket];
	}

	return (size);
}

/*
 * This function is a NUMA-aware equivalent of calc_num_pages.
 * It takes in the list of hugepage sizes and the
 * number of pages thereof, and calculates the best number of
 * pages of each size to fulfill the request for <memory> ram
 */
static int
calc_num_pages_per_socket(uint64_t * memory,
		struct hugepage_info *hp_info,
		struct hugepage_info *hp_used,
		unsigned num_hp_info)
{
	unsigned socket, j, i = 0;
	unsigned requested, available;
	int total_num_pages = 0;
	uint64_t remaining_mem, cur_mem;
	uint64_t total_mem = internal_config.memory;

	if (num_hp_info == 0)
		return -1;

	for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) {
		/* if specific memory amounts per socket weren't requested */
		if (internal_config.force_sockets == 0) {
			/* take whatever is available */
			memory[socket] = RTE_MIN(get_socket_mem_size(socket),
					total_mem);
		}
		/* skips if the memory on specific socket wasn't requested */
		for (i = 0; i < num_hp_info && memory[socket] != 0; i++){
			hp_used[i].hugedir = hp_info[i].hugedir;
			hp_used[i].num_pages[socket] = RTE_MIN(
					memory[socket] / hp_info[i].hugepage_sz,
					hp_info[i].num_pages[socket]);

			cur_mem = hp_used[i].num_pages[socket] *
					hp_used[i].hugepage_sz;

			memory[socket] -= cur_mem;
			total_mem -= cur_mem;

			total_num_pages += hp_used[i].num_pages[socket];

			/* check if we have met all memory requests */
			if (memory[socket] == 0)
				break;

			/* check if we have any more pages left at this size, if so
			 * move on to next size */
			if (hp_used[i].num_pages[socket] == hp_info[i].num_pages[socket])
				continue;
			/* At this point we know that there are more pages available that are
			 * bigger than the memory we want, so lets see if we can get enough
			 * from other page sizes.
			 */
			remaining_mem = 0;
			for (j = i+1; j < num_hp_info; j++)
				remaining_mem += hp_info[j].hugepage_sz *
				hp_info[j].num_pages[socket];

			/* is there enough other memory, if not allocate another page and quit */
			if (remaining_mem < memory[socket]){
				cur_mem = RTE_MIN(memory[socket],
						hp_info[i].hugepage_sz);
				memory[socket] -= cur_mem;
				total_mem -= cur_mem;
				hp_used[i].num_pages[socket]++;
				total_num_pages++;
				break; /* we are done with this socket*/
			}
		}
		/* if we didn't satisfy all memory requirements per socket */
		if (memory[socket] > 0) {
			/* to prevent icc errors */
			requested = (unsigned) (internal_config.socket_mem[socket] /
					0x100000);
			available = requested -
					((unsigned) (memory[socket] / 0x100000));
			RTE_LOG(INFO, EAL, "Not enough memory available on socket %u! "
					"Requested: %uMB, available: %uMB\n", socket,
					requested, available);
			return -1;
		}
	}

	/* if we didn't satisfy total memory requirements */
	if (total_mem > 0) {
		requested = (unsigned) (internal_config.memory / 0x100000);
		available = requested - (unsigned) (total_mem / 0x100000);
		RTE_LOG(INFO, EAL, "Not enough memory available! Requested: %uMB,"
				" available: %uMB\n", requested, available);
		return -1;
	}
	return total_num_pages;
}

/*
 * Prepare physical memory mapping: fill configuration structure with
 * these infos, return 0 on success.
 *  1. map N huge pages in separate files in hugetlbfs
 *  2. find associated physical addr
 *  3. find associated NUMA socket ID
 *  4. sort all huge pages by physical address
 *  5. remap these N huge pages in the correct order
 *  6. unmap the first mapping
 *  7. fill memsegs in configuration with contiguous zones
 */
static int
rte_eal_hugepage_init(void)
{
	struct rte_mem_config *mcfg;
	struct hugepage *hugepage, *tmp_hp = NULL;
	struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];

	uint64_t memory[RTE_MAX_NUMA_NODES];

	unsigned hp_offset;
	int i, j, new_memseg;
	int nrpages, total_pages = 0;
	void *addr;

	memset(used_hp, 0, sizeof(used_hp));

	/* get pointer to global configuration */
	mcfg = rte_eal_get_configuration()->mem_config;

	/* hugetlbfs can be disabled */
	if (internal_config.no_hugetlbfs) {
		addr = malloc(internal_config.memory);
		mcfg->memseg[0].phys_addr = (phys_addr_t)(uintptr_t)addr;
		mcfg->memseg[0].addr = addr;
		mcfg->memseg[0].len = internal_config.memory;
		mcfg->memseg[0].socket_id = SOCKET_ID_ANY;
		return 0;
	}


	/* calculate total number of hugepages available. at this point we haven't
	 * yet started sorting them so they all are on socket 0 */
	for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
		/* meanwhile, also initialize used_hp hugepage sizes in used_hp */
		used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz;

		total_pages += internal_config.hugepage_info[i].num_pages[0];
	}

	/*
	 * allocate a memory area for hugepage table.
	 * this isn't shared memory yet. due to the fact that we need some
	 * processing done on these pages, shared memory will be created
	 * at a later stage.
	 */
	tmp_hp = malloc(total_pages * sizeof(struct hugepage));
	if (tmp_hp == NULL)
		goto fail;

	memset(tmp_hp, 0, total_pages * sizeof(struct hugepage));

	hp_offset = 0; /* where we start the current page size entries */

	/* map all hugepages and sort them */
	for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){
		struct hugepage_info *hpi;

		/*
		 * we don't yet mark hugepages as used at this stage, so
		 * we just map all hugepages available to the system
		 * all hugepages are still located on socket 0
		 */
		hpi = &internal_config.hugepage_info[i];

		if (hpi->num_pages == 0)
			continue;

		/* map all hugepages available */
		if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 1) < 0){
			RTE_LOG(DEBUG, EAL, "Failed to mmap %u MB hugepages\n",
					(unsigned)(hpi->hugepage_sz / 0x100000));
			goto fail;
		}

		/* find physical addresses and sockets for each hugepage */
		if (find_physaddr(&tmp_hp[hp_offset], hpi) < 0){
			RTE_LOG(DEBUG, EAL, "Failed to find phys addr for %u MB pages\n",
					(unsigned)(hpi->hugepage_sz / 0x100000));
			goto fail;
		}

		if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){
			RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n",
					(unsigned)(hpi->hugepage_sz / 0x100000));
			goto fail;
		}

		if (sort_by_physaddr(&tmp_hp[hp_offset], hpi) < 0)
			goto fail;

		/* remap all hugepages */
		if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 0) < 0){
			RTE_LOG(DEBUG, EAL, "Failed to remap %u MB pages\n",
					(unsigned)(hpi->hugepage_sz / 0x100000));
			goto fail;
		}

		/* unmap original mappings */
		if (unmap_all_hugepages_orig(&tmp_hp[hp_offset], hpi) < 0)
			goto fail;

		/* we have processed a num of hugepages of this size, so inc offset */
		hp_offset += hpi->num_pages[0];
	}

	/* clean out the numbers of pages */
	for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++)
		for (j = 0; j < RTE_MAX_NUMA_NODES; j++)
			internal_config.hugepage_info[i].num_pages[j] = 0;

	/* get hugepages for each socket */
	for (i = 0; i < total_pages; i++) {
		int socket = tmp_hp[i].socket_id;

		/* find a hugepage info with right size and increment num_pages */
		for (j = 0; j < (int) internal_config.num_hugepage_sizes; j++) {
			if (tmp_hp[i].size ==
					internal_config.hugepage_info[j].hugepage_sz) {
				internal_config.hugepage_info[j].num_pages[socket]++;
			}
		}
	}

	/* make a copy of socket_mem, needed for number of pages calculation */
	for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
		memory[i] = internal_config.socket_mem[i];

	/* calculate final number of pages */
	nrpages = calc_num_pages_per_socket(memory,
			internal_config.hugepage_info, used_hp,
			internal_config.num_hugepage_sizes);

	/* error if not enough memory available */
	if (nrpages < 0)
		goto fail;

	/* reporting in! */
	for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
		for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
			if (used_hp[i].num_pages[j] > 0) {
				RTE_LOG(INFO, EAL,
						"Requesting %u pages of size %uMB"
						" from socket %i\n",
						used_hp[i].num_pages[j],
						(unsigned)
							(used_hp[i].hugepage_sz / 0x100000),
						j);
			}
		}
	}

	/* create shared memory */
	hugepage = create_shared_memory(eal_hugepage_info_path(),
					nrpages * sizeof(struct hugepage));

	if (hugepage == NULL) {
		RTE_LOG(ERR, EAL, "Failed to create shared memory!\n");
		goto fail;
	}

	/*
	 * unmap pages that we won't need (looks at used_hp).
	 * also, sets final_va to NULL on pages that were unmapped.
	 */
	if (unmap_unneeded_hugepages(tmp_hp, used_hp,
			internal_config.num_hugepage_sizes) < 0) {
		RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n");
		goto fail;
	}

	/*
	 * copy stuff from malloc'd hugepage* to the actual shared memory.
	 * this procedure only copies those hugepages that have final_va
	 * not NULL. has overflow protection.
	 */
	if (copy_hugepages_to_shared_mem(hugepage, nrpages,
			tmp_hp, total_pages) < 0) {
		RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n");
		goto fail;
	}

	/* free the temporary hugepage table */
	free(tmp_hp);
	tmp_hp = NULL;

	memset(mcfg->memseg, 0, sizeof(mcfg->memseg));
	j = -1;
	for (i = 0; i < nrpages; i++) {
		new_memseg = 0;

		/* if this is a new section, create a new memseg */
		if (i == 0)
			new_memseg = 1;
		else if (hugepage[i].socket_id != hugepage[i-1].socket_id)
			new_memseg = 1;
		else if (hugepage[i].size != hugepage[i-1].size)
			new_memseg = 1;
		else if ((hugepage[i].physaddr - hugepage[i-1].physaddr) !=
		    hugepage[i].size)
			new_memseg = 1;
		else if (((unsigned long)hugepage[i].final_va -
		    (unsigned long)hugepage[i-1].final_va) != hugepage[i].size)
			new_memseg = 1;

		if (new_memseg) {
			j += 1;
			if (j == RTE_MAX_MEMSEG)
				break;

			mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
			mcfg->memseg[j].addr = hugepage[i].final_va;
			mcfg->memseg[j].len = hugepage[i].size;
			mcfg->memseg[j].socket_id = hugepage[i].socket_id;
			mcfg->memseg[j].hugepage_sz = hugepage[i].size;
		}
		/* continuation of previous memseg */
		else {
			mcfg->memseg[j].len += mcfg->memseg[j].hugepage_sz;
		}
		hugepage[i].memseg_id = j;
	}

	if (i < nrpages) {
		RTE_LOG(ERR, EAL, "Can only reserve %d pages "
			"from %d requested\n"
			"Current %s=%d is not enough\n"
			"Please either increase it or request less amount "
			"of memory.\n",
			i, nrpages, RTE_STR(CONFIG_RTE_MAX_MEMSEG),
			RTE_MAX_MEMSEG);
		return (-ENOMEM);
	}
	

	return 0;


fail:
	if (tmp_hp)
		free(tmp_hp);
	return -1;
}

/*
 * uses fstat to report the size of a file on disk
 */
static off_t
getFileSize(int fd)
{
	struct stat st;
	if (fstat(fd, &st) < 0)
		return 0;
	return st.st_size;
}

/*
 * This creates the memory mappings in the secondary process to match that of
 * the server process. It goes through each memory segment in the DPDK runtime
 * configuration and finds the hugepages which form that segment, mapping them
 * in order to form a contiguous block in the virtual memory space
 */
static int
rte_eal_hugepage_attach(void)
{
	const struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	const struct hugepage *hp = NULL;
	unsigned num_hp = 0;
	unsigned i, s = 0; /* s used to track the segment number */
	off_t size;
	int fd, fd_zero = -1, fd_hugepage = -1;

	if (aslr_enabled() > 0) {
		RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization "
				"(ASLR) is enabled in the kernel.\n");
		RTE_LOG(WARNING, EAL, "   This may cause issues with mapping memory "
				"into secondary processes\n");
	}

	fd_zero = open("/dev/zero", O_RDONLY);
	if (fd_zero < 0) {
		RTE_LOG(ERR, EAL, "Could not open /dev/zero\n");
		goto error;
	}
	fd_hugepage = open(eal_hugepage_info_path(), O_RDONLY);
	if (fd_hugepage < 0) {
		RTE_LOG(ERR, EAL, "Could not open %s\n", eal_hugepage_info_path());
		goto error;
	}

	/* map all segments into memory to make sure we get the addrs */
	for (s = 0; s < RTE_MAX_MEMSEG; ++s) {
		void *base_addr;

		/*
		 * the first memory segment with len==0 is the one that
		 * follows the last valid segment.
		 */
		if (mcfg->memseg[s].len == 0)
			break;

		/*
		 * fdzero is mmapped to get a contiguous block of virtual
		 * addresses of the appropriate memseg size.
		 * use mmap to get identical addresses as the primary process.
		 */
		base_addr = mmap(mcfg->memseg[s].addr, mcfg->memseg[s].len,
				 PROT_READ, MAP_PRIVATE, fd_zero, 0);
		if (base_addr == MAP_FAILED ||
		    base_addr != mcfg->memseg[s].addr) {
			RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
				"in /dev/zero to requested address [%p]\n",
				(unsigned long long)mcfg->memseg[s].len,
				mcfg->memseg[s].addr);
			if (aslr_enabled() > 0) {
				RTE_LOG(ERR, EAL, "It is recommended to "
					"disable ASLR in the kernel "
					"and retry running both primary "
					"and secondary processes\n");
			}
			goto error;
		}
	}

	size = getFileSize(fd_hugepage);
	hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0);
	if (hp == NULL) {
		RTE_LOG(ERR, EAL, "Could not mmap %s\n", eal_hugepage_info_path());
		goto error;
	}

	num_hp = size / sizeof(struct hugepage);
	RTE_LOG(DEBUG, EAL, "Analysing %u hugepages\n", num_hp);

	s = 0;
	while (s < RTE_MAX_MEMSEG && mcfg->memseg[s].len > 0){
		void *addr, *base_addr;
		uintptr_t offset = 0;

		/*
		 * free previously mapped memory so we can map the
		 * hugepages into the space
		 */
		base_addr = mcfg->memseg[s].addr;
		munmap(base_addr, mcfg->memseg[s].len);

		/* find the hugepages for this segment and map them
		 * we don't need to worry about order, as the server sorted the
		 * entries before it did the second mmap of them */
		for (i = 0; i < num_hp && offset < mcfg->memseg[s].len; i++){
			if (hp[i].memseg_id == (int)s){
				fd = open(hp[i].filepath, O_RDWR);
				if (fd < 0) {
					RTE_LOG(ERR, EAL, "Could not open %s\n",
						hp[i].filepath);
					goto error;
				}
				addr = mmap(RTE_PTR_ADD(base_addr, offset),
						hp[i].size, PROT_READ | PROT_WRITE,
						MAP_SHARED | MAP_FIXED, fd, 0);
				close(fd); /* close file both on success and on failure */
				if (addr == MAP_FAILED) {
					RTE_LOG(ERR, EAL, "Could not mmap %s\n",
						hp[i].filepath);
					goto error;
				}
				offset+=hp[i].size;
			}
		}
		RTE_LOG(DEBUG, EAL, "Mapped segment %u of size 0x%llx\n", s,
				(unsigned long long)mcfg->memseg[s].len);
		s++;
	}
	/* unmap the hugepage config file, since we are done using it */
	munmap((void *)(uintptr_t)hp, size);
	close(fd_zero);
	close(fd_hugepage);
	return 0;

error:
	if (fd_zero >= 0)
		close(fd_zero);
	if (fd_hugepage >= 0)
		close(fd_hugepage);
	return -1;
}

static int
rte_eal_memdevice_init(void)
{
	struct rte_config *config;

	if (rte_eal_process_type() == RTE_PROC_SECONDARY)
		return 0;

	config = rte_eal_get_configuration();
	config->mem_config->nchannel = internal_config.force_nchannel;
	config->mem_config->nrank = internal_config.force_nrank;

	return 0;
}


/* init memory subsystem */
int
rte_eal_memory_init(void)
{
	RTE_LOG(INFO, EAL, "Setting up memory...\n");
	const int retval = rte_eal_process_type() == RTE_PROC_PRIMARY ?
			rte_eal_hugepage_init() :
			rte_eal_hugepage_attach();
	if (retval < 0)
		return -1;

	if (internal_config.no_shconf == 0 && rte_eal_memdevice_init() < 0)
		return -1;

	return 0;
}