DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
/*-
 *   BSD LICENSE
 *
 *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
 *   All rights reserved.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of Intel Corporation nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <rte_acl.h>
#include "acl.h"

#define	BIT_SIZEOF(x)	(sizeof(x) * CHAR_BIT)

TAILQ_HEAD(rte_acl_list, rte_tailq_entry);

static const rte_acl_classify_t classify_fns[] = {
	[RTE_ACL_CLASSIFY_DEFAULT] = rte_acl_classify_scalar,
	[RTE_ACL_CLASSIFY_SCALAR] = rte_acl_classify_scalar,
	[RTE_ACL_CLASSIFY_SSE] = rte_acl_classify_sse,
};

/* by default, use always available scalar code path. */
static enum rte_acl_classify_alg rte_acl_default_classify =
	RTE_ACL_CLASSIFY_SCALAR;

static void
rte_acl_set_default_classify(enum rte_acl_classify_alg alg)
{
	rte_acl_default_classify = alg;
}

extern int
rte_acl_set_ctx_classify(struct rte_acl_ctx *ctx, enum rte_acl_classify_alg alg)
{
	if (ctx == NULL || (uint32_t)alg >= RTE_DIM(classify_fns))
		return -EINVAL;

	ctx->alg = alg;
	return 0;
}

static void __attribute__((constructor))
rte_acl_init(void)
{
	enum rte_acl_classify_alg alg = RTE_ACL_CLASSIFY_DEFAULT;

	if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE4_1))
		alg = RTE_ACL_CLASSIFY_SSE;

	rte_acl_set_default_classify(alg);
}

int
rte_acl_classify(const struct rte_acl_ctx *ctx, const uint8_t **data,
	uint32_t *results, uint32_t num, uint32_t categories)
{
	return classify_fns[ctx->alg](ctx, data, results, num, categories);
}

int
rte_acl_classify_alg(const struct rte_acl_ctx *ctx, const uint8_t **data,
	uint32_t *results, uint32_t num, uint32_t categories,
	enum rte_acl_classify_alg alg)
{
	return classify_fns[alg](ctx, data, results, num, categories);
}

struct rte_acl_ctx *
rte_acl_find_existing(const char *name)
{
	struct rte_acl_ctx *ctx = NULL;
	struct rte_acl_list *acl_list;
	struct rte_tailq_entry *te;

	/* check that we have an initialised tail queue */
	acl_list = RTE_TAILQ_LOOKUP_BY_IDX(RTE_TAILQ_ACL, rte_acl_list);
	if (acl_list == NULL) {
		rte_errno = E_RTE_NO_TAILQ;
		return NULL;
	}

	rte_rwlock_read_lock(RTE_EAL_TAILQ_RWLOCK);
	TAILQ_FOREACH(te, acl_list, next) {
		ctx = (struct rte_acl_ctx *) te->data;
		if (strncmp(name, ctx->name, sizeof(ctx->name)) == 0)
			break;
	}
	rte_rwlock_read_unlock(RTE_EAL_TAILQ_RWLOCK);

	if (te == NULL) {
		rte_errno = ENOENT;
		return NULL;
	}
	return ctx;
}

void
rte_acl_free(struct rte_acl_ctx *ctx)
{
	struct rte_acl_list *acl_list;
	struct rte_tailq_entry *te;

	if (ctx == NULL)
		return;

	/* check that we have an initialised tail queue */
	acl_list = RTE_TAILQ_LOOKUP_BY_IDX(RTE_TAILQ_ACL, rte_acl_list);
	if (acl_list == NULL) {
		rte_errno = E_RTE_NO_TAILQ;
		return;
	}

	rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);

	/* find our tailq entry */
	TAILQ_FOREACH(te, acl_list, next) {
		if (te->data == (void *) ctx)
			break;
	}
	if (te == NULL) {
		rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
		return;
	}

	TAILQ_REMOVE(acl_list, te, next);

	rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);

	rte_free(ctx->mem);
	rte_free(ctx);
	rte_free(te);
}

struct rte_acl_ctx *
rte_acl_create(const struct rte_acl_param *param)
{
	size_t sz;
	struct rte_acl_ctx *ctx;
	struct rte_acl_list *acl_list;
	struct rte_tailq_entry *te;
	char name[sizeof(ctx->name)];

	/* check that we have an initialised tail queue */
	acl_list = RTE_TAILQ_LOOKUP_BY_IDX(RTE_TAILQ_ACL, rte_acl_list);
	if (acl_list == NULL) {
		rte_errno = E_RTE_NO_TAILQ;
		return NULL;
	}

	/* check that input parameters are valid. */
	if (param == NULL || param->name == NULL) {
		rte_errno = EINVAL;
		return NULL;
	}

	snprintf(name, sizeof(name), "ACL_%s", param->name);

	/* calculate amount of memory required for pattern set. */
	sz = sizeof(*ctx) + param->max_rule_num * param->rule_size;

	/* get EAL TAILQ lock. */
	rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);

	/* if we already have one with that name */
	TAILQ_FOREACH(te, acl_list, next) {
		ctx = (struct rte_acl_ctx *) te->data;
		if (strncmp(param->name, ctx->name, sizeof(ctx->name)) == 0)
			break;
	}

	/* if ACL with such name doesn't exist, then create a new one. */
	if (te == NULL) {
		ctx = NULL;
		te = rte_zmalloc("ACL_TAILQ_ENTRY", sizeof(*te), 0);

		if (te == NULL) {
			RTE_LOG(ERR, ACL, "Cannot allocate tailq entry!\n");
			goto exit;
		}

		ctx = rte_zmalloc_socket(name, sz, RTE_CACHE_LINE_SIZE, param->socket_id);

		if (ctx == NULL) {
			RTE_LOG(ERR, ACL,
				"allocation of %zu bytes on socket %d for %s failed\n",
				sz, param->socket_id, name);
			rte_free(te);
			goto exit;
		}
		/* init new allocated context. */
		ctx->rules = ctx + 1;
		ctx->max_rules = param->max_rule_num;
		ctx->rule_sz = param->rule_size;
		ctx->socket_id = param->socket_id;
		ctx->alg = rte_acl_default_classify;
		snprintf(ctx->name, sizeof(ctx->name), "%s", param->name);

		te->data = (void *) ctx;

		TAILQ_INSERT_TAIL(acl_list, te, next);
	}

exit:
	rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
	return ctx;
}

static int
acl_add_rules(struct rte_acl_ctx *ctx, const void *rules, uint32_t num)
{
	uint8_t *pos;

	if (num + ctx->num_rules > ctx->max_rules)
		return -ENOMEM;

	pos = ctx->rules;
	pos += ctx->rule_sz * ctx->num_rules;
	memcpy(pos, rules, num * ctx->rule_sz);
	ctx->num_rules += num;

	return 0;
}

static int
acl_check_rule(const struct rte_acl_rule_data *rd)
{
	if ((rd->category_mask & LEN2MASK(RTE_ACL_MAX_CATEGORIES)) == 0 ||
			rd->priority > RTE_ACL_MAX_PRIORITY ||
			rd->priority < RTE_ACL_MIN_PRIORITY ||
			rd->userdata == RTE_ACL_INVALID_USERDATA)
		return -EINVAL;
	return 0;
}

int
rte_acl_add_rules(struct rte_acl_ctx *ctx, const struct rte_acl_rule *rules,
	uint32_t num)
{
	const struct rte_acl_rule *rv;
	uint32_t i;
	int32_t rc;

	if (ctx == NULL || rules == NULL || 0 == ctx->rule_sz)
		return -EINVAL;

	for (i = 0; i != num; i++) {
		rv = (const struct rte_acl_rule *)
			((uintptr_t)rules + i * ctx->rule_sz);
		rc = acl_check_rule(&rv->data);
		if (rc != 0) {
			RTE_LOG(ERR, ACL, "%s(%s): rule #%u is invalid\n",
				__func__, ctx->name, i + 1);
			return rc;
		}
	}

	return acl_add_rules(ctx, rules, num);
}

/*
 * Reset all rules.
 * Note that RT structures are not affected.
 */
void
rte_acl_reset_rules(struct rte_acl_ctx *ctx)
{
	if (ctx != NULL)
		ctx->num_rules = 0;
}

/*
 * Reset all rules and destroys RT structures.
 */
void
rte_acl_reset(struct rte_acl_ctx *ctx)
{
	if (ctx != NULL) {
		rte_acl_reset_rules(ctx);
		rte_acl_build(ctx, &ctx->config);
	}
}

/*
 * Dump ACL context to the stdout.
 */
void
rte_acl_dump(const struct rte_acl_ctx *ctx)
{
	if (!ctx)
		return;
	printf("acl context <%s>@%p\n", ctx->name, ctx);
	printf("  socket_id=%"PRId32"\n", ctx->socket_id);
	printf("  alg=%"PRId32"\n", ctx->alg);
	printf("  max_rules=%"PRIu32"\n", ctx->max_rules);
	printf("  rule_size=%"PRIu32"\n", ctx->rule_sz);
	printf("  num_rules=%"PRIu32"\n", ctx->num_rules);
	printf("  num_categories=%"PRIu32"\n", ctx->num_categories);
	printf("  num_tries=%"PRIu32"\n", ctx->num_tries);
}

/*
 * Dump all ACL contexts to the stdout.
 */
void
rte_acl_list_dump(void)
{
	struct rte_acl_ctx *ctx;
	struct rte_acl_list *acl_list;
	struct rte_tailq_entry *te;

	/* check that we have an initialised tail queue */
	acl_list = RTE_TAILQ_LOOKUP_BY_IDX(RTE_TAILQ_ACL, rte_acl_list);
	if (acl_list == NULL) {
		rte_errno = E_RTE_NO_TAILQ;
		return;
	}

	rte_rwlock_read_lock(RTE_EAL_TAILQ_RWLOCK);
	TAILQ_FOREACH(te, acl_list, next) {
		ctx = (struct rte_acl_ctx *) te->data;
		rte_acl_dump(ctx);
	}
	rte_rwlock_read_unlock(RTE_EAL_TAILQ_RWLOCK);
}

/*
 * Support for legacy ipv4vlan rules.
 */

RTE_ACL_RULE_DEF(acl_ipv4vlan_rule, RTE_ACL_IPV4VLAN_NUM_FIELDS);

static int
acl_ipv4vlan_check_rule(const struct rte_acl_ipv4vlan_rule *rule)
{
	if (rule->src_port_low > rule->src_port_high ||
			rule->dst_port_low > rule->dst_port_high ||
			rule->src_mask_len > BIT_SIZEOF(rule->src_addr) ||
			rule->dst_mask_len > BIT_SIZEOF(rule->dst_addr))
		return -EINVAL;

	return acl_check_rule(&rule->data);
}

static void
acl_ipv4vlan_convert_rule(const struct rte_acl_ipv4vlan_rule *ri,
	struct acl_ipv4vlan_rule *ro)
{
	ro->data = ri->data;

	ro->field[RTE_ACL_IPV4VLAN_PROTO_FIELD].value.u8 = ri->proto;
	ro->field[RTE_ACL_IPV4VLAN_VLAN1_FIELD].value.u16 = ri->vlan;
	ro->field[RTE_ACL_IPV4VLAN_VLAN2_FIELD].value.u16 = ri->domain;
	ro->field[RTE_ACL_IPV4VLAN_SRC_FIELD].value.u32 = ri->src_addr;
	ro->field[RTE_ACL_IPV4VLAN_DST_FIELD].value.u32 = ri->dst_addr;
	ro->field[RTE_ACL_IPV4VLAN_SRCP_FIELD].value.u16 = ri->src_port_low;
	ro->field[RTE_ACL_IPV4VLAN_DSTP_FIELD].value.u16 = ri->dst_port_low;

	ro->field[RTE_ACL_IPV4VLAN_PROTO_FIELD].mask_range.u8 = ri->proto_mask;
	ro->field[RTE_ACL_IPV4VLAN_VLAN1_FIELD].mask_range.u16 = ri->vlan_mask;
	ro->field[RTE_ACL_IPV4VLAN_VLAN2_FIELD].mask_range.u16 =
		ri->domain_mask;
	ro->field[RTE_ACL_IPV4VLAN_SRC_FIELD].mask_range.u32 =
		ri->src_mask_len;
	ro->field[RTE_ACL_IPV4VLAN_DST_FIELD].mask_range.u32 = ri->dst_mask_len;
	ro->field[RTE_ACL_IPV4VLAN_SRCP_FIELD].mask_range.u16 =
		ri->src_port_high;
	ro->field[RTE_ACL_IPV4VLAN_DSTP_FIELD].mask_range.u16 =
		ri->dst_port_high;
}

int
rte_acl_ipv4vlan_add_rules(struct rte_acl_ctx *ctx,
	const struct rte_acl_ipv4vlan_rule *rules,
	uint32_t num)
{
	int32_t rc;
	uint32_t i;
	struct acl_ipv4vlan_rule rv;

	if (ctx == NULL || rules == NULL || ctx->rule_sz != sizeof(rv))
		return -EINVAL;

	/* check input rules. */
	for (i = 0; i != num; i++) {
		rc = acl_ipv4vlan_check_rule(rules + i);
		if (rc != 0) {
			RTE_LOG(ERR, ACL, "%s(%s): rule #%u is invalid\n",
				__func__, ctx->name, i + 1);
			return rc;
		}
	}

	if (num + ctx->num_rules > ctx->max_rules)
		return -ENOMEM;

	/* perform conversion to the internal format and add to the context. */
	for (i = 0, rc = 0; i != num && rc == 0; i++) {
		acl_ipv4vlan_convert_rule(rules + i, &rv);
		rc = acl_add_rules(ctx, &rv, 1);
	}

	return rc;
}

static void
acl_ipv4vlan_config(struct rte_acl_config *cfg,
	const uint32_t layout[RTE_ACL_IPV4VLAN_NUM],
	uint32_t num_categories)
{
	static const struct rte_acl_field_def
		ipv4_defs[RTE_ACL_IPV4VLAN_NUM_FIELDS] = {
		{
			.type = RTE_ACL_FIELD_TYPE_BITMASK,
			.size = sizeof(uint8_t),
			.field_index = RTE_ACL_IPV4VLAN_PROTO_FIELD,
			.input_index = RTE_ACL_IPV4VLAN_PROTO,
		},
		{
			.type = RTE_ACL_FIELD_TYPE_BITMASK,
			.size = sizeof(uint16_t),
			.field_index = RTE_ACL_IPV4VLAN_VLAN1_FIELD,
			.input_index = RTE_ACL_IPV4VLAN_VLAN,
		},
		{
			.type = RTE_ACL_FIELD_TYPE_BITMASK,
			.size = sizeof(uint16_t),
			.field_index = RTE_ACL_IPV4VLAN_VLAN2_FIELD,
			.input_index = RTE_ACL_IPV4VLAN_VLAN,
		},
		{
			.type = RTE_ACL_FIELD_TYPE_MASK,
			.size = sizeof(uint32_t),
			.field_index = RTE_ACL_IPV4VLAN_SRC_FIELD,
			.input_index = RTE_ACL_IPV4VLAN_SRC,
		},
		{
			.type = RTE_ACL_FIELD_TYPE_MASK,
			.size = sizeof(uint32_t),
			.field_index = RTE_ACL_IPV4VLAN_DST_FIELD,
			.input_index = RTE_ACL_IPV4VLAN_DST,
		},
		{
			.type = RTE_ACL_FIELD_TYPE_RANGE,
			.size = sizeof(uint16_t),
			.field_index = RTE_ACL_IPV4VLAN_SRCP_FIELD,
			.input_index = RTE_ACL_IPV4VLAN_PORTS,
		},
		{
			.type = RTE_ACL_FIELD_TYPE_RANGE,
			.size = sizeof(uint16_t),
			.field_index = RTE_ACL_IPV4VLAN_DSTP_FIELD,
			.input_index = RTE_ACL_IPV4VLAN_PORTS,
		},
	};

	memcpy(&cfg->defs, ipv4_defs, sizeof(ipv4_defs));
	cfg->num_fields = RTE_DIM(ipv4_defs);

	cfg->defs[RTE_ACL_IPV4VLAN_PROTO_FIELD].offset =
		layout[RTE_ACL_IPV4VLAN_PROTO];
	cfg->defs[RTE_ACL_IPV4VLAN_VLAN1_FIELD].offset =
		layout[RTE_ACL_IPV4VLAN_VLAN];
	cfg->defs[RTE_ACL_IPV4VLAN_VLAN2_FIELD].offset =
		layout[RTE_ACL_IPV4VLAN_VLAN] +
		cfg->defs[RTE_ACL_IPV4VLAN_VLAN1_FIELD].size;
	cfg->defs[RTE_ACL_IPV4VLAN_SRC_FIELD].offset =
		layout[RTE_ACL_IPV4VLAN_SRC];
	cfg->defs[RTE_ACL_IPV4VLAN_DST_FIELD].offset =
		layout[RTE_ACL_IPV4VLAN_DST];
	cfg->defs[RTE_ACL_IPV4VLAN_SRCP_FIELD].offset =
		layout[RTE_ACL_IPV4VLAN_PORTS];
	cfg->defs[RTE_ACL_IPV4VLAN_DSTP_FIELD].offset =
		layout[RTE_ACL_IPV4VLAN_PORTS] +
		cfg->defs[RTE_ACL_IPV4VLAN_SRCP_FIELD].size;

	cfg->num_categories = num_categories;
}

int
rte_acl_ipv4vlan_build(struct rte_acl_ctx *ctx,
	const uint32_t layout[RTE_ACL_IPV4VLAN_NUM],
	uint32_t num_categories)
{
	struct rte_acl_config cfg;

	if (ctx == NULL || layout == NULL)
		return -EINVAL;

	acl_ipv4vlan_config(&cfg, layout, num_categories);
	return rte_acl_build(ctx, &cfg);
}