DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
/*-
 *   BSD LICENSE
 *
 *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
 *   All rights reserved.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of Intel Corporation nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <stdarg.h>
#include <inttypes.h>
#include <string.h>
#include <errno.h>
#include <sys/queue.h>

#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_tailq.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_per_lcore.h>
#include <rte_errno.h>
#include <rte_string_fns.h>
#include <rte_common.h>

#include "eal_private.h"

/* internal copy of free memory segments */
static struct rte_memseg *free_memseg = NULL;

static inline const struct rte_memzone *
memzone_lookup_thread_unsafe(const char *name)
{
	const struct rte_mem_config *mcfg;
	unsigned i = 0;

	/* get pointer to global configuration */
	mcfg = rte_eal_get_configuration()->mem_config;

	/*
	 * the algorithm is not optimal (linear), but there are few
	 * zones and this function should be called at init only
	 */
	for (i = 0; i < RTE_MAX_MEMZONE && mcfg->memzone[i].addr != NULL; i++) {
		if (!strncmp(name, mcfg->memzone[i].name, RTE_MEMZONE_NAMESIZE))
			return &mcfg->memzone[i];
	}

	return NULL;
}

/*
 * Return a pointer to a correctly filled memzone descriptor. If the
 * allocation cannot be done, return NULL.
 */
const struct rte_memzone *
rte_memzone_reserve(const char *name, size_t len, int socket_id,
		      unsigned flags)
{
	return rte_memzone_reserve_aligned(name,
			len, socket_id, flags, RTE_CACHE_LINE_SIZE);
}

/*
 * Helper function for memzone_reserve_aligned_thread_unsafe().
 * Calculate address offset from the start of the segment.
 * Align offset in that way that it satisfy istart alignmnet and
 * buffer of the  requested length would not cross specified boundary.
 */
static inline phys_addr_t
align_phys_boundary(const struct rte_memseg *ms, size_t len, size_t align,
	size_t bound)
{
	phys_addr_t addr_offset, bmask, end, start;
	size_t step;

	step = RTE_MAX(align, bound);
	bmask = ~((phys_addr_t)bound - 1);

	/* calculate offset to closest alignment */
	start = RTE_ALIGN_CEIL(ms->phys_addr, align);
	addr_offset = start - ms->phys_addr;

	while (addr_offset + len < ms->len) {

		/* check, do we meet boundary condition */
		end = start + len - (len != 0);
		if ((start & bmask) == (end & bmask))
			break;

		/* calculate next offset */
		start = RTE_ALIGN_CEIL(start + 1, step);
		addr_offset = start - ms->phys_addr;
	}

	return (addr_offset);
}

static const struct rte_memzone *
memzone_reserve_aligned_thread_unsafe(const char *name, size_t len,
		int socket_id, unsigned flags, unsigned align, unsigned bound)
{
	struct rte_mem_config *mcfg;
	unsigned i = 0;
	int memseg_idx = -1;
	uint64_t addr_offset, seg_offset = 0;
	size_t requested_len;
	size_t memseg_len = 0;
	phys_addr_t memseg_physaddr;
	void *memseg_addr;

	/* get pointer to global configuration */
	mcfg = rte_eal_get_configuration()->mem_config;

	/* no more room in config */
	if (mcfg->memzone_idx >= RTE_MAX_MEMZONE) {
		RTE_LOG(ERR, EAL, "%s(): No more room in config\n", __func__);
		rte_errno = ENOSPC;
		return NULL;
	}

	/* zone already exist */
	if ((memzone_lookup_thread_unsafe(name)) != NULL) {
		RTE_LOG(DEBUG, EAL, "%s(): memzone <%s> already exists\n",
			__func__, name);
		rte_errno = EEXIST;
		return NULL;
	}

	/* if alignment is not a power of two */
	if (!rte_is_power_of_2(align)) {
		RTE_LOG(ERR, EAL, "%s(): Invalid alignment: %u\n", __func__,
				align);
		rte_errno = EINVAL;
		return NULL;
	}

	/* alignment less than cache size is not allowed */
	if (align < RTE_CACHE_LINE_SIZE)
		align = RTE_CACHE_LINE_SIZE;


	/* align length on cache boundary. Check for overflow before doing so */
	if (len > SIZE_MAX - RTE_CACHE_LINE_MASK) {
		rte_errno = EINVAL; /* requested size too big */
		return NULL;
	}

	len += RTE_CACHE_LINE_MASK;
	len &= ~((size_t) RTE_CACHE_LINE_MASK);

	/* save minimal requested  length */
	requested_len = RTE_MAX((size_t)RTE_CACHE_LINE_SIZE,  len);

	/* check that boundary condition is valid */
	if (bound != 0 &&
			(requested_len > bound || !rte_is_power_of_2(bound))) {
		rte_errno = EINVAL;
		return NULL;
	}

	/* find the smallest segment matching requirements */
	for (i = 0; i < RTE_MAX_MEMSEG; i++) {
		/* last segment */
		if (free_memseg[i].addr == NULL)
			break;

		/* empty segment, skip it */
		if (free_memseg[i].len == 0)
			continue;

		/* bad socket ID */
		if (socket_id != SOCKET_ID_ANY &&
		    free_memseg[i].socket_id != SOCKET_ID_ANY &&
		    socket_id != free_memseg[i].socket_id)
			continue;

		/*
		 * calculate offset to closest alignment that
		 * meets boundary conditions.
		 */
		addr_offset = align_phys_boundary(free_memseg + i,
			requested_len, align, bound);

		/* check len */
		if ((requested_len + addr_offset) > free_memseg[i].len)
			continue;

		/* check flags for hugepage sizes */
		if ((flags & RTE_MEMZONE_2MB) &&
				free_memseg[i].hugepage_sz == RTE_PGSIZE_1G)
			continue;
		if ((flags & RTE_MEMZONE_1GB) &&
				free_memseg[i].hugepage_sz == RTE_PGSIZE_2M)
			continue;
		if ((flags & RTE_MEMZONE_16MB) &&
				free_memseg[i].hugepage_sz == RTE_PGSIZE_16G)
			continue;
		if ((flags & RTE_MEMZONE_16GB) &&
				free_memseg[i].hugepage_sz == RTE_PGSIZE_16M)
			continue;

		/* this segment is the best until now */
		if (memseg_idx == -1) {
			memseg_idx = i;
			memseg_len = free_memseg[i].len;
			seg_offset = addr_offset;
		}
		/* find the biggest contiguous zone */
		else if (len == 0) {
			if (free_memseg[i].len > memseg_len) {
				memseg_idx = i;
				memseg_len = free_memseg[i].len;
				seg_offset = addr_offset;
			}
		}
		/*
		 * find the smallest (we already checked that current
		 * zone length is > len
		 */
		else if (free_memseg[i].len + align < memseg_len ||
				(free_memseg[i].len <= memseg_len + align &&
				addr_offset < seg_offset)) {
			memseg_idx = i;
			memseg_len = free_memseg[i].len;
			seg_offset = addr_offset;
		}
	}

	/* no segment found */
	if (memseg_idx == -1) {
		/*
		 * If RTE_MEMZONE_SIZE_HINT_ONLY flag is specified,
		 * try allocating again without the size parameter otherwise -fail.
		 */
		if ((flags & RTE_MEMZONE_SIZE_HINT_ONLY)  &&
		    ((flags & RTE_MEMZONE_1GB) || (flags & RTE_MEMZONE_2MB)
		|| (flags & RTE_MEMZONE_16MB) || (flags & RTE_MEMZONE_16GB)))
			return memzone_reserve_aligned_thread_unsafe(name,
				len, socket_id, 0, align, bound);

		rte_errno = ENOMEM;
		return NULL;
	}

	/* save aligned physical and virtual addresses */
	memseg_physaddr = free_memseg[memseg_idx].phys_addr + seg_offset;
	memseg_addr = RTE_PTR_ADD(free_memseg[memseg_idx].addr,
			(uintptr_t) seg_offset);

	/* if we are looking for a biggest memzone */
	if (len == 0) {
		if (bound == 0)
			requested_len = memseg_len - seg_offset;
		else
			requested_len = RTE_ALIGN_CEIL(memseg_physaddr + 1,
				bound) - memseg_physaddr;
	}

	/* set length to correct value */
	len = (size_t)seg_offset + requested_len;

	/* update our internal state */
	free_memseg[memseg_idx].len -= len;
	free_memseg[memseg_idx].phys_addr += len;
	free_memseg[memseg_idx].addr =
		(char *)free_memseg[memseg_idx].addr + len;

	/* fill the zone in config */
	struct rte_memzone *mz = &mcfg->memzone[mcfg->memzone_idx++];
	snprintf(mz->name, sizeof(mz->name), "%s", name);
	mz->phys_addr = memseg_physaddr;
	mz->addr = memseg_addr;
	mz->len = requested_len;
	mz->hugepage_sz = free_memseg[memseg_idx].hugepage_sz;
	mz->socket_id = free_memseg[memseg_idx].socket_id;
	mz->flags = 0;
	mz->memseg_id = memseg_idx;

	return mz;
}

/*
 * Return a pointer to a correctly filled memzone descriptor (with a
 * specified alignment). If the allocation cannot be done, return NULL.
 */
const struct rte_memzone *
rte_memzone_reserve_aligned(const char *name, size_t len,
		int socket_id, unsigned flags, unsigned align)
{
	struct rte_mem_config *mcfg;
	const struct rte_memzone *mz = NULL;

	/* both sizes cannot be explicitly called for */
	if (((flags & RTE_MEMZONE_1GB) && (flags & RTE_MEMZONE_2MB))
		|| ((flags & RTE_MEMZONE_16MB) && (flags & RTE_MEMZONE_16GB))) {
		rte_errno = EINVAL;
		return NULL;
	}

	/* get pointer to global configuration */
	mcfg = rte_eal_get_configuration()->mem_config;

	rte_rwlock_write_lock(&mcfg->mlock);

	mz = memzone_reserve_aligned_thread_unsafe(
		name, len, socket_id, flags, align, 0);

	rte_rwlock_write_unlock(&mcfg->mlock);

	return mz;
}

/*
 * Return a pointer to a correctly filled memzone descriptor (with a
 * specified alignment and boundary).
 * If the allocation cannot be done, return NULL.
 */
const struct rte_memzone *
rte_memzone_reserve_bounded(const char *name, size_t len,
		int socket_id, unsigned flags, unsigned align, unsigned bound)
{
	struct rte_mem_config *mcfg;
	const struct rte_memzone *mz = NULL;

	/* both sizes cannot be explicitly called for */
	if (((flags & RTE_MEMZONE_1GB) && (flags & RTE_MEMZONE_2MB))
		|| ((flags & RTE_MEMZONE_16MB) && (flags & RTE_MEMZONE_16GB))) {
		rte_errno = EINVAL;
		return NULL;
	}

	/* get pointer to global configuration */
	mcfg = rte_eal_get_configuration()->mem_config;

	rte_rwlock_write_lock(&mcfg->mlock);

	mz = memzone_reserve_aligned_thread_unsafe(
		name, len, socket_id, flags, align, bound);

	rte_rwlock_write_unlock(&mcfg->mlock);

	return mz;
}


/*
 * Lookup for the memzone identified by the given name
 */
const struct rte_memzone *
rte_memzone_lookup(const char *name)
{
	struct rte_mem_config *mcfg;
	const struct rte_memzone *memzone = NULL;

	mcfg = rte_eal_get_configuration()->mem_config;

	rte_rwlock_read_lock(&mcfg->mlock);

	memzone = memzone_lookup_thread_unsafe(name);

	rte_rwlock_read_unlock(&mcfg->mlock);

	return memzone;
}

/* Dump all reserved memory zones on console */
void
rte_memzone_dump(FILE *f)
{
	struct rte_mem_config *mcfg;
	unsigned i = 0;

	/* get pointer to global configuration */
	mcfg = rte_eal_get_configuration()->mem_config;

	rte_rwlock_read_lock(&mcfg->mlock);
	/* dump all zones */
	for (i=0; i<RTE_MAX_MEMZONE; i++) {
		if (mcfg->memzone[i].addr == NULL)
			break;
		fprintf(f, "Zone %u: name:<%s>, phys:0x%"PRIx64", len:0x%zx"
		       ", virt:%p, socket_id:%"PRId32", flags:%"PRIx32"\n", i,
		       mcfg->memzone[i].name,
		       mcfg->memzone[i].phys_addr,
		       mcfg->memzone[i].len,
		       mcfg->memzone[i].addr,
		       mcfg->memzone[i].socket_id,
		       mcfg->memzone[i].flags);
	}
	rte_rwlock_read_unlock(&mcfg->mlock);
}

/*
 * called by init: modify the free memseg list to have cache-aligned
 * addresses and cache-aligned lengths
 */
static int
memseg_sanitize(struct rte_memseg *memseg)
{
	unsigned phys_align;
	unsigned virt_align;
	unsigned off;

	phys_align = memseg->phys_addr & RTE_CACHE_LINE_MASK;
	virt_align = (unsigned long)memseg->addr & RTE_CACHE_LINE_MASK;

	/*
	 * sanity check: phys_addr and addr must have the same
	 * alignment
	 */
	if (phys_align != virt_align)
		return -1;

	/* memseg is really too small, don't bother with it */
	if (memseg->len < (2 * RTE_CACHE_LINE_SIZE)) {
		memseg->len = 0;
		return 0;
	}

	/* align start address */
	off = (RTE_CACHE_LINE_SIZE - phys_align) & RTE_CACHE_LINE_MASK;
	memseg->phys_addr += off;
	memseg->addr = (char *)memseg->addr + off;
	memseg->len -= off;

	/* align end address */
	memseg->len &= ~((uint64_t)RTE_CACHE_LINE_MASK);

	return 0;
}

/*
 * Init the memzone subsystem
 */
int
rte_eal_memzone_init(void)
{
	struct rte_mem_config *mcfg;
	const struct rte_memseg *memseg;
	unsigned i = 0;

	/* get pointer to global configuration */
	mcfg = rte_eal_get_configuration()->mem_config;

	/* mirror the runtime memsegs from config */
	free_memseg = mcfg->free_memseg;

	/* secondary processes don't need to initialise anything */
	if (rte_eal_process_type() == RTE_PROC_SECONDARY)
		return 0;

	memseg = rte_eal_get_physmem_layout();
	if (memseg == NULL) {
		RTE_LOG(ERR, EAL, "%s(): Cannot get physical layout\n", __func__);
		return -1;
	}

	rte_rwlock_write_lock(&mcfg->mlock);

	/* fill in uninitialized free_memsegs */
	for (i = 0; i < RTE_MAX_MEMSEG; i++) {
		if (memseg[i].addr == NULL)
			break;
		if (free_memseg[i].addr != NULL)
			continue;
		memcpy(&free_memseg[i], &memseg[i], sizeof(struct rte_memseg));
	}

	/* make all zones cache-aligned */
	for (i = 0; i < RTE_MAX_MEMSEG; i++) {
		if (free_memseg[i].addr == NULL)
			break;
		if (memseg_sanitize(&free_memseg[i]) < 0) {
			RTE_LOG(ERR, EAL, "%s(): Sanity check failed\n", __func__);
			rte_rwlock_write_unlock(&mcfg->mlock);
			return -1;
		}
	}

	/* delete all zones */
	mcfg->memzone_idx = 0;
	memset(mcfg->memzone, 0, sizeof(mcfg->memzone));

	rte_rwlock_write_unlock(&mcfg->mlock);

	return 0;
}

/* Walk all reserved memory zones */
void rte_memzone_walk(void (*func)(const struct rte_memzone *, void *),
		      void *arg)
{
	struct rte_mem_config *mcfg;
	unsigned i;

	mcfg = rte_eal_get_configuration()->mem_config;

	rte_rwlock_read_lock(&mcfg->mlock);
	for (i=0; i<RTE_MAX_MEMZONE; i++) {
		if (mcfg->memzone[i].addr != NULL)
			(*func)(&mcfg->memzone[i], arg);
	}
	rte_rwlock_read_unlock(&mcfg->mlock);
}