DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
/*-
 *   BSD LICENSE
 *
 *   Copyright(c) 2016-2017 Intel Corporation. All rights reserved.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of Intel Corporation nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <rte_malloc.h>
#include <rte_cycles.h>
#include <rte_crypto.h>
#include <rte_cryptodev.h>

#include "cperf_test_latency.h"
#include "cperf_ops.h"


struct cperf_op_result {
	uint64_t tsc_start;
	uint64_t tsc_end;
	enum rte_crypto_op_status status;
};

struct cperf_latency_ctx {
	uint8_t dev_id;
	uint16_t qp_id;
	uint8_t lcore_id;

	struct rte_mempool *pkt_mbuf_pool_in;
	struct rte_mempool *pkt_mbuf_pool_out;
	struct rte_mbuf **mbufs_in;
	struct rte_mbuf **mbufs_out;

	struct rte_mempool *crypto_op_pool;

	struct rte_cryptodev_sym_session *sess;

	cperf_populate_ops_t populate_ops;

	const struct cperf_options *options;
	const struct cperf_test_vector *test_vector;
	struct cperf_op_result *res;
};

#define max(a, b) (a > b ? (uint64_t)a : (uint64_t)b)
#define min(a, b) (a < b ? (uint64_t)a : (uint64_t)b)

static void
cperf_latency_test_free(struct cperf_latency_ctx *ctx, uint32_t mbuf_nb)
{
	uint32_t i;

	if (ctx) {
		if (ctx->sess)
			rte_cryptodev_sym_session_free(ctx->dev_id, ctx->sess);

		if (ctx->mbufs_in) {
			for (i = 0; i < mbuf_nb; i++)
				rte_pktmbuf_free(ctx->mbufs_in[i]);

			rte_free(ctx->mbufs_in);
		}

		if (ctx->mbufs_out) {
			for (i = 0; i < mbuf_nb; i++) {
				if (ctx->mbufs_out[i] != NULL)
					rte_pktmbuf_free(ctx->mbufs_out[i]);
			}

			rte_free(ctx->mbufs_out);
		}

		if (ctx->pkt_mbuf_pool_in)
			rte_mempool_free(ctx->pkt_mbuf_pool_in);

		if (ctx->pkt_mbuf_pool_out)
			rte_mempool_free(ctx->pkt_mbuf_pool_out);

		if (ctx->crypto_op_pool)
			rte_mempool_free(ctx->crypto_op_pool);

		rte_free(ctx->res);
		rte_free(ctx);
	}
}

static struct rte_mbuf *
cperf_mbuf_create(struct rte_mempool *mempool,
		uint32_t segments_nb,
		const struct cperf_options *options,
		const struct cperf_test_vector *test_vector)
{
	struct rte_mbuf *mbuf;
	uint32_t segment_sz = options->max_buffer_size / segments_nb;
	uint32_t last_sz = options->max_buffer_size % segments_nb;
	uint8_t *mbuf_data;
	uint8_t *test_data =
			(options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
					test_vector->plaintext.data :
					test_vector->ciphertext.data;

	mbuf = rte_pktmbuf_alloc(mempool);
	if (mbuf == NULL)
		goto error;

	mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
	if (mbuf_data == NULL)
		goto error;

	memcpy(mbuf_data, test_data, segment_sz);
	test_data += segment_sz;
	segments_nb--;

	while (segments_nb) {
		struct rte_mbuf *m;

		m = rte_pktmbuf_alloc(mempool);
		if (m == NULL)
			goto error;

		rte_pktmbuf_chain(mbuf, m);

		mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
		if (mbuf_data == NULL)
			goto error;

		memcpy(mbuf_data, test_data, segment_sz);
		test_data += segment_sz;
		segments_nb--;
	}

	if (last_sz) {
		mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, last_sz);
		if (mbuf_data == NULL)
			goto error;

		memcpy(mbuf_data, test_data, last_sz);
	}

	if (options->op_type != CPERF_CIPHER_ONLY) {
		mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf,
			options->auth_digest_sz);
		if (mbuf_data == NULL)
			goto error;
	}

	if (options->op_type == CPERF_AEAD) {
		uint8_t *aead = (uint8_t *)rte_pktmbuf_prepend(mbuf,
			RTE_ALIGN_CEIL(options->auth_aad_sz, 16));

		if (aead == NULL)
			goto error;

		memcpy(aead, test_vector->aad.data, test_vector->aad.length);
	}

	return mbuf;
error:
	if (mbuf != NULL)
		rte_pktmbuf_free(mbuf);

	return NULL;
}

void *
cperf_latency_test_constructor(uint8_t dev_id, uint16_t qp_id,
		const struct cperf_options *options,
		const struct cperf_test_vector *test_vector,
		const struct cperf_op_fns *op_fns)
{
	struct cperf_latency_ctx *ctx = NULL;
	unsigned int mbuf_idx = 0;
	char pool_name[32] = "";

	ctx = rte_malloc(NULL, sizeof(struct cperf_latency_ctx), 0);
	if (ctx == NULL)
		goto err;

	ctx->dev_id = dev_id;
	ctx->qp_id = qp_id;

	ctx->populate_ops = op_fns->populate_ops;
	ctx->options = options;
	ctx->test_vector = test_vector;

	ctx->sess = op_fns->sess_create(dev_id, options, test_vector);
	if (ctx->sess == NULL)
		goto err;

	snprintf(pool_name, sizeof(pool_name), "cperf_pool_in_cdev_%d",
				dev_id);

	ctx->pkt_mbuf_pool_in = rte_pktmbuf_pool_create(pool_name,
			options->pool_sz * options->segments_nb, 0, 0,
			RTE_PKTMBUF_HEADROOM +
			RTE_CACHE_LINE_ROUNDUP(
				(options->max_buffer_size / options->segments_nb) +
				(options->max_buffer_size % options->segments_nb) +
					options->auth_digest_sz),
			rte_socket_id());

	if (ctx->pkt_mbuf_pool_in == NULL)
		goto err;

	/* Generate mbufs_in with plaintext populated for test */
	ctx->mbufs_in = rte_malloc(NULL,
			(sizeof(struct rte_mbuf *) *
			ctx->options->pool_sz), 0);

	for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
		ctx->mbufs_in[mbuf_idx] = cperf_mbuf_create(
				ctx->pkt_mbuf_pool_in, options->segments_nb,
				options, test_vector);
		if (ctx->mbufs_in[mbuf_idx] == NULL)
			goto err;
	}

	if (options->out_of_place == 1)	{

		snprintf(pool_name, sizeof(pool_name),
				"cperf_pool_out_cdev_%d",
				dev_id);

		ctx->pkt_mbuf_pool_out = rte_pktmbuf_pool_create(
				pool_name, options->pool_sz, 0, 0,
				RTE_PKTMBUF_HEADROOM +
				RTE_CACHE_LINE_ROUNDUP(
					options->max_buffer_size +
					options->auth_digest_sz),
				rte_socket_id());

		if (ctx->pkt_mbuf_pool_out == NULL)
			goto err;
	}

	ctx->mbufs_out = rte_malloc(NULL,
			(sizeof(struct rte_mbuf *) *
			ctx->options->pool_sz), 0);

	for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
		if (options->out_of_place == 1)	{
			ctx->mbufs_out[mbuf_idx] = cperf_mbuf_create(
					ctx->pkt_mbuf_pool_out, 1,
					options, test_vector);
			if (ctx->mbufs_out[mbuf_idx] == NULL)
				goto err;
		} else {
			ctx->mbufs_out[mbuf_idx] = NULL;
		}
	}

	snprintf(pool_name, sizeof(pool_name), "cperf_op_pool_cdev_%d",
			dev_id);

	ctx->crypto_op_pool = rte_crypto_op_pool_create(pool_name,
			RTE_CRYPTO_OP_TYPE_SYMMETRIC, options->pool_sz, 0, 0,
			rte_socket_id());
	if (ctx->crypto_op_pool == NULL)
		goto err;

	ctx->res = rte_malloc(NULL, sizeof(struct cperf_op_result) *
			ctx->options->total_ops, 0);

	if (ctx->res == NULL)
		goto err;

	return ctx;
err:
	cperf_latency_test_free(ctx, mbuf_idx);

	return NULL;
}

int
cperf_latency_test_runner(void *arg)
{
	struct cperf_latency_ctx *ctx = arg;
	struct cperf_op_result *pres;
	uint16_t test_burst_size;
	uint8_t burst_size_idx = 0;

	static int only_once;

	if (ctx == NULL)
		return 0;

	struct rte_crypto_op *ops[ctx->options->max_burst_size];
	struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
	uint64_t i;

	uint32_t lcore = rte_lcore_id();

#ifdef CPERF_LINEARIZATION_ENABLE
	struct rte_cryptodev_info dev_info;
	int linearize = 0;

	/* Check if source mbufs require coalescing */
	if (ctx->options->segments_nb > 1) {
		rte_cryptodev_info_get(ctx->dev_id, &dev_info);
		if ((dev_info.feature_flags &
				RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
			linearize = 1;
	}
#endif /* CPERF_LINEARIZATION_ENABLE */

	ctx->lcore_id = lcore;

	/* Warm up the host CPU before starting the test */
	for (i = 0; i < ctx->options->total_ops; i++)
		rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);

	/* Get first size from range or list */
	if (ctx->options->inc_burst_size != 0)
		test_burst_size = ctx->options->min_burst_size;
	else
		test_burst_size = ctx->options->burst_size_list[0];

	while (test_burst_size <= ctx->options->max_burst_size) {
		uint64_t ops_enqd = 0, ops_deqd = 0;
		uint64_t m_idx = 0, b_idx = 0;

		uint64_t tsc_val, tsc_end, tsc_start;
		uint64_t tsc_max = 0, tsc_min = ~0UL, tsc_tot = 0, tsc_idx = 0;
		uint64_t enqd_max = 0, enqd_min = ~0UL, enqd_tot = 0;
		uint64_t deqd_max = 0, deqd_min = ~0UL, deqd_tot = 0;

		while (enqd_tot < ctx->options->total_ops) {

			uint16_t burst_size = ((enqd_tot + test_burst_size)
					<= ctx->options->total_ops) ?
							test_burst_size :
							ctx->options->total_ops -
							enqd_tot;

			/* Allocate crypto ops from pool */
			if (burst_size != rte_crypto_op_bulk_alloc(
					ctx->crypto_op_pool,
					RTE_CRYPTO_OP_TYPE_SYMMETRIC,
					ops, burst_size))
				return -1;

			/* Setup crypto op, attach mbuf etc */
			(ctx->populate_ops)(ops, &ctx->mbufs_in[m_idx],
					&ctx->mbufs_out[m_idx],
					burst_size, ctx->sess, ctx->options,
					ctx->test_vector);

			tsc_start = rte_rdtsc_precise();

#ifdef CPERF_LINEARIZATION_ENABLE
			if (linearize) {
				/* PMD doesn't support scatter-gather and source buffer
				 * is segmented.
				 * We need to linearize it before enqueuing.
				 */
				for (i = 0; i < burst_size; i++)
					rte_pktmbuf_linearize(ops[i]->sym->m_src);
			}
#endif /* CPERF_LINEARIZATION_ENABLE */

			/* Enqueue burst of ops on crypto device */
			ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
					ops, burst_size);

			/* Dequeue processed burst of ops from crypto device */
			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
					ops_processed, test_burst_size);

			tsc_end = rte_rdtsc_precise();

			/* Free memory for not enqueued operations */
			for (i = ops_enqd; i < burst_size; i++)
				rte_crypto_op_free(ops[i]);

			for (i = 0; i < ops_enqd; i++) {
				ctx->res[tsc_idx].tsc_start = tsc_start;
				ops[i]->opaque_data = (void *)&ctx->res[tsc_idx];
				tsc_idx++;
			}

			if (likely(ops_deqd))  {
				/*
				 * free crypto ops so they can be reused. We don't free
				 * the mbufs here as we don't want to reuse them as
				 * the crypto operation will change the data and cause
				 * failures.
				 */
				for (i = 0; i < ops_deqd; i++) {
					pres = (struct cperf_op_result *)
							(ops_processed[i]->opaque_data);
					pres->status = ops_processed[i]->status;
					pres->tsc_end = tsc_end;

					rte_crypto_op_free(ops_processed[i]);
				}

				deqd_tot += ops_deqd;
				deqd_max = max(ops_deqd, deqd_max);
				deqd_min = min(ops_deqd, deqd_min);
			}

			enqd_tot += ops_enqd;
			enqd_max = max(ops_enqd, enqd_max);
			enqd_min = min(ops_enqd, enqd_min);

			m_idx += ops_enqd;
			m_idx = m_idx + test_burst_size > ctx->options->pool_sz ?
					0 : m_idx;
			b_idx++;
		}

		/* Dequeue any operations still in the crypto device */
		while (deqd_tot < ctx->options->total_ops) {
			/* Sending 0 length burst to flush sw crypto device */
			rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);

			/* dequeue burst */
			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
					ops_processed, test_burst_size);

			tsc_end = rte_rdtsc_precise();

			if (ops_deqd != 0) {
				for (i = 0; i < ops_deqd; i++) {
					pres = (struct cperf_op_result *)
							(ops_processed[i]->opaque_data);
					pres->status = ops_processed[i]->status;
					pres->tsc_end = tsc_end;

					rte_crypto_op_free(ops_processed[i]);
				}

				deqd_tot += ops_deqd;
				deqd_max = max(ops_deqd, deqd_max);
				deqd_min = min(ops_deqd, deqd_min);
			}
		}

		for (i = 0; i < tsc_idx; i++) {
			tsc_val = ctx->res[i].tsc_end - ctx->res[i].tsc_start;
			tsc_max = max(tsc_val, tsc_max);
			tsc_min = min(tsc_val, tsc_min);
			tsc_tot += tsc_val;
		}

		double time_tot, time_avg, time_max, time_min;

		const uint64_t tunit = 1000000; /* us */
		const uint64_t tsc_hz = rte_get_tsc_hz();

		uint64_t enqd_avg = enqd_tot / b_idx;
		uint64_t deqd_avg = deqd_tot / b_idx;
		uint64_t tsc_avg = tsc_tot / tsc_idx;

		time_tot = tunit*(double)(tsc_tot) / tsc_hz;
		time_avg = tunit*(double)(tsc_avg) / tsc_hz;
		time_max = tunit*(double)(tsc_max) / tsc_hz;
		time_min = tunit*(double)(tsc_min) / tsc_hz;

		if (ctx->options->csv) {
			if (!only_once)
				printf("\n# lcore, Buffer Size, Burst Size, Pakt Seq #, "
						"Packet Size, cycles, time (us)");

			for (i = 0; i < ctx->options->total_ops; i++) {

				printf("\n%u;%u;%u;%"PRIu64";%"PRIu64";%.3f",
					ctx->lcore_id, ctx->options->test_buffer_size,
					test_burst_size, i + 1,
					ctx->res[i].tsc_end - ctx->res[i].tsc_start,
					tunit * (double) (ctx->res[i].tsc_end
							- ctx->res[i].tsc_start)
						/ tsc_hz);

			}
			only_once = 1;
		} else {
			printf("\n# Device %d on lcore %u\n", ctx->dev_id,
				ctx->lcore_id);
			printf("\n# total operations: %u", ctx->options->total_ops);
			printf("\n# Buffer size: %u", ctx->options->test_buffer_size);
			printf("\n# Burst size: %u", test_burst_size);
			printf("\n#     Number of bursts: %"PRIu64,
					b_idx);

			printf("\n#");
			printf("\n#          \t       Total\t   Average\t   "
					"Maximum\t   Minimum");
			printf("\n#  enqueued\t%12"PRIu64"\t%10"PRIu64"\t"
					"%10"PRIu64"\t%10"PRIu64, enqd_tot,
					enqd_avg, enqd_max, enqd_min);
			printf("\n#  dequeued\t%12"PRIu64"\t%10"PRIu64"\t"
					"%10"PRIu64"\t%10"PRIu64, deqd_tot,
					deqd_avg, deqd_max, deqd_min);
			printf("\n#    cycles\t%12"PRIu64"\t%10"PRIu64"\t"
					"%10"PRIu64"\t%10"PRIu64, tsc_tot,
					tsc_avg, tsc_max, tsc_min);
			printf("\n# time [us]\t%12.0f\t%10.3f\t%10.3f\t%10.3f",
					time_tot, time_avg, time_max, time_min);
			printf("\n\n");

		}

		/* Get next size from range or list */
		if (ctx->options->inc_burst_size != 0)
			test_burst_size += ctx->options->inc_burst_size;
		else {
			if (++burst_size_idx == ctx->options->burst_size_count)
				break;
			test_burst_size =
				ctx->options->burst_size_list[burst_size_idx];
		}
	}

	return 0;
}

void
cperf_latency_test_destructor(void *arg)
{
	struct cperf_latency_ctx *ctx = arg;

	if (ctx == NULL)
		return;

	cperf_latency_test_free(ctx, ctx->options->pool_sz);

}