DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright 2016 6WIND S.A.
 * Copyright 2016 Mellanox Technologies, Ltd
 */

#include <errno.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>

#include <rte_common.h>
#include <rte_errno.h>
#include <rte_branch_prediction.h>
#include "rte_ethdev.h"
#include "rte_flow_driver.h"
#include "rte_flow.h"

/**
 * Flow elements description tables.
 */
struct rte_flow_desc_data {
	const char *name;
	size_t size;
};

/** Generate flow_item[] entry. */
#define MK_FLOW_ITEM(t, s) \
	[RTE_FLOW_ITEM_TYPE_ ## t] = { \
		.name = # t, \
		.size = s, \
	}

/** Information about known flow pattern items. */
static const struct rte_flow_desc_data rte_flow_desc_item[] = {
	MK_FLOW_ITEM(END, 0),
	MK_FLOW_ITEM(VOID, 0),
	MK_FLOW_ITEM(INVERT, 0),
	MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
	MK_FLOW_ITEM(PF, 0),
	MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
	MK_FLOW_ITEM(PHY_PORT, sizeof(struct rte_flow_item_phy_port)),
	MK_FLOW_ITEM(PORT_ID, sizeof(struct rte_flow_item_port_id)),
	MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)),
	MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
	MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
	MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
	MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
	MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
	MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
	MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
	MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
	MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
	MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
	MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
	MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
	MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
	MK_FLOW_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
	MK_FLOW_ITEM(VXLAN_GPE, sizeof(struct rte_flow_item_vxlan_gpe)),
	MK_FLOW_ITEM(ARP_ETH_IPV4, sizeof(struct rte_flow_item_arp_eth_ipv4)),
	MK_FLOW_ITEM(IPV6_EXT, sizeof(struct rte_flow_item_ipv6_ext)),
	MK_FLOW_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
	MK_FLOW_ITEM(ICMP6_ND_NS, sizeof(struct rte_flow_item_icmp6_nd_ns)),
	MK_FLOW_ITEM(ICMP6_ND_NA, sizeof(struct rte_flow_item_icmp6_nd_na)),
	MK_FLOW_ITEM(ICMP6_ND_OPT, sizeof(struct rte_flow_item_icmp6_nd_opt)),
	MK_FLOW_ITEM(ICMP6_ND_OPT_SLA_ETH,
		     sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
	MK_FLOW_ITEM(ICMP6_ND_OPT_TLA_ETH,
		     sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
};

/** Generate flow_action[] entry. */
#define MK_FLOW_ACTION(t, s) \
	[RTE_FLOW_ACTION_TYPE_ ## t] = { \
		.name = # t, \
		.size = s, \
	}

/** Information about known flow actions. */
static const struct rte_flow_desc_data rte_flow_desc_action[] = {
	MK_FLOW_ACTION(END, 0),
	MK_FLOW_ACTION(VOID, 0),
	MK_FLOW_ACTION(PASSTHRU, 0),
	MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
	MK_FLOW_ACTION(FLAG, 0),
	MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
	MK_FLOW_ACTION(DROP, 0),
	MK_FLOW_ACTION(COUNT, sizeof(struct rte_flow_action_count)),
	MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)),
	MK_FLOW_ACTION(PF, 0),
	MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
	MK_FLOW_ACTION(PHY_PORT, sizeof(struct rte_flow_action_phy_port)),
	MK_FLOW_ACTION(PORT_ID, sizeof(struct rte_flow_action_port_id)),
	MK_FLOW_ACTION(OF_SET_MPLS_TTL,
		       sizeof(struct rte_flow_action_of_set_mpls_ttl)),
	MK_FLOW_ACTION(OF_DEC_MPLS_TTL, 0),
	MK_FLOW_ACTION(OF_SET_NW_TTL,
		       sizeof(struct rte_flow_action_of_set_nw_ttl)),
	MK_FLOW_ACTION(OF_DEC_NW_TTL, 0),
	MK_FLOW_ACTION(OF_COPY_TTL_OUT, 0),
	MK_FLOW_ACTION(OF_COPY_TTL_IN, 0),
	MK_FLOW_ACTION(OF_POP_VLAN, 0),
	MK_FLOW_ACTION(OF_PUSH_VLAN,
		       sizeof(struct rte_flow_action_of_push_vlan)),
	MK_FLOW_ACTION(OF_SET_VLAN_VID,
		       sizeof(struct rte_flow_action_of_set_vlan_vid)),
	MK_FLOW_ACTION(OF_SET_VLAN_PCP,
		       sizeof(struct rte_flow_action_of_set_vlan_pcp)),
	MK_FLOW_ACTION(OF_POP_MPLS,
		       sizeof(struct rte_flow_action_of_pop_mpls)),
	MK_FLOW_ACTION(OF_PUSH_MPLS,
		       sizeof(struct rte_flow_action_of_push_mpls)),
};

static int
flow_err(uint16_t port_id, int ret, struct rte_flow_error *error)
{
	if (ret == 0)
		return 0;
	if (rte_eth_dev_is_removed(port_id))
		return rte_flow_error_set(error, EIO,
					  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
					  NULL, rte_strerror(EIO));
	return ret;
}

/* Get generic flow operations structure from a port. */
const struct rte_flow_ops *
rte_flow_ops_get(uint16_t port_id, struct rte_flow_error *error)
{
	struct rte_eth_dev *dev = &rte_eth_devices[port_id];
	const struct rte_flow_ops *ops;
	int code;

	if (unlikely(!rte_eth_dev_is_valid_port(port_id)))
		code = ENODEV;
	else if (unlikely(!dev->dev_ops->filter_ctrl ||
			  dev->dev_ops->filter_ctrl(dev,
						    RTE_ETH_FILTER_GENERIC,
						    RTE_ETH_FILTER_GET,
						    &ops) ||
			  !ops))
		code = ENOSYS;
	else
		return ops;
	rte_flow_error_set(error, code, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
			   NULL, rte_strerror(code));
	return NULL;
}

/* Check whether a flow rule can be created on a given port. */
int
rte_flow_validate(uint16_t port_id,
		  const struct rte_flow_attr *attr,
		  const struct rte_flow_item pattern[],
		  const struct rte_flow_action actions[],
		  struct rte_flow_error *error)
{
	const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
	struct rte_eth_dev *dev = &rte_eth_devices[port_id];

	if (unlikely(!ops))
		return -rte_errno;
	if (likely(!!ops->validate))
		return flow_err(port_id, ops->validate(dev, attr, pattern,
						       actions, error), error);
	return rte_flow_error_set(error, ENOSYS,
				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
				  NULL, rte_strerror(ENOSYS));
}

/* Create a flow rule on a given port. */
struct rte_flow *
rte_flow_create(uint16_t port_id,
		const struct rte_flow_attr *attr,
		const struct rte_flow_item pattern[],
		const struct rte_flow_action actions[],
		struct rte_flow_error *error)
{
	struct rte_eth_dev *dev = &rte_eth_devices[port_id];
	struct rte_flow *flow;
	const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);

	if (unlikely(!ops))
		return NULL;
	if (likely(!!ops->create)) {
		flow = ops->create(dev, attr, pattern, actions, error);
		if (flow == NULL)
			flow_err(port_id, -rte_errno, error);
		return flow;
	}
	rte_flow_error_set(error, ENOSYS, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
			   NULL, rte_strerror(ENOSYS));
	return NULL;
}

/* Destroy a flow rule on a given port. */
int
rte_flow_destroy(uint16_t port_id,
		 struct rte_flow *flow,
		 struct rte_flow_error *error)
{
	struct rte_eth_dev *dev = &rte_eth_devices[port_id];
	const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);

	if (unlikely(!ops))
		return -rte_errno;
	if (likely(!!ops->destroy))
		return flow_err(port_id, ops->destroy(dev, flow, error),
				error);
	return rte_flow_error_set(error, ENOSYS,
				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
				  NULL, rte_strerror(ENOSYS));
}

/* Destroy all flow rules associated with a port. */
int
rte_flow_flush(uint16_t port_id,
	       struct rte_flow_error *error)
{
	struct rte_eth_dev *dev = &rte_eth_devices[port_id];
	const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);

	if (unlikely(!ops))
		return -rte_errno;
	if (likely(!!ops->flush))
		return flow_err(port_id, ops->flush(dev, error), error);
	return rte_flow_error_set(error, ENOSYS,
				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
				  NULL, rte_strerror(ENOSYS));
}

/* Query an existing flow rule. */
int
rte_flow_query(uint16_t port_id,
	       struct rte_flow *flow,
	       const struct rte_flow_action *action,
	       void *data,
	       struct rte_flow_error *error)
{
	struct rte_eth_dev *dev = &rte_eth_devices[port_id];
	const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);

	if (!ops)
		return -rte_errno;
	if (likely(!!ops->query))
		return flow_err(port_id, ops->query(dev, flow, action, data,
						    error), error);
	return rte_flow_error_set(error, ENOSYS,
				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
				  NULL, rte_strerror(ENOSYS));
}

/* Restrict ingress traffic to the defined flow rules. */
int
rte_flow_isolate(uint16_t port_id,
		 int set,
		 struct rte_flow_error *error)
{
	struct rte_eth_dev *dev = &rte_eth_devices[port_id];
	const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);

	if (!ops)
		return -rte_errno;
	if (likely(!!ops->isolate))
		return flow_err(port_id, ops->isolate(dev, set, error), error);
	return rte_flow_error_set(error, ENOSYS,
				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
				  NULL, rte_strerror(ENOSYS));
}

/* Initialize flow error structure. */
int
rte_flow_error_set(struct rte_flow_error *error,
		   int code,
		   enum rte_flow_error_type type,
		   const void *cause,
		   const char *message)
{
	if (error) {
		*error = (struct rte_flow_error){
			.type = type,
			.cause = cause,
			.message = message,
		};
	}
	rte_errno = code;
	return -code;
}

/** Pattern item specification types. */
enum item_spec_type {
	ITEM_SPEC,
	ITEM_LAST,
	ITEM_MASK,
};

/** Compute storage space needed by item specification and copy it. */
static size_t
flow_item_spec_copy(void *buf, const struct rte_flow_item *item,
		    enum item_spec_type type)
{
	size_t size = 0;
	const void *data =
		type == ITEM_SPEC ? item->spec :
		type == ITEM_LAST ? item->last :
		type == ITEM_MASK ? item->mask :
		NULL;

	if (!item->spec || !data)
		goto empty;
	switch (item->type) {
		union {
			const struct rte_flow_item_raw *raw;
		} spec;
		union {
			const struct rte_flow_item_raw *raw;
		} last;
		union {
			const struct rte_flow_item_raw *raw;
		} mask;
		union {
			const struct rte_flow_item_raw *raw;
		} src;
		union {
			struct rte_flow_item_raw *raw;
		} dst;
		size_t off;

	case RTE_FLOW_ITEM_TYPE_RAW:
		spec.raw = item->spec;
		last.raw = item->last ? item->last : item->spec;
		mask.raw = item->mask ? item->mask : &rte_flow_item_raw_mask;
		src.raw = data;
		dst.raw = buf;
		off = RTE_ALIGN_CEIL(sizeof(struct rte_flow_item_raw),
				     sizeof(*src.raw->pattern));
		if (type == ITEM_SPEC ||
		    (type == ITEM_MASK &&
		     ((spec.raw->length & mask.raw->length) >=
		      (last.raw->length & mask.raw->length))))
			size = spec.raw->length & mask.raw->length;
		else
			size = last.raw->length & mask.raw->length;
		size = off + size * sizeof(*src.raw->pattern);
		if (dst.raw) {
			memcpy(dst.raw, src.raw, sizeof(*src.raw));
			dst.raw->pattern = memcpy((uint8_t *)dst.raw + off,
						  src.raw->pattern,
						  size - off);
		}
		break;
	default:
		size = rte_flow_desc_item[item->type].size;
		if (buf)
			memcpy(buf, data, size);
		break;
	}
empty:
	return RTE_ALIGN_CEIL(size, sizeof(double));
}

/** Compute storage space needed by action configuration and copy it. */
static size_t
flow_action_conf_copy(void *buf, const struct rte_flow_action *action)
{
	size_t size = 0;

	if (!action->conf)
		goto empty;
	switch (action->type) {
		union {
			const struct rte_flow_action_rss *rss;
		} src;
		union {
			struct rte_flow_action_rss *rss;
		} dst;
		size_t off;

	case RTE_FLOW_ACTION_TYPE_RSS:
		src.rss = action->conf;
		dst.rss = buf;
		off = 0;
		if (dst.rss)
			*dst.rss = (struct rte_flow_action_rss){
				.func = src.rss->func,
				.level = src.rss->level,
				.types = src.rss->types,
				.key_len = src.rss->key_len,
				.queue_num = src.rss->queue_num,
			};
		off += sizeof(*src.rss);
		if (src.rss->key_len) {
			off = RTE_ALIGN_CEIL(off, sizeof(double));
			size = sizeof(*src.rss->key) * src.rss->key_len;
			if (dst.rss)
				dst.rss->key = memcpy
					((void *)((uintptr_t)dst.rss + off),
					 src.rss->key, size);
			off += size;
		}
		if (src.rss->queue_num) {
			off = RTE_ALIGN_CEIL(off, sizeof(double));
			size = sizeof(*src.rss->queue) * src.rss->queue_num;
			if (dst.rss)
				dst.rss->queue = memcpy
					((void *)((uintptr_t)dst.rss + off),
					 src.rss->queue, size);
			off += size;
		}
		size = off;
		break;
	default:
		size = rte_flow_desc_action[action->type].size;
		if (buf)
			memcpy(buf, action->conf, size);
		break;
	}
empty:
	return RTE_ALIGN_CEIL(size, sizeof(double));
}

/** Store a full rte_flow description. */
size_t
rte_flow_copy(struct rte_flow_desc *desc, size_t len,
	      const struct rte_flow_attr *attr,
	      const struct rte_flow_item *items,
	      const struct rte_flow_action *actions)
{
	struct rte_flow_desc *fd = NULL;
	size_t tmp;
	size_t off1 = 0;
	size_t off2 = 0;
	size_t size = 0;

store:
	if (items) {
		const struct rte_flow_item *item;

		item = items;
		if (fd)
			fd->items = (void *)&fd->data[off1];
		do {
			struct rte_flow_item *dst = NULL;

			if ((size_t)item->type >=
				RTE_DIM(rte_flow_desc_item) ||
			    !rte_flow_desc_item[item->type].name) {
				rte_errno = ENOTSUP;
				return 0;
			}
			if (fd)
				dst = memcpy(fd->data + off1, item,
					     sizeof(*item));
			off1 += sizeof(*item);
			if (item->spec) {
				if (fd)
					dst->spec = fd->data + off2;
				off2 += flow_item_spec_copy
					(fd ? fd->data + off2 : NULL, item,
					 ITEM_SPEC);
			}
			if (item->last) {
				if (fd)
					dst->last = fd->data + off2;
				off2 += flow_item_spec_copy
					(fd ? fd->data + off2 : NULL, item,
					 ITEM_LAST);
			}
			if (item->mask) {
				if (fd)
					dst->mask = fd->data + off2;
				off2 += flow_item_spec_copy
					(fd ? fd->data + off2 : NULL, item,
					 ITEM_MASK);
			}
			off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
		} while ((item++)->type != RTE_FLOW_ITEM_TYPE_END);
		off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
	}
	if (actions) {
		const struct rte_flow_action *action;

		action = actions;
		if (fd)
			fd->actions = (void *)&fd->data[off1];
		do {
			struct rte_flow_action *dst = NULL;

			if ((size_t)action->type >=
				RTE_DIM(rte_flow_desc_action) ||
			    !rte_flow_desc_action[action->type].name) {
				rte_errno = ENOTSUP;
				return 0;
			}
			if (fd)
				dst = memcpy(fd->data + off1, action,
					     sizeof(*action));
			off1 += sizeof(*action);
			if (action->conf) {
				if (fd)
					dst->conf = fd->data + off2;
				off2 += flow_action_conf_copy
					(fd ? fd->data + off2 : NULL, action);
			}
			off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
		} while ((action++)->type != RTE_FLOW_ACTION_TYPE_END);
	}
	if (fd != NULL)
		return size;
	off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
	tmp = RTE_ALIGN_CEIL(offsetof(struct rte_flow_desc, data),
			     sizeof(double));
	size = tmp + off1 + off2;
	if (size > len)
		return size;
	fd = desc;
	if (fd != NULL) {
		*fd = (const struct rte_flow_desc) {
			.size = size,
			.attr = *attr,
		};
		tmp -= offsetof(struct rte_flow_desc, data);
		off2 = tmp + off1;
		off1 = tmp;
		goto store;
	}
	return 0;
}

/**
 * Expand RSS flows into several possible flows according to the RSS hash
 * fields requested and the driver capabilities.
 */
int __rte_experimental
rte_flow_expand_rss(struct rte_flow_expand_rss *buf, size_t size,
		    const struct rte_flow_item *pattern, uint64_t types,
		    const struct rte_flow_expand_node graph[],
		    int graph_root_index)
{
	const int elt_n = 8;
	const struct rte_flow_item *item;
	const struct rte_flow_expand_node *node = &graph[graph_root_index];
	const int *next_node;
	const int *stack[elt_n];
	int stack_pos = 0;
	struct rte_flow_item flow_items[elt_n];
	unsigned int i;
	size_t lsize;
	size_t user_pattern_size = 0;
	void *addr = NULL;

	lsize = offsetof(struct rte_flow_expand_rss, entry) +
		elt_n * sizeof(buf->entry[0]);
	if (lsize <= size) {
		buf->entry[0].priority = 0;
		buf->entry[0].pattern = (void *)&buf->entry[elt_n];
		buf->entries = 0;
		addr = buf->entry[0].pattern;
	}
	for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
		const struct rte_flow_expand_node *next = NULL;

		for (i = 0; node->next && node->next[i]; ++i) {
			next = &graph[node->next[i]];
			if (next->type == item->type)
				break;
		}
		if (next)
			node = next;
		user_pattern_size += sizeof(*item);
	}
	user_pattern_size += sizeof(*item); /* Handle END item. */
	lsize += user_pattern_size;
	/* Copy the user pattern in the first entry of the buffer. */
	if (lsize <= size) {
		rte_memcpy(addr, pattern, user_pattern_size);
		addr = (void *)(((uintptr_t)addr) + user_pattern_size);
		buf->entries = 1;
	}
	/* Start expanding. */
	memset(flow_items, 0, sizeof(flow_items));
	user_pattern_size -= sizeof(*item);
	next_node = node->next;
	stack[stack_pos] = next_node;
	node = next_node ? &graph[*next_node] : NULL;
	while (node) {
		flow_items[stack_pos].type = node->type;
		if (node->rss_types & types) {
			/*
			 * compute the number of items to copy from the
			 * expansion and copy it.
			 * When the stack_pos is 0, there are 1 element in it,
			 * plus the addition END item.
			 */
			int elt = stack_pos + 2;

			flow_items[stack_pos + 1].type = RTE_FLOW_ITEM_TYPE_END;
			lsize += elt * sizeof(*item) + user_pattern_size;
			if (lsize <= size) {
				size_t n = elt * sizeof(*item);

				buf->entry[buf->entries].priority =
					stack_pos + 1;
				buf->entry[buf->entries].pattern = addr;
				buf->entries++;
				rte_memcpy(addr, buf->entry[0].pattern,
					   user_pattern_size);
				addr = (void *)(((uintptr_t)addr) +
						user_pattern_size);
				rte_memcpy(addr, flow_items, n);
				addr = (void *)(((uintptr_t)addr) + n);
			}
		}
		/* Go deeper. */
		if (node->next) {
			next_node = node->next;
			if (stack_pos++ == elt_n) {
				rte_errno = E2BIG;
				return -rte_errno;
			}
			stack[stack_pos] = next_node;
		} else if (*(next_node + 1)) {
			/* Follow up with the next possibility. */
			++next_node;
		} else {
			/* Move to the next path. */
			if (stack_pos)
				next_node = stack[--stack_pos];
			next_node++;
			stack[stack_pos] = next_node;
		}
		node = *next_node ? &graph[*next_node] : NULL;
	};
	return lsize;
}