DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
/* SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0)
 *
 * Copyright 2010-2016 Freescale Semiconductor Inc.
 * Copyright 2017 NXP
 *
 */

#ifndef __BMAN_H
#define __BMAN_H

#include "bman_priv.h"

/* Cache-inhibited register offsets */
#define BM_REG_RCR_PI_CINH	0x3000
#define BM_REG_RCR_CI_CINH	0x3100
#define BM_REG_RCR_ITR		0x3200
#define BM_REG_CFG		0x3300
#define BM_REG_SCN(n)		(0x3400 + ((n) << 6))
#define BM_REG_ISR		0x3e00
#define BM_REG_IIR              0x3ec0

/* Cache-enabled register offsets */
#define BM_CL_CR		0x0000
#define BM_CL_RR0		0x0100
#define BM_CL_RR1		0x0140
#define BM_CL_RCR		0x1000
#define BM_CL_RCR_PI_CENA	0x3000
#define BM_CL_RCR_CI_CENA	0x3100

/* BTW, the drivers (and h/w programming model) already obtain the required
 * synchronisation for portal accesses via lwsync(), hwsync(), and
 * data-dependencies. Use of barrier()s or other order-preserving primitives
 * simply degrade performance. Hence the use of the __raw_*() interfaces, which
 * simply ensure that the compiler treats the portal registers as volatile (ie.
 * non-coherent).
 */

/* Cache-inhibited register access. */
#define __bm_in(bm, o)		be32_to_cpu(__raw_readl((bm)->ci + (o)))
#define __bm_out(bm, o, val)    __raw_writel(cpu_to_be32(val), \
					     (bm)->ci + (o))
#define bm_in(reg)		__bm_in(&portal->addr, BM_REG_##reg)
#define bm_out(reg, val)	__bm_out(&portal->addr, BM_REG_##reg, val)

/* Cache-enabled (index) register access */
#define __bm_cl_touch_ro(bm, o) dcbt_ro((bm)->ce + (o))
#define __bm_cl_touch_rw(bm, o) dcbt_rw((bm)->ce + (o))
#define __bm_cl_in(bm, o)	be32_to_cpu(__raw_readl((bm)->ce + (o)))
#define __bm_cl_out(bm, o, val) \
	do { \
		u32 *__tmpclout = (bm)->ce + (o); \
		__raw_writel(cpu_to_be32(val), __tmpclout); \
		dcbf(__tmpclout); \
	} while (0)
#define __bm_cl_invalidate(bm, o) dccivac((bm)->ce + (o))
#define bm_cl_touch_ro(reg) __bm_cl_touch_ro(&portal->addr, BM_CL_##reg##_CENA)
#define bm_cl_touch_rw(reg) __bm_cl_touch_rw(&portal->addr, BM_CL_##reg##_CENA)
#define bm_cl_in(reg)	    __bm_cl_in(&portal->addr, BM_CL_##reg##_CENA)
#define bm_cl_out(reg, val) __bm_cl_out(&portal->addr, BM_CL_##reg##_CENA, val)
#define bm_cl_invalidate(reg)\
	__bm_cl_invalidate(&portal->addr, BM_CL_##reg##_CENA)

/* Cyclic helper for rings. FIXME: once we are able to do fine-grain perf
 * analysis, look at using the "extra" bit in the ring index registers to avoid
 * cyclic issues.
 */
static inline u8 bm_cyc_diff(u8 ringsize, u8 first, u8 last)
{
	/* 'first' is included, 'last' is excluded */
	if (first <= last)
		return last - first;
	return ringsize + last - first;
}

/* Portal modes.
 *   Enum types;
 *     pmode == production mode
 *     cmode == consumption mode,
 *   Enum values use 3 letter codes. First letter matches the portal mode,
 *   remaining two letters indicate;
 *     ci == cache-inhibited portal register
 *     ce == cache-enabled portal register
 *     vb == in-band valid-bit (cache-enabled)
 */
enum bm_rcr_pmode {		/* matches BCSP_CFG::RPM */
	bm_rcr_pci = 0,		/* PI index, cache-inhibited */
	bm_rcr_pce = 1,		/* PI index, cache-enabled */
	bm_rcr_pvb = 2		/* valid-bit */
};

enum bm_rcr_cmode {		/* s/w-only */
	bm_rcr_cci,		/* CI index, cache-inhibited */
	bm_rcr_cce		/* CI index, cache-enabled */
};

/* --- Portal structures --- */

#define BM_RCR_SIZE		8

struct bm_rcr {
	struct bm_rcr_entry *ring, *cursor;
	u8 ci, available, ithresh, vbit;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
	u32 busy;
	enum bm_rcr_pmode pmode;
	enum bm_rcr_cmode cmode;
#endif
};

struct bm_mc {
	struct bm_mc_command *cr;
	struct bm_mc_result *rr;
	u8 rridx, vbit;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
	enum {
		/* Can only be _mc_start()ed */
		mc_idle,
		/* Can only be _mc_commit()ed or _mc_abort()ed */
		mc_user,
		/* Can only be _mc_retry()ed */
		mc_hw
	} state;
#endif
};

struct bm_addr {
	void __iomem *ce;	/* cache-enabled */
	void __iomem *ci;	/* cache-inhibited */
};

struct bm_portal {
	struct bm_addr addr;
	struct bm_rcr rcr;
	struct bm_mc mc;
	struct bm_portal_config config;
} ____cacheline_aligned;

/* Bit-wise logic to wrap a ring pointer by clearing the "carry bit" */
#define RCR_CARRYCLEAR(p) \
	(void *)((unsigned long)(p) & (~(unsigned long)(BM_RCR_SIZE << 6)))

/* Bit-wise logic to convert a ring pointer to a ring index */
static inline u8 RCR_PTR2IDX(struct bm_rcr_entry *e)
{
	return ((uintptr_t)e >> 6) & (BM_RCR_SIZE - 1);
}

/* Increment the 'cursor' ring pointer, taking 'vbit' into account */
static inline void RCR_INC(struct bm_rcr *rcr)
{
	/* NB: this is odd-looking, but experiments show that it generates
	 * fast code with essentially no branching overheads. We increment to
	 * the next RCR pointer and handle overflow and 'vbit'.
	 */
	struct bm_rcr_entry *partial = rcr->cursor + 1;

	rcr->cursor = RCR_CARRYCLEAR(partial);
	if (partial != rcr->cursor)
		rcr->vbit ^= BM_RCR_VERB_VBIT;
}

static inline int bm_rcr_init(struct bm_portal *portal, enum bm_rcr_pmode pmode,
			      __maybe_unused enum bm_rcr_cmode cmode)
{
	/* This use of 'register', as well as all other occurrences, is because
	 * it has been observed to generate much faster code with gcc than is
	 * otherwise the case.
	 */
	register struct bm_rcr *rcr = &portal->rcr;
	u32 cfg;
	u8 pi;

	rcr->ring = portal->addr.ce + BM_CL_RCR;
	rcr->ci = bm_in(RCR_CI_CINH) & (BM_RCR_SIZE - 1);

	pi = bm_in(RCR_PI_CINH) & (BM_RCR_SIZE - 1);
	rcr->cursor = rcr->ring + pi;
	rcr->vbit = (bm_in(RCR_PI_CINH) & BM_RCR_SIZE) ?  BM_RCR_VERB_VBIT : 0;
	rcr->available = BM_RCR_SIZE - 1
		- bm_cyc_diff(BM_RCR_SIZE, rcr->ci, pi);
	rcr->ithresh = bm_in(RCR_ITR);
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
	rcr->busy = 0;
	rcr->pmode = pmode;
	rcr->cmode = cmode;
#endif
	cfg = (bm_in(CFG) & 0xffffffe0) | (pmode & 0x3); /* BCSP_CFG::RPM */
	bm_out(CFG, cfg);
	return 0;
}

static inline void bm_rcr_finish(struct bm_portal *portal)
{
	register struct bm_rcr *rcr = &portal->rcr;
	u8 pi = bm_in(RCR_PI_CINH) & (BM_RCR_SIZE - 1);
	u8 ci = bm_in(RCR_CI_CINH) & (BM_RCR_SIZE - 1);

#ifdef RTE_LIBRTE_DPAA_HWDEBUG
	DPAA_ASSERT(!rcr->busy);
#endif
	if (pi != RCR_PTR2IDX(rcr->cursor))
		pr_crit("losing uncommitted RCR entries\n");
	if (ci != rcr->ci)
		pr_crit("missing existing RCR completions\n");
	if (rcr->ci != RCR_PTR2IDX(rcr->cursor))
		pr_crit("RCR destroyed unquiesced\n");
}

static inline struct bm_rcr_entry *bm_rcr_start(struct bm_portal *portal)
{
	register struct bm_rcr *rcr = &portal->rcr;

#ifdef RTE_LIBRTE_DPAA_HWDEBUG
	DPAA_ASSERT(!rcr->busy);
#endif
	if (!rcr->available)
		return NULL;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
	rcr->busy = 1;
#endif
	dcbz_64(rcr->cursor);
	return rcr->cursor;
}

static inline void bm_rcr_abort(struct bm_portal *portal)
{
	__maybe_unused register struct bm_rcr *rcr = &portal->rcr;

#ifdef RTE_LIBRTE_DPAA_HWDEBUG
	DPAA_ASSERT(rcr->busy);
	rcr->busy = 0;
#endif
}

static inline struct bm_rcr_entry *bm_rcr_pend_and_next(
					struct bm_portal *portal, u8 myverb)
{
	register struct bm_rcr *rcr = &portal->rcr;

#ifdef RTE_LIBRTE_DPAA_HWDEBUG
	DPAA_ASSERT(rcr->busy);
	DPAA_ASSERT(rcr->pmode != bm_rcr_pvb);
#endif
	if (rcr->available == 1)
		return NULL;
	rcr->cursor->__dont_write_directly__verb = myverb | rcr->vbit;
	dcbf_64(rcr->cursor);
	RCR_INC(rcr);
	rcr->available--;
	dcbz_64(rcr->cursor);
	return rcr->cursor;
}

static inline void bm_rcr_pci_commit(struct bm_portal *portal, u8 myverb)
{
	register struct bm_rcr *rcr = &portal->rcr;

#ifdef RTE_LIBRTE_DPAA_HWDEBUG
	DPAA_ASSERT(rcr->busy);
	DPAA_ASSERT(rcr->pmode == bm_rcr_pci);
#endif
	rcr->cursor->__dont_write_directly__verb = myverb | rcr->vbit;
	RCR_INC(rcr);
	rcr->available--;
	hwsync();
	bm_out(RCR_PI_CINH, RCR_PTR2IDX(rcr->cursor));
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
	rcr->busy = 0;
#endif
}

static inline void bm_rcr_pce_prefetch(struct bm_portal *portal)
{
	__maybe_unused register struct bm_rcr *rcr = &portal->rcr;

#ifdef RTE_LIBRTE_DPAA_HWDEBUG
	DPAA_ASSERT(rcr->pmode == bm_rcr_pce);
#endif
	bm_cl_invalidate(RCR_PI);
	bm_cl_touch_rw(RCR_PI);
}

static inline void bm_rcr_pce_commit(struct bm_portal *portal, u8 myverb)
{
	register struct bm_rcr *rcr = &portal->rcr;

#ifdef RTE_LIBRTE_DPAA_HWDEBUG
	DPAA_ASSERT(rcr->busy);
	DPAA_ASSERT(rcr->pmode == bm_rcr_pce);
#endif
	rcr->cursor->__dont_write_directly__verb = myverb | rcr->vbit;
	RCR_INC(rcr);
	rcr->available--;
	lwsync();
	bm_cl_out(RCR_PI, RCR_PTR2IDX(rcr->cursor));
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
	rcr->busy = 0;
#endif
}

static inline void bm_rcr_pvb_commit(struct bm_portal *portal, u8 myverb)
{
	register struct bm_rcr *rcr = &portal->rcr;
	struct bm_rcr_entry *rcursor;

#ifdef RTE_LIBRTE_DPAA_HWDEBUG
	DPAA_ASSERT(rcr->busy);
	DPAA_ASSERT(rcr->pmode == bm_rcr_pvb);
#endif
	lwsync();
	rcursor = rcr->cursor;
	rcursor->__dont_write_directly__verb = myverb | rcr->vbit;
	dcbf_64(rcursor);
	RCR_INC(rcr);
	rcr->available--;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
	rcr->busy = 0;
#endif
}

static inline u8 bm_rcr_cci_update(struct bm_portal *portal)
{
	register struct bm_rcr *rcr = &portal->rcr;
	u8 diff, old_ci = rcr->ci;

#ifdef RTE_LIBRTE_DPAA_HWDEBUG
	DPAA_ASSERT(rcr->cmode == bm_rcr_cci);
#endif
	rcr->ci = bm_in(RCR_CI_CINH) & (BM_RCR_SIZE - 1);
	diff = bm_cyc_diff(BM_RCR_SIZE, old_ci, rcr->ci);
	rcr->available += diff;
	return diff;
}

static inline void bm_rcr_cce_prefetch(struct bm_portal *portal)
{
	__maybe_unused register struct bm_rcr *rcr = &portal->rcr;

#ifdef RTE_LIBRTE_DPAA_HWDEBUG
	DPAA_ASSERT(rcr->cmode == bm_rcr_cce);
#endif
	bm_cl_touch_ro(RCR_CI);
}

static inline u8 bm_rcr_cce_update(struct bm_portal *portal)
{
	register struct bm_rcr *rcr = &portal->rcr;
	u8 diff, old_ci = rcr->ci;

#ifdef RTE_LIBRTE_DPAA_HWDEBUG
	DPAA_ASSERT(rcr->cmode == bm_rcr_cce);
#endif
	rcr->ci = bm_cl_in(RCR_CI) & (BM_RCR_SIZE - 1);
	bm_cl_invalidate(RCR_CI);
	diff = bm_cyc_diff(BM_RCR_SIZE, old_ci, rcr->ci);
	rcr->available += diff;
	return diff;
}

static inline u8 bm_rcr_get_ithresh(struct bm_portal *portal)
{
	register struct bm_rcr *rcr = &portal->rcr;

	return rcr->ithresh;
}

static inline void bm_rcr_set_ithresh(struct bm_portal *portal, u8 ithresh)
{
	register struct bm_rcr *rcr = &portal->rcr;

	rcr->ithresh = ithresh;
	bm_out(RCR_ITR, ithresh);
}

static inline u8 bm_rcr_get_avail(struct bm_portal *portal)
{
	register struct bm_rcr *rcr = &portal->rcr;

	return rcr->available;
}

static inline u8 bm_rcr_get_fill(struct bm_portal *portal)
{
	register struct bm_rcr *rcr = &portal->rcr;

	return BM_RCR_SIZE - 1 - rcr->available;
}

/* --- Management command API --- */

static inline int bm_mc_init(struct bm_portal *portal)
{
	register struct bm_mc *mc = &portal->mc;

	mc->cr = portal->addr.ce + BM_CL_CR;
	mc->rr = portal->addr.ce + BM_CL_RR0;
	mc->rridx = (__raw_readb(&mc->cr->__dont_write_directly__verb) &
			BM_MCC_VERB_VBIT) ?  0 : 1;
	mc->vbit = mc->rridx ? BM_MCC_VERB_VBIT : 0;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
	mc->state = mc_idle;
#endif
	return 0;
}

static inline void bm_mc_finish(struct bm_portal *portal)
{
	__maybe_unused register struct bm_mc *mc = &portal->mc;

#ifdef RTE_LIBRTE_DPAA_HWDEBUG
	DPAA_ASSERT(mc->state == mc_idle);
	if (mc->state != mc_idle)
		pr_crit("Losing incomplete MC command\n");
#endif
}

static inline struct bm_mc_command *bm_mc_start(struct bm_portal *portal)
{
	register struct bm_mc *mc = &portal->mc;

#ifdef RTE_LIBRTE_DPAA_HWDEBUG
	DPAA_ASSERT(mc->state == mc_idle);
	mc->state = mc_user;
#endif
	dcbz_64(mc->cr);
	return mc->cr;
}

static inline void bm_mc_abort(struct bm_portal *portal)
{
	__maybe_unused register struct bm_mc *mc = &portal->mc;

#ifdef RTE_LIBRTE_DPAA_HWDEBUG
	DPAA_ASSERT(mc->state == mc_user);
	mc->state = mc_idle;
#endif
}

static inline void bm_mc_commit(struct bm_portal *portal, u8 myverb)
{
	register struct bm_mc *mc = &portal->mc;
	struct bm_mc_result *rr = mc->rr + mc->rridx;

#ifdef RTE_LIBRTE_DPAA_HWDEBUG
	DPAA_ASSERT(mc->state == mc_user);
#endif
	lwsync();
	mc->cr->__dont_write_directly__verb = myverb | mc->vbit;
	dcbf(mc->cr);
	dcbit_ro(rr);
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
	mc->state = mc_hw;
#endif
}

static inline struct bm_mc_result *bm_mc_result(struct bm_portal *portal)
{
	register struct bm_mc *mc = &portal->mc;
	struct bm_mc_result *rr = mc->rr + mc->rridx;

#ifdef RTE_LIBRTE_DPAA_HWDEBUG
	DPAA_ASSERT(mc->state == mc_hw);
#endif
	/* The inactive response register's verb byte always returns zero until
	 * its command is submitted and completed. This includes the valid-bit,
	 * in case you were wondering.
	 */
	if (!__raw_readb(&rr->verb)) {
		dcbit_ro(rr);
		return NULL;
	}
	mc->rridx ^= 1;
	mc->vbit ^= BM_MCC_VERB_VBIT;
#ifdef RTE_LIBRTE_DPAA_HWDEBUG
	mc->state = mc_idle;
#endif
	return rr;
}

#define SCN_REG(bpid) BM_REG_SCN((bpid) / 32)
#define SCN_BIT(bpid) (0x80000000 >> (bpid & 31))
static inline void bm_isr_bscn_mask(struct bm_portal *portal, u8 bpid,
				    int enable)
{
	u32 val;

	DPAA_ASSERT(bpid < bman_pool_max);
	/* REG_SCN for bpid=0..31, REG_SCN+4 for bpid=32..63 */
	val = __bm_in(&portal->addr, SCN_REG(bpid));
	if (enable)
		val |= SCN_BIT(bpid);
	else
		val &= ~SCN_BIT(bpid);
	__bm_out(&portal->addr, SCN_REG(bpid), val);
}

static inline u32 __bm_isr_read(struct bm_portal *portal, enum bm_isr_reg n)
{
#if defined(RTE_ARCH_ARM64)
	return __bm_in(&portal->addr, BM_REG_ISR + (n << 6));
#else
	return __bm_in(&portal->addr, BM_REG_ISR + (n << 2));
#endif
}

static inline void __bm_isr_write(struct bm_portal *portal, enum bm_isr_reg n,
				  u32 val)
{
#if defined(RTE_ARCH_ARM64)
	__bm_out(&portal->addr, BM_REG_ISR + (n << 6), val);
#else
	__bm_out(&portal->addr, BM_REG_ISR + (n << 2), val);
#endif
}

/* Buffer Pool Cleanup */
static inline int bm_shutdown_pool(struct bm_portal *p, u32 bpid)
{
	struct bm_mc_command *bm_cmd;
	struct bm_mc_result *bm_res;

	int aq_count = 0;
	bool stop = false;

	while (!stop) {
		/* Acquire buffers until empty */
		bm_cmd = bm_mc_start(p);
		bm_cmd->acquire.bpid = bpid;
		bm_mc_commit(p, BM_MCC_VERB_CMD_ACQUIRE |  1);
		while (!(bm_res = bm_mc_result(p)))
			cpu_relax();
		if (!(bm_res->verb & BM_MCR_VERB_ACQUIRE_BUFCOUNT)) {
			/* Pool is empty */
			stop = true;
		} else
			++aq_count;
	};
	return 0;
}

#endif /* __BMAN_H */