DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2010-2014 Intel Corporation
 */

#include <errno.h>
#include <inttypes.h>
#include <poll.h>
#include <stdio.h>
#include <stdlib.h>
#include <net/if.h>
#include <sys/types.h>
#include <sys/resource.h>
#include <sys/mman.h>

#include <rte_common.h>
#include <rte_errno.h>
#include <rte_ethdev.h>
#include <rte_log.h>
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_spinlock.h>
#include <rte_string_fns.h>

#include "compat_netmap.h"

struct netmap_port {
	struct rte_mempool   *pool;
	struct netmap_if     *nmif;
	struct rte_eth_conf   eth_conf;
	struct rte_eth_txconf tx_conf;
	struct rte_eth_rxconf rx_conf;
	int32_t  socket_id;
	uint16_t nr_tx_rings;
	uint16_t nr_rx_rings;
	uint32_t nr_tx_slots;
	uint32_t nr_rx_slots;
	uint16_t tx_burst;
	uint16_t rx_burst;
	uint32_t fd;
};

struct fd_port {
	uint32_t port;
};

#ifndef POLLRDNORM
#define POLLRDNORM	0x0040
#endif

#ifndef POLLWRNORM
#define POLLWRNORM	0x0100
#endif

#define	FD_PORT_FREE	UINT32_MAX
#define	FD_PORT_RSRV	(FD_PORT_FREE - 1)

struct netmap_state {
	struct rte_netmap_conf conf;
	uintptr_t buf_start;
	void     *mem;
	uint32_t  mem_sz;
	uint32_t  netif_memsz;
};


#define COMPAT_NETMAP_MAX_NOFILE	(2 * RTE_MAX_ETHPORTS)
#define COMPAT_NETMAP_MAX_BURST		64
#define COMPAT_NETMAP_MAX_PKT_PER_SYNC	(2 * COMPAT_NETMAP_MAX_BURST)

static struct netmap_port ports[RTE_MAX_ETHPORTS];
static struct netmap_state netmap;

static struct fd_port fd_port[COMPAT_NETMAP_MAX_NOFILE];
static const int next_fd_start = RLIMIT_NOFILE + 1;
static rte_spinlock_t netmap_lock;

#define	IDX_TO_FD(x)	((x) + next_fd_start)
#define	FD_TO_IDX(x)	((x) - next_fd_start)
#define	FD_VALID(x)	((x) >= next_fd_start && \
	(x) < (typeof (x))(RTE_DIM(fd_port) + next_fd_start))

#define	PORT_NUM_RINGS	(2 * netmap.conf.max_rings)
#define	PORT_NUM_SLOTS	(PORT_NUM_RINGS * netmap.conf.max_slots)

#define	BUF_IDX(port, ring, slot)            \
	(((port) * PORT_NUM_RINGS + (ring)) * netmap.conf.max_slots + \
	(slot))

#define NETMAP_IF_RING_OFS(rid, rings, slots)   ({\
	struct netmap_if *_if;                    \
	struct netmap_ring *_rg;                  \
	sizeof(*_if) +                            \
	(rings) * sizeof(_if->ring_ofs[0]) +      \
	(rid) * sizeof(*_rg) +                    \
	(slots) * sizeof(_rg->slot[0]);           \
	})

static void netmap_unregif(uint32_t idx, uint32_t port);


static int32_t
ifname_to_portid(const char *ifname, uint16_t *port)
{
	char *endptr;
	uint64_t portid;

	errno = 0;
	portid = strtoul(ifname, &endptr, 10);
	if (endptr == ifname || *endptr != '\0' ||
			portid >= RTE_DIM(ports) || errno != 0)
		return -EINVAL;

	*port = portid;
	return 0;
}

/**
 * Given a dpdk mbuf, fill in the Netmap slot in ring r and its associated
 * buffer with the data held by the mbuf.
 * Note that mbuf chains are not supported.
 */
static void
mbuf_to_slot(struct rte_mbuf *mbuf, struct netmap_ring *r, uint32_t index)
{
	char *data;
	uint16_t length;

	data   = rte_pktmbuf_mtod(mbuf, char *);
	length = rte_pktmbuf_data_len(mbuf);

	if (length > r->nr_buf_size)
		length = 0;

	r->slot[index].len = length;
	rte_memcpy(NETMAP_BUF(r, r->slot[index].buf_idx), data, length);
}

/**
 * Given a Netmap ring and a slot index for that ring, construct a dpdk mbuf
 * from the data held in the buffer associated with the slot.
 * Allocation/deallocation of the dpdk mbuf are the responsibility of the
 * caller.
 * Note that mbuf chains are not supported.
 */
static void
slot_to_mbuf(struct netmap_ring *r, uint32_t index, struct rte_mbuf *mbuf)
{
	char *data;
	uint16_t length;

	rte_pktmbuf_reset(mbuf);
	length = r->slot[index].len;
	data = rte_pktmbuf_append(mbuf, length);

	if (data != NULL)
	    rte_memcpy(data, NETMAP_BUF(r, r->slot[index].buf_idx), length);
}

static int32_t
fd_reserve(void)
{
	uint32_t i;

	for (i = 0; i != RTE_DIM(fd_port) && fd_port[i].port != FD_PORT_FREE;
			i++)
		;

	if (i == RTE_DIM(fd_port))
		return -ENOMEM;

	fd_port[i].port = FD_PORT_RSRV;
	return IDX_TO_FD(i);
}

static int32_t
fd_release(int32_t fd)
{
	uint32_t idx, port;

	idx = FD_TO_IDX(fd);

	if (!FD_VALID(fd) || (port = fd_port[idx].port) == FD_PORT_FREE)
		return -EINVAL;

	/* if we still have a valid port attached, release the port */
	if (port < RTE_DIM(ports) && ports[port].fd == idx) {
		netmap_unregif(idx, port);
	}

	fd_port[idx].port = FD_PORT_FREE;
	return 0;
}

static int
check_nmreq(struct nmreq *req, uint16_t *port)
{
	int32_t rc;
	uint16_t portid;

	if (req == NULL)
		return -EINVAL;

	if (req->nr_version != NETMAP_API) {
		req->nr_version = NETMAP_API;
		return -EINVAL;
	}

	if ((rc = ifname_to_portid(req->nr_name, &portid)) != 0) {
	    	RTE_LOG(ERR, USER1, "Invalid interface name:\"%s\" "
			"in NIOCGINFO call\n", req->nr_name);
		return rc;
	}

	if (ports[portid].pool == NULL) {
		RTE_LOG(ERR, USER1, "Misconfigured portid %u\n", portid);
		return -EINVAL;
	}

	*port = portid;
	return 0;
}

/**
 * Simulate a Netmap NIOCGINFO ioctl: given a struct nmreq holding an interface
 * name (a port number in our case), fill the struct nmreq in with advisory
 * information about the interface: number of rings and their size, total memory
 * required in the map, ...
 * Those are preconfigured using rte_eth_{,tx,rx}conf and
 * rte_netmap_port_conf structures
 * and calls to rte_netmap_init_port() in the Netmap application.
 */
static int
ioctl_niocginfo(__rte_unused int fd, void * param)
{
	uint16_t portid;
	struct nmreq *req;
	int32_t rc;

	req = (struct nmreq *)param;
	if ((rc = check_nmreq(req, &portid)) != 0)
		return rc;

	req->nr_tx_rings = (uint16_t)(ports[portid].nr_tx_rings - 1);
	req->nr_rx_rings = (uint16_t)(ports[portid].nr_rx_rings - 1);
	req->nr_tx_slots = ports[portid].nr_tx_slots;
	req->nr_rx_slots = ports[portid].nr_rx_slots;

	/* in current implementation we have all NETIFs shared aone region. */
	req->nr_memsize = netmap.mem_sz;
	req->nr_offset = 0;

	return 0;
}

static void
netmap_ring_setup(struct netmap_ring *ring, uint16_t port, uint32_t ringid,
	uint32_t num_slots)
{
	uint32_t j;

	ring->buf_ofs = netmap.buf_start - (uintptr_t)ring;
	ring->num_slots = num_slots;
	ring->cur = 0;
	ring->reserved = 0;
	ring->nr_buf_size = netmap.conf.max_bufsz;
	ring->flags = 0;
	ring->ts.tv_sec = 0;
	ring->ts.tv_usec = 0;

	for (j = 0; j < ring->num_slots; j++) {
		ring->slot[j].buf_idx = BUF_IDX(port, ringid, j);
		ring->slot[j].len = 0;
		ring->flags = 0;
	}
}

static int
netmap_regif(struct nmreq *req, uint32_t idx, uint16_t port)
{
	struct netmap_if *nmif;
	struct netmap_ring *ring;
	uint32_t i, slots, start_ring;
	int32_t rc;

	if (ports[port].fd < RTE_DIM(fd_port)) {
		RTE_LOG(ERR, USER1, "port %u already in use by fd: %u\n",
			port, IDX_TO_FD(ports[port].fd));
		return -EBUSY;
	}
	if (fd_port[idx].port != FD_PORT_RSRV) {
	    	RTE_LOG(ERR, USER1, "fd: %u is misconfigured\n",
			IDX_TO_FD(idx));
		return -EBUSY;
	}

	nmif = ports[port].nmif;

	/* setup netmap_if fields. */
	memset(nmif, 0, netmap.netif_memsz);

	/* only ALL rings supported right now. */
	if (req->nr_ringid != 0)
		return -EINVAL;

	strlcpy(nmif->ni_name, req->nr_name, sizeof(nmif->ni_name));
	nmif->ni_version  = req->nr_version;

	/* Netmap uses ni_(r|t)x_rings + 1 */
	nmif->ni_rx_rings = ports[port].nr_rx_rings - 1;
	nmif->ni_tx_rings = ports[port].nr_tx_rings - 1;

	/*
	 * Setup TX rings and slots.
	 * Refer to the comments in netmap.h for details
	 */

	slots = 0;
	for (i = 0; i < nmif->ni_tx_rings + 1; i++) {

		nmif->ring_ofs[i] = NETMAP_IF_RING_OFS(i,
			PORT_NUM_RINGS, slots);

		ring = NETMAP_TXRING(nmif, i);
		netmap_ring_setup(ring, port, i, ports[port].nr_tx_slots);
		ring->avail = ring->num_slots;

		slots += ports[port].nr_tx_slots;
	}

	/*
	 * Setup  RX rings and slots.
	 * Refer to the comments in netmap.h for details
	 */

	start_ring = i;

	for (; i < nmif->ni_rx_rings + 1 + start_ring; i++) {

		nmif->ring_ofs[i] = NETMAP_IF_RING_OFS(i,
			PORT_NUM_RINGS, slots);

		ring = NETMAP_RXRING(nmif, (i - start_ring));
		netmap_ring_setup(ring, port, i, ports[port].nr_rx_slots);
		ring->avail = 0;

		slots += ports[port].nr_rx_slots;
	}

	if ((rc = rte_eth_dev_start(port)) < 0) {
		RTE_LOG(ERR, USER1,
			"Couldn't start ethernet device %s (error %d)\n",
			req->nr_name, rc);
	    return rc;
	}

	/* setup fdi <--> port relationtip. */
	ports[port].fd = idx;
	fd_port[idx].port = port;

	req->nr_memsize = netmap.mem_sz;
	req->nr_offset = (uintptr_t)nmif - (uintptr_t)netmap.mem;

	return 0;
}

/**
 * Simulate a Netmap NIOCREGIF ioctl:
 */
static int
ioctl_niocregif(int32_t fd, void * param)
{
	uint16_t portid;
	int32_t rc;
	uint32_t idx;
	struct nmreq *req;

	req = (struct nmreq *)param;
	if ((rc = check_nmreq(req, &portid)) != 0)
		return rc;

	idx = FD_TO_IDX(fd);

	rte_spinlock_lock(&netmap_lock);
	rc = netmap_regif(req, idx, portid);
	rte_spinlock_unlock(&netmap_lock);

	return rc;
}

static void
netmap_unregif(uint32_t idx, uint32_t port)
{
	fd_port[idx].port = FD_PORT_RSRV;
	ports[port].fd = UINT32_MAX;
	rte_eth_dev_stop(port);
}

/**
 * Simulate a Netmap NIOCUNREGIF ioctl: put an interface running in Netmap
 * mode back in "normal" mode. In our case, we just stop the port associated
 * with this file descriptor.
 */
static int
ioctl_niocunregif(int fd)
{
	uint32_t idx, port;
	int32_t rc;

	idx = FD_TO_IDX(fd);

	rte_spinlock_lock(&netmap_lock);

	port = fd_port[idx].port;
	if (port < RTE_DIM(ports) && ports[port].fd == idx) {
		netmap_unregif(idx, port);
		rc = 0;
	} else {
		RTE_LOG(ERR, USER1,
			"%s: %d is not associated with valid port\n",
			__func__, fd);
		rc = -EINVAL;
	}

	rte_spinlock_unlock(&netmap_lock);
	return rc;
}

/**
 * A call to rx_sync_ring will try to fill a Netmap RX ring with as many
 * packets as it can hold coming from its dpdk port.
 */
static inline int
rx_sync_ring(struct netmap_ring *ring, uint16_t port, uint16_t ring_number,
	uint16_t max_burst)
{
	int32_t i, n_rx;
	uint16_t burst_size;
	uint32_t cur_slot, n_free_slots;
	struct rte_mbuf *rx_mbufs[COMPAT_NETMAP_MAX_BURST];

	n_free_slots = ring->num_slots - (ring->avail + ring->reserved);
	n_free_slots = RTE_MIN(n_free_slots, max_burst);
	cur_slot = (ring->cur + ring->avail) & (ring->num_slots - 1);

	while (n_free_slots) {
		burst_size = (uint16_t)RTE_MIN(n_free_slots, RTE_DIM(rx_mbufs));

		/* receive up to burst_size packets from the NIC's queue */
		n_rx = rte_eth_rx_burst(port, ring_number, rx_mbufs,
			burst_size);

		if (n_rx == 0)
			return 0;
		if (unlikely(n_rx < 0))
			return -1;

		/* Put those n_rx packets in the Netmap structures */
		for (i = 0; i < n_rx ; i++) {
			mbuf_to_slot(rx_mbufs[i], ring, cur_slot);
			rte_pktmbuf_free(rx_mbufs[i]);
			cur_slot = NETMAP_RING_NEXT(ring, cur_slot);
		}

		/* Update the Netmap ring structure to reflect the change */
		ring->avail += n_rx;
		n_free_slots -= n_rx;
	}

	return 0;
}

static inline int
rx_sync_if(uint32_t port)
{
	uint16_t burst;
	uint32_t i, rc;
	struct netmap_if *nifp;
	struct netmap_ring *r;

	nifp = ports[port].nmif;
	burst = ports[port].rx_burst;
	rc = 0;

	for (i = 0; i < nifp->ni_rx_rings + 1; i++) {
		r = NETMAP_RXRING(nifp, i);
		rx_sync_ring(r, port, (uint16_t)i, burst);
		rc += r->avail;
	}

	return rc;
}

/**
 * Simulate a Netmap NIOCRXSYNC ioctl:
 */
static int
ioctl_niocrxsync(int fd)
{
	uint32_t idx, port;

	idx = FD_TO_IDX(fd);
	if ((port = fd_port[idx].port) < RTE_DIM(ports) &&
			ports[port].fd == idx) {
		return rx_sync_if(fd_port[idx].port);
	} else  {
		return -EINVAL;
	}
}

/**
 * A call to tx_sync_ring will try to empty a Netmap TX ring by converting its
 * buffers into rte_mbufs and sending them out on the rings's dpdk port.
 */
static int
tx_sync_ring(struct netmap_ring *ring, uint16_t port, uint16_t ring_number,
	struct rte_mempool *pool, uint16_t max_burst)
{
	uint32_t i, n_tx;
	uint16_t burst_size;
	uint32_t cur_slot, n_used_slots;
	struct rte_mbuf *tx_mbufs[COMPAT_NETMAP_MAX_BURST];

	n_used_slots = ring->num_slots - ring->avail;
	n_used_slots = RTE_MIN(n_used_slots, max_burst);
	cur_slot = (ring->cur + ring->avail) & (ring->num_slots - 1);

	while (n_used_slots) {
		burst_size = (uint16_t)RTE_MIN(n_used_slots, RTE_DIM(tx_mbufs));

		for (i = 0; i < burst_size; i++) {
			tx_mbufs[i] = rte_pktmbuf_alloc(pool);
			if (tx_mbufs[i] == NULL)
				goto err;

			slot_to_mbuf(ring, cur_slot, tx_mbufs[i]);
			cur_slot = NETMAP_RING_NEXT(ring, cur_slot);
		}

		n_tx = rte_eth_tx_burst(port, ring_number, tx_mbufs,
			burst_size);

		/* Update the Netmap ring structure to reflect the change */
		ring->avail += n_tx;
		n_used_slots -= n_tx;

		/* Return the mbufs that failed to transmit to their pool */
		if (unlikely(n_tx != burst_size)) {
			for (i = n_tx; i < burst_size; i++)
				rte_pktmbuf_free(tx_mbufs[i]);
	        	break;
		}
	}

	return 0;

err:
	for (; i == 0; --i)
		rte_pktmbuf_free(tx_mbufs[i]);

	RTE_LOG(ERR, USER1,
		"Couldn't get mbuf from mempool is the mempool too small?\n");
	return -1;
}

static int
tx_sync_if(uint32_t port)
{
	uint16_t burst;
	uint32_t i, rc;
	struct netmap_if *nifp;
	struct netmap_ring *r;
	struct rte_mempool *mp;

	nifp = ports[port].nmif;
	mp = ports[port].pool;
	burst = ports[port].tx_burst;
	rc = 0;

	for (i = 0; i < nifp->ni_tx_rings + 1; i++) {
		r = NETMAP_TXRING(nifp, i);
		tx_sync_ring(r, port, (uint16_t)i, mp, burst);
		rc += r->avail;
	}

	return rc;
}

/**
 * Simulate a Netmap NIOCTXSYNC ioctl:
 */
static inline int
ioctl_nioctxsync(int fd)
{
	uint32_t idx, port;

	idx = FD_TO_IDX(fd);
	if ((port = fd_port[idx].port) < RTE_DIM(ports) &&
			ports[port].fd == idx) {
		return tx_sync_if(fd_port[idx].port);
	} else  {
		return -EINVAL;
	}
}

/**
 * Give the library a mempool of rte_mbufs with which it can do the
 * rte_mbuf <--> netmap slot conversions.
 */
int
rte_netmap_init(const struct rte_netmap_conf *conf)
{
	size_t buf_ofs, nmif_sz, sz;
	size_t port_rings, port_slots, port_bufs;
	uint32_t i, port_num;

	port_num = RTE_MAX_ETHPORTS;
	port_rings = 2 * conf->max_rings;
	port_slots = port_rings * conf->max_slots;
	port_bufs = port_slots;

	nmif_sz = NETMAP_IF_RING_OFS(port_rings, port_rings, port_slots);
	sz = nmif_sz * port_num;

	buf_ofs = RTE_ALIGN_CEIL(sz, RTE_CACHE_LINE_SIZE);
	sz = buf_ofs + port_bufs * conf->max_bufsz * port_num;

	if (sz > UINT32_MAX ||
			(netmap.mem = rte_zmalloc_socket(__func__, sz,
			RTE_CACHE_LINE_SIZE, conf->socket_id)) == NULL) {
		RTE_LOG(ERR, USER1, "%s: failed to allocate %zu bytes\n",
			__func__, sz);
		return -ENOMEM;
	}

	netmap.mem_sz = sz;
	netmap.netif_memsz = nmif_sz;
	netmap.buf_start = (uintptr_t)netmap.mem + buf_ofs;
	netmap.conf = *conf;

	rte_spinlock_init(&netmap_lock);

	/* Mark all ports as unused and set NETIF pointer. */
	for (i = 0; i != RTE_DIM(ports); i++) {
		ports[i].fd = UINT32_MAX;
		ports[i].nmif = (struct netmap_if *)
			((uintptr_t)netmap.mem + nmif_sz * i);
	}

	/* Mark all fd_ports as unused. */
	for (i = 0; i != RTE_DIM(fd_port); i++) {
		fd_port[i].port = FD_PORT_FREE;
	}

	return 0;
}


int
rte_netmap_init_port(uint16_t portid, const struct rte_netmap_port_conf *conf)
{
	int32_t ret;
	uint16_t i;
	uint16_t rx_slots, tx_slots;
	struct rte_eth_rxconf rxq_conf;
	struct rte_eth_txconf txq_conf;
	struct rte_eth_dev_info dev_info;

	if (conf == NULL ||
			portid >= RTE_DIM(ports) ||
			conf->nr_tx_rings > netmap.conf.max_rings ||
			conf->nr_rx_rings > netmap.conf.max_rings) {
		RTE_LOG(ERR, USER1, "%s(%u): invalid parameters\n",
			__func__, portid);
		return -EINVAL;
	}

	rx_slots = (uint16_t)rte_align32pow2(conf->nr_rx_slots);
	tx_slots = (uint16_t)rte_align32pow2(conf->nr_tx_slots);

	if (tx_slots > netmap.conf.max_slots ||
			rx_slots > netmap.conf.max_slots) {
		RTE_LOG(ERR, USER1, "%s(%u): invalid parameters\n",
			__func__, portid);
		return -EINVAL;
	}

	rte_eth_dev_info_get(portid, &dev_info);
	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
		conf->eth_conf->txmode.offloads |=
			DEV_TX_OFFLOAD_MBUF_FAST_FREE;
	ret = rte_eth_dev_configure(portid, conf->nr_rx_rings,
		conf->nr_tx_rings, conf->eth_conf);

	if (ret < 0) {
		RTE_LOG(ERR, USER1, "Couldn't configure port %u\n", portid);
		return ret;
	}

	ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &rx_slots, &tx_slots);

	if (ret < 0) {
		RTE_LOG(ERR, USER1,
			"Couldn't ot adjust number of descriptors for port %u\n",
			portid);
		return ret;
	}

	rxq_conf = dev_info.default_rxconf;
	rxq_conf.offloads = conf->eth_conf->rxmode.offloads;
	txq_conf = dev_info.default_txconf;
	txq_conf.offloads = conf->eth_conf->txmode.offloads;
	for (i = 0; i < conf->nr_tx_rings; i++) {
		ret = rte_eth_tx_queue_setup(portid, i, tx_slots,
			conf->socket_id, &txq_conf);

		if (ret < 0) {
			RTE_LOG(ERR, USER1,
				"fail to configure TX queue %u of port %u\n",
				i, portid);
			return ret;
		}

		ret = rte_eth_rx_queue_setup(portid, i, rx_slots,
			conf->socket_id, &rxq_conf, conf->pool);

		if (ret < 0) {
			RTE_LOG(ERR, USER1,
				"fail to configure RX queue %u of port %u\n",
				i, portid);
			return ret;
		}
	}

	/* copy config to the private storage. */
	ports[portid].eth_conf = conf->eth_conf[0];
	ports[portid].pool = conf->pool;
	ports[portid].socket_id = conf->socket_id;
	ports[portid].nr_tx_rings = conf->nr_tx_rings;
	ports[portid].nr_rx_rings = conf->nr_rx_rings;
	ports[portid].nr_tx_slots = tx_slots;
	ports[portid].nr_rx_slots = rx_slots;
	ports[portid].tx_burst = conf->tx_burst;
	ports[portid].rx_burst = conf->rx_burst;

	return 0;
}

int
rte_netmap_close(__rte_unused int fd)
{
	int32_t rc;

	rte_spinlock_lock(&netmap_lock);
	rc = fd_release(fd);
	rte_spinlock_unlock(&netmap_lock);

	if (rc < 0) {
		errno =-rc;
		rc = -1;
	}
	return rc;
}

int rte_netmap_ioctl(int fd, uint32_t op, void *param)
{
	int ret;

	if (!FD_VALID(fd)) {
	    errno = EBADF;
	    return -1;
	}

	switch (op) {

	    case NIOCGINFO:
	        ret = ioctl_niocginfo(fd, param);
	        break;

	    case NIOCREGIF:
	        ret = ioctl_niocregif(fd, param);
	        break;

	    case NIOCUNREGIF:
	        ret = ioctl_niocunregif(fd);
	        break;

	    case NIOCRXSYNC:
	        ret = ioctl_niocrxsync(fd);
	        break;

	    case NIOCTXSYNC:
	        ret = ioctl_nioctxsync(fd);
	        break;

	    default:
	        ret = -ENOTTY;
	}

	if (ret < 0) {
		errno = -ret;
		ret = -1;
	} else {
		ret = 0;
	}

	return ret;
}

void *
rte_netmap_mmap(void *addr, size_t length,
	int prot, int flags, int fd, off_t offset)
{
	static const int cprot = PROT_WRITE | PROT_READ;

	if (!FD_VALID(fd) || length + offset > netmap.mem_sz ||
			(prot & cprot) != cprot ||
			((flags & MAP_FIXED) != 0 && addr != NULL)) {

		errno = EINVAL;
		return MAP_FAILED;
	}

	return (void *)((uintptr_t)netmap.mem + (uintptr_t)offset);
}

/**
 * Return a "fake" file descriptor with a value above RLIMIT_NOFILE so that
 * any attempt to use that file descriptor with the usual API will fail.
 */
int
rte_netmap_open(__rte_unused const char *pathname, __rte_unused int flags)
{
	int fd;

	rte_spinlock_lock(&netmap_lock);
	fd = fd_reserve();
	rte_spinlock_unlock(&netmap_lock);

	if (fd < 0) {
		errno = -fd;
		fd = -1;
	}
	return fd;
}

/**
 * Doesn't support timeout other than 0 or infinite (negative) timeout
 */
int
rte_netmap_poll(struct pollfd *fds, nfds_t nfds, int timeout)
{
	int32_t count_it, ret;
	uint32_t i, idx, port;
	uint32_t want_rx, want_tx;

	if (timeout > 0)
		return -1;

	ret = 0;
	do {
		for (i = 0; i < nfds; i++) {

			count_it = 0;

			if (!FD_VALID(fds[i].fd) || fds[i].events == 0) {
				fds[i].revents = 0;
				continue;
			}

			idx = FD_TO_IDX(fds[i].fd);
			if ((port = fd_port[idx].port) >= RTE_DIM(ports) ||
		ports[port].fd != idx) {

				fds[i].revents |= POLLERR;
				ret++;
				continue;
			}

			want_rx = fds[i].events & (POLLIN  | POLLRDNORM);
			want_tx = fds[i].events & (POLLOUT | POLLWRNORM);

			if (want_rx && rx_sync_if(port) > 0) {
				fds[i].revents = (uint16_t)
					(fds[i].revents | want_rx);
				count_it = 1;
			}
			if (want_tx && tx_sync_if(port) > 0) {
				fds[i].revents = (uint16_t)
					(fds[i].revents | want_tx);
				count_it = 1;
			}

			ret += count_it;
		}
	}
	while ((ret == 0 && timeout < 0) || timeout);

	return ret;
}