DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2016-2019 Intel Corporation
 */

#ifndef _RTE_CRYPTO_SYM_H_
#define _RTE_CRYPTO_SYM_H_

/**
 * @file rte_crypto_sym.h
 *
 * RTE Definitions for Symmetric Cryptography
 *
 * Defines symmetric cipher and authentication algorithms and modes, as well
 * as supported symmetric crypto operation combinations.
 */

#ifdef __cplusplus
extern "C" {
#endif

#include <string.h>

#include <rte_mbuf.h>
#include <rte_memory.h>
#include <rte_mempool.h>
#include <rte_common.h>


/** Symmetric Cipher Algorithms */
enum rte_crypto_cipher_algorithm {
	RTE_CRYPTO_CIPHER_NULL = 1,
	/**< NULL cipher algorithm. No mode applies to the NULL algorithm. */

	RTE_CRYPTO_CIPHER_3DES_CBC,
	/**< Triple DES algorithm in CBC mode */
	RTE_CRYPTO_CIPHER_3DES_CTR,
	/**< Triple DES algorithm in CTR mode */
	RTE_CRYPTO_CIPHER_3DES_ECB,
	/**< Triple DES algorithm in ECB mode */

	RTE_CRYPTO_CIPHER_AES_CBC,
	/**< AES algorithm in CBC mode */
	RTE_CRYPTO_CIPHER_AES_CTR,
	/**< AES algorithm in Counter mode */
	RTE_CRYPTO_CIPHER_AES_ECB,
	/**< AES algorithm in ECB mode */
	RTE_CRYPTO_CIPHER_AES_F8,
	/**< AES algorithm in F8 mode */
	RTE_CRYPTO_CIPHER_AES_XTS,
	/**< AES algorithm in XTS mode */

	RTE_CRYPTO_CIPHER_ARC4,
	/**< (A)RC4 cipher algorithm */

	RTE_CRYPTO_CIPHER_KASUMI_F8,
	/**< KASUMI algorithm in F8 mode */

	RTE_CRYPTO_CIPHER_SNOW3G_UEA2,
	/**< SNOW 3G algorithm in UEA2 mode */

	RTE_CRYPTO_CIPHER_ZUC_EEA3,
	/**< ZUC algorithm in EEA3 mode */

	RTE_CRYPTO_CIPHER_DES_CBC,
	/**< DES algorithm in CBC mode */

	RTE_CRYPTO_CIPHER_AES_DOCSISBPI,
	/**< AES algorithm using modes required by
	 * DOCSIS Baseline Privacy Plus Spec.
	 * Chained mbufs are not supported in this mode, i.e. rte_mbuf.next
	 * for m_src and m_dst in the rte_crypto_sym_op must be NULL.
	 */

	RTE_CRYPTO_CIPHER_DES_DOCSISBPI,
	/**< DES algorithm using modes required by
	 * DOCSIS Baseline Privacy Plus Spec.
	 * Chained mbufs are not supported in this mode, i.e. rte_mbuf.next
	 * for m_src and m_dst in the rte_crypto_sym_op must be NULL.
	 */

	RTE_CRYPTO_CIPHER_LIST_END

};

/** Cipher algorithm name strings */
extern const char *
rte_crypto_cipher_algorithm_strings[];

/** Symmetric Cipher Direction */
enum rte_crypto_cipher_operation {
	RTE_CRYPTO_CIPHER_OP_ENCRYPT,
	/**< Encrypt cipher operation */
	RTE_CRYPTO_CIPHER_OP_DECRYPT
	/**< Decrypt cipher operation */
};

/** Cipher operation name strings */
extern const char *
rte_crypto_cipher_operation_strings[];

/**
 * Symmetric Cipher Setup Data.
 *
 * This structure contains data relating to Cipher (Encryption and Decryption)
 *  use to create a session.
 */
struct rte_crypto_cipher_xform {
	enum rte_crypto_cipher_operation op;
	/**< This parameter determines if the cipher operation is an encrypt or
	 * a decrypt operation. For the RC4 algorithm and the F8/CTR modes,
	 * only encrypt operations are valid.
	 */
	enum rte_crypto_cipher_algorithm algo;
	/**< Cipher algorithm */

	struct {
		const uint8_t *data;	/**< pointer to key data */
		uint16_t length;	/**< key length in bytes */
	} key;
	/**< Cipher key
	 *
	 * For the RTE_CRYPTO_CIPHER_AES_F8 mode of operation, key.data will
	 * point to a concatenation of the AES encryption key followed by a
	 * keymask. As per RFC3711, the keymask should be padded with trailing
	 * bytes to match the length of the encryption key used.
	 *
	 * Cipher key length is in bytes. For AES it can be 128 bits (16 bytes),
	 * 192 bits (24 bytes) or 256 bits (32 bytes).
	 *
	 * For the RTE_CRYPTO_CIPHER_AES_F8 mode of operation, key.length
	 * should be set to the combined length of the encryption key and the
	 * keymask. Since the keymask and the encryption key are the same size,
	 * key.length should be set to 2 x the AES encryption key length.
	 *
	 * For the AES-XTS mode of operation:
	 *  - Two keys must be provided and key.length refers to total length of
	 *    the two keys.
	 *  - key.data must point to the two keys concatenated together
	 *    (key1 || key2).
	 *  - Each key can be either 128 bits (16 bytes) or 256 bits (32 bytes).
	 *  - Both keys must have the same size.
	 **/
	struct {
		uint16_t offset;
		/**< Starting point for Initialisation Vector or Counter,
		 * specified as number of bytes from start of crypto
		 * operation (rte_crypto_op).
		 *
		 * - For block ciphers in CBC or F8 mode, or for KASUMI
		 * in F8 mode, or for SNOW 3G in UEA2 mode, this is the
		 * Initialisation Vector (IV) value.
		 *
		 * - For block ciphers in CTR mode, this is the counter.
		 *
		 * - For CCM mode, the first byte is reserved, and the
		 * nonce should be written starting at &iv[1] (to allow
		 * space for the implementation to write in the flags
		 * in the first byte). Note that a full 16 bytes should
		 * be allocated, even though the length field will
		 * have a value less than this. Note that the PMDs may
		 * modify the memory reserved (the first byte and the
		 * final padding)
		 *
		 * - For AES-XTS, this is the 128bit tweak, i, from
		 * IEEE Std 1619-2007.
		 *
		 * For optimum performance, the data pointed to SHOULD
		 * be 8-byte aligned.
		 */
		uint16_t length;
		/**< Length of valid IV data.
		 *
		 * - For block ciphers in CBC or F8 mode, or for KASUMI
		 * in F8 mode, or for SNOW 3G in UEA2 mode, this is the
		 * length of the IV (which must be the same as the
		 * block length of the cipher).
		 *
		 * - For block ciphers in CTR mode, this is the length
		 * of the counter (which must be the same as the block
		 * length of the cipher).
		 *
		 * - For CCM mode, this is the length of the nonce,
		 * which can be in the range 7 to 13 inclusive.
		 */
	} iv;	/**< Initialisation vector parameters */
};

/** Symmetric Authentication / Hash Algorithms */
enum rte_crypto_auth_algorithm {
	RTE_CRYPTO_AUTH_NULL = 1,
	/**< NULL hash algorithm. */

	RTE_CRYPTO_AUTH_AES_CBC_MAC,
	/**< AES-CBC-MAC algorithm. Only 128-bit keys are supported. */
	RTE_CRYPTO_AUTH_AES_CMAC,
	/**< AES CMAC algorithm. */
	RTE_CRYPTO_AUTH_AES_GMAC,
	/**< AES GMAC algorithm. */
	RTE_CRYPTO_AUTH_AES_XCBC_MAC,
	/**< AES XCBC algorithm. */

	RTE_CRYPTO_AUTH_KASUMI_F9,
	/**< KASUMI algorithm in F9 mode. */

	RTE_CRYPTO_AUTH_MD5,
	/**< MD5 algorithm */
	RTE_CRYPTO_AUTH_MD5_HMAC,
	/**< HMAC using MD5 algorithm */

	RTE_CRYPTO_AUTH_SHA1,
	/**< 128 bit SHA algorithm. */
	RTE_CRYPTO_AUTH_SHA1_HMAC,
	/**< HMAC using 128 bit SHA algorithm. */
	RTE_CRYPTO_AUTH_SHA224,
	/**< 224 bit SHA algorithm. */
	RTE_CRYPTO_AUTH_SHA224_HMAC,
	/**< HMAC using 224 bit SHA algorithm. */
	RTE_CRYPTO_AUTH_SHA256,
	/**< 256 bit SHA algorithm. */
	RTE_CRYPTO_AUTH_SHA256_HMAC,
	/**< HMAC using 256 bit SHA algorithm. */
	RTE_CRYPTO_AUTH_SHA384,
	/**< 384 bit SHA algorithm. */
	RTE_CRYPTO_AUTH_SHA384_HMAC,
	/**< HMAC using 384 bit SHA algorithm. */
	RTE_CRYPTO_AUTH_SHA512,
	/**< 512 bit SHA algorithm. */
	RTE_CRYPTO_AUTH_SHA512_HMAC,
	/**< HMAC using 512 bit SHA algorithm. */

	RTE_CRYPTO_AUTH_SNOW3G_UIA2,
	/**< SNOW 3G algorithm in UIA2 mode. */

	RTE_CRYPTO_AUTH_ZUC_EIA3,
	/**< ZUC algorithm in EIA3 mode */

	RTE_CRYPTO_AUTH_SHA3_224,
	/**< 224 bit SHA3 algorithm. */
	RTE_CRYPTO_AUTH_SHA3_224_HMAC,
	/**< HMAC using 224 bit SHA3 algorithm. */
	RTE_CRYPTO_AUTH_SHA3_256,
	/**< 256 bit SHA3 algorithm. */
	RTE_CRYPTO_AUTH_SHA3_256_HMAC,
	/**< HMAC using 256 bit SHA3 algorithm. */
	RTE_CRYPTO_AUTH_SHA3_384,
	/**< 384 bit SHA3 algorithm. */
	RTE_CRYPTO_AUTH_SHA3_384_HMAC,
	/**< HMAC using 384 bit SHA3 algorithm. */
	RTE_CRYPTO_AUTH_SHA3_512,
	/**< 512 bit SHA3 algorithm. */
	RTE_CRYPTO_AUTH_SHA3_512_HMAC,
	/**< HMAC using 512 bit SHA3 algorithm. */

	RTE_CRYPTO_AUTH_LIST_END
};

/** Authentication algorithm name strings */
extern const char *
rte_crypto_auth_algorithm_strings[];

/** Symmetric Authentication / Hash Operations */
enum rte_crypto_auth_operation {
	RTE_CRYPTO_AUTH_OP_VERIFY,	/**< Verify authentication digest */
	RTE_CRYPTO_AUTH_OP_GENERATE	/**< Generate authentication digest */
};

/** Authentication operation name strings */
extern const char *
rte_crypto_auth_operation_strings[];

/**
 * Authentication / Hash transform data.
 *
 * This structure contains data relating to an authentication/hash crypto
 * transforms. The fields op, algo and digest_length are common to all
 * authentication transforms and MUST be set.
 */
struct rte_crypto_auth_xform {
	enum rte_crypto_auth_operation op;
	/**< Authentication operation type */
	enum rte_crypto_auth_algorithm algo;
	/**< Authentication algorithm selection */

	struct {
		const uint8_t *data;	/**< pointer to key data */
		uint16_t length;	/**< key length in bytes */
	} key;
	/**< Authentication key data.
	 * The authentication key length MUST be less than or equal to the
	 * block size of the algorithm. It is the callers responsibility to
	 * ensure that the key length is compliant with the standard being used
	 * (for example RFC 2104, FIPS 198a).
	 */

	struct {
		uint16_t offset;
		/**< Starting point for Initialisation Vector or Counter,
		 * specified as number of bytes from start of crypto
		 * operation (rte_crypto_op).
		 *
		 * - For SNOW 3G in UIA2 mode, for ZUC in EIA3 mode
		 *   this is the authentication Initialisation Vector
		 *   (IV) value. For AES-GMAC IV description please refer
		 *   to the field `length` in iv struct.
		 *
		 * - For KASUMI in F9 mode and other authentication
		 *   algorithms, this field is not used.
		 *
		 * For optimum performance, the data pointed to SHOULD
		 * be 8-byte aligned.
		 */
		uint16_t length;
		/**< Length of valid IV data.
		 *
		 * - For SNOW3G in UIA2 mode, for ZUC in EIA3 mode and
		 *   for AES-GMAC, this is the length of the IV.
		 *
		 * - For KASUMI in F9 mode and other authentication
		 *   algorithms, this field is not used.
		 *
		 * - For GMAC mode, this is either:
		 * 1) Number greater or equal to one, which means that IV
		 *    is used and J0 will be computed internally, a minimum
		 *    of 16 bytes must be allocated.
		 * 2) Zero, in which case data points to J0. In this case
		 *    16 bytes of J0 should be passed where J0 is defined
		 *    by NIST SP800-38D.
		 *
		 */
	} iv;	/**< Initialisation vector parameters */

	uint16_t digest_length;
	/**< Length of the digest to be returned. If the verify option is set,
	 * this specifies the length of the digest to be compared for the
	 * session.
	 *
	 * It is the caller's responsibility to ensure that the
	 * digest length is compliant with the hash algorithm being used.
	 * If the value is less than the maximum length allowed by the hash,
	 * the result shall be truncated.
	 */
};


/** Symmetric AEAD Algorithms */
enum rte_crypto_aead_algorithm {
	RTE_CRYPTO_AEAD_AES_CCM = 1,
	/**< AES algorithm in CCM mode. */
	RTE_CRYPTO_AEAD_AES_GCM,
	/**< AES algorithm in GCM mode. */
	RTE_CRYPTO_AEAD_LIST_END
};

/** AEAD algorithm name strings */
extern const char *
rte_crypto_aead_algorithm_strings[];

/** Symmetric AEAD Operations */
enum rte_crypto_aead_operation {
	RTE_CRYPTO_AEAD_OP_ENCRYPT,
	/**< Encrypt and generate digest */
	RTE_CRYPTO_AEAD_OP_DECRYPT
	/**< Verify digest and decrypt */
};

/** Authentication operation name strings */
extern const char *
rte_crypto_aead_operation_strings[];

struct rte_crypto_aead_xform {
	enum rte_crypto_aead_operation op;
	/**< AEAD operation type */
	enum rte_crypto_aead_algorithm algo;
	/**< AEAD algorithm selection */

	struct {
		const uint8_t *data;	/**< pointer to key data */
		uint16_t length;	/**< key length in bytes */
	} key;

	struct {
		uint16_t offset;
		/**< Starting point for Initialisation Vector or Counter,
		 * specified as number of bytes from start of crypto
		 * operation (rte_crypto_op).
		 *
		 * - For CCM mode, the first byte is reserved, and the
		 * nonce should be written starting at &iv[1] (to allow
		 * space for the implementation to write in the flags
		 * in the first byte). Note that a full 16 bytes should
		 * be allocated, even though the length field will
		 * have a value less than this.
		 *
		 * For optimum performance, the data pointed to SHOULD
		 * be 8-byte aligned.
		 */
		uint16_t length;
		/**< Length of valid IV data.
		 *
		 * - For GCM mode, this is either:
		 * 1) Number greater or equal to one, which means that IV
		 *    is used and J0 will be computed internally, a minimum
		 *    of 16 bytes must be allocated.
		 * 2) Zero, in which case data points to J0. In this case
		 *    16 bytes of J0 should be passed where J0 is defined
		 *    by NIST SP800-38D.
		 *
		 * - For CCM mode, this is the length of the nonce,
		 * which can be in the range 7 to 13 inclusive.
		 */
	} iv;	/**< Initialisation vector parameters */

	uint16_t digest_length;

	uint16_t aad_length;
	/**< The length of the additional authenticated data (AAD) in bytes.
	 * For CCM mode, this is the length of the actual AAD, even though
	 * it is required to reserve 18 bytes before the AAD and padding
	 * at the end of it, so a multiple of 16 bytes is allocated.
	 */
};

/** Crypto transformation types */
enum rte_crypto_sym_xform_type {
	RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED = 0,	/**< No xform specified */
	RTE_CRYPTO_SYM_XFORM_AUTH,		/**< Authentication xform */
	RTE_CRYPTO_SYM_XFORM_CIPHER,		/**< Cipher xform  */
	RTE_CRYPTO_SYM_XFORM_AEAD		/**< AEAD xform  */
};

/**
 * Symmetric crypto transform structure.
 *
 * This is used to specify the crypto transforms required, multiple transforms
 * can be chained together to specify a chain transforms such as authentication
 * then cipher, or cipher then authentication. Each transform structure can
 * hold a single transform, the type field is used to specify which transform
 * is contained within the union
 */
struct rte_crypto_sym_xform {
	struct rte_crypto_sym_xform *next;
	/**< next xform in chain */
	enum rte_crypto_sym_xform_type type
	; /**< xform type */
	RTE_STD_C11
	union {
		struct rte_crypto_auth_xform auth;
		/**< Authentication / hash xform */
		struct rte_crypto_cipher_xform cipher;
		/**< Cipher xform */
		struct rte_crypto_aead_xform aead;
		/**< AEAD xform */
	};
};

struct rte_cryptodev_sym_session;

/**
 * Symmetric Cryptographic Operation.
 *
 * This structure contains data relating to performing symmetric cryptographic
 * processing on a referenced mbuf data buffer.
 *
 * When a symmetric crypto operation is enqueued with the device for processing
 * it must have a valid *rte_mbuf* structure attached, via m_src parameter,
 * which contains the source data which the crypto operation is to be performed
 * on.
 * While the mbuf is in use by a crypto operation no part of the mbuf should be
 * changed by the application as the device may read or write to any part of the
 * mbuf. In the case of hardware crypto devices some or all of the mbuf
 * may be DMAed in and out of the device, so writing over the original data,
 * though only the part specified by the rte_crypto_sym_op for transformation
 * will be changed.
 * Out-of-place (OOP) operation, where the source mbuf is different to the
 * destination mbuf, is a special case. Data will be copied from m_src to m_dst.
 * The part copied includes all the parts of the source mbuf that will be
 * operated on, based on the cipher.data.offset+cipher.data.length and
 * auth.data.offset+auth.data.length values in the rte_crypto_sym_op. The part
 * indicated by the cipher parameters will be transformed, any extra data around
 * this indicated by the auth parameters will be copied unchanged from source to
 * destination mbuf.
 * Also in OOP operation the cipher.data.offset and auth.data.offset apply to
 * both source and destination mbufs. As these offsets are relative to the
 * data_off parameter in each mbuf this can result in the data written to the
 * destination buffer being at a different alignment, relative to buffer start,
 * to the data in the source buffer.
 */
struct rte_crypto_sym_op {
	struct rte_mbuf *m_src;	/**< source mbuf */
	struct rte_mbuf *m_dst;	/**< destination mbuf */

	RTE_STD_C11
	union {
		struct rte_cryptodev_sym_session *session;
		/**< Handle for the initialised session context */
		struct rte_crypto_sym_xform *xform;
		/**< Session-less API crypto operation parameters */
		struct rte_security_session *sec_session;
		/**< Handle for the initialised security session context */
	};

	RTE_STD_C11
	union {
		struct {
			struct {
				uint32_t offset;
				 /**< Starting point for AEAD processing, specified as
				  * number of bytes from start of packet in source
				  * buffer.
				  */
				uint32_t length;
				 /**< The message length, in bytes, of the source buffer
				  * on which the cryptographic operation will be
				  * computed. This must be a multiple of the block size
				  */
			} data; /**< Data offsets and length for AEAD */
			struct {
				uint8_t *data;
				/**< This points to the location where the digest result
				 * should be inserted (in the case of digest generation)
				 * or where the purported digest exists (in the case of
				 * digest verification).
				 *
				 * At session creation time, the client specified the
				 * digest result length with the digest_length member
				 * of the @ref rte_crypto_auth_xform structure. For
				 * physical crypto devices the caller must allocate at
				 * least digest_length of physically contiguous memory
				 * at this location.
				 *
				 * For digest generation, the digest result will
				 * overwrite any data at this location.
				 *
				 * @note
				 * For GCM (@ref RTE_CRYPTO_AEAD_AES_GCM), for
				 * "digest result" read "authentication tag T".
				 */
				rte_iova_t phys_addr;
				/**< Physical address of digest */
			} digest; /**< Digest parameters */
			struct {
				uint8_t *data;
				/**< Pointer to Additional Authenticated Data (AAD)
				 * needed for authenticated cipher mechanisms (CCM and
				 * GCM)
				 *
				 * Specifically for CCM (@ref RTE_CRYPTO_AEAD_AES_CCM),
				 * the caller should setup this field as follows:
				 *
				 * - the additional authentication data itself should
				 * be written starting at an offset of 18 bytes into
				 * the array, leaving room for the first block (16 bytes)
				 * and the length encoding in the first two bytes of the
				 * second block.
				 *
				 * - the array should be big enough to hold the above
				 * fields, plus any padding to round this up to the
				 * nearest multiple of the block size (16 bytes).
				 * Padding will be added by the implementation.
				 *
				 * - Note that PMDs may modify the memory reserved
				 * (first 18 bytes and the final padding).
				 *
				 * Finally, for GCM (@ref RTE_CRYPTO_AEAD_AES_GCM), the
				 * caller should setup this field as follows:
				 *
				 * - the AAD is written in starting at byte 0
				 * - the array must be big enough to hold the AAD, plus
				 * any space to round this up to the nearest multiple
				 * of the block size (16 bytes).
				 *
				 */
				rte_iova_t phys_addr;	/**< physical address */
			} aad;
			/**< Additional authentication parameters */
		} aead;

		struct {
			struct {
				struct {
					uint32_t offset;
					 /**< Starting point for cipher processing,
					  * specified as number of bytes from start
					  * of data in the source buffer.
					  * The result of the cipher operation will be
					  * written back into the output buffer
					  * starting at this location.
					  *
					  * @note
					  * For SNOW 3G @ RTE_CRYPTO_CIPHER_SNOW3G_UEA2,
					  * KASUMI @ RTE_CRYPTO_CIPHER_KASUMI_F8
					  * and ZUC @ RTE_CRYPTO_CIPHER_ZUC_EEA3,
					  * this field should be in bits.
					  */
					uint32_t length;
					 /**< The message length, in bytes, of the
					  * source buffer on which the cryptographic
					  * operation will be computed.
					  * This must be a multiple of the block size
					  * if a block cipher is being used. This is
					  * also the same as the result length.
					  *
					  * @note
					  * For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UEA2,
					  * KASUMI @ RTE_CRYPTO_CIPHER_KASUMI_F8
					  * and ZUC @ RTE_CRYPTO_CIPHER_ZUC_EEA3,
					  * this field should be in bits.
					  */
				} data; /**< Data offsets and length for ciphering */
			} cipher;

			struct {
				struct {
					uint32_t offset;
					 /**< Starting point for hash processing,
					  * specified as number of bytes from start of
					  * packet in source buffer.
					  *
					  * @note
					  * For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UIA2,
					  * KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9
					  * and ZUC @ RTE_CRYPTO_AUTH_ZUC_EIA3,
					  * this field should be in bits.
					  *
					  * @note
					  * For KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9,
					  * this offset should be such that
					  * data to authenticate starts at COUNT.
					  */
					uint32_t length;
					 /**< The message length, in bytes, of the source
					  * buffer that the hash will be computed on.
					  *
					  * @note
					  * For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UIA2,
					  * KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9
					  * and ZUC @ RTE_CRYPTO_AUTH_ZUC_EIA3,
					  * this field should be in bits.
					  *
					  * @note
					  * For KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9,
					  * the length should include the COUNT,
					  * FRESH, message, direction bit and padding
					  * (to be multiple of 8 bits).
					  */
				} data;
				/**< Data offsets and length for authentication */

				struct {
					uint8_t *data;
					/**< This points to the location where
					 * the digest result should be inserted
					 * (in the case of digest generation)
					 * or where the purported digest exists
					 * (in the case of digest verification).
					 *
					 * At session creation time, the client
					 * specified the digest result length with
					 * the digest_length member of the
					 * @ref rte_crypto_auth_xform structure.
					 * For physical crypto devices the caller
					 * must allocate at least digest_length of
					 * physically contiguous memory at this
					 * location.
					 *
					 * For digest generation, the digest result
					 * will overwrite any data at this location.
					 *
					 * @note
					 * Digest-encrypted case.
					 * Digest can be generated, appended to
					 * the end of raw data and encrypted
					 * together using chained digest
					 * generation
					 * (@ref RTE_CRYPTO_AUTH_OP_GENERATE)
					 * and encryption
					 * (@ref RTE_CRYPTO_CIPHER_OP_ENCRYPT)
					 * xforms. Similarly, authentication
					 * of the raw data against appended,
					 * decrypted digest, can be performed
					 * using decryption
					 * (@ref RTE_CRYPTO_CIPHER_OP_DECRYPT)
					 * and digest verification
					 * (@ref RTE_CRYPTO_AUTH_OP_VERIFY)
					 * chained xforms.
					 * To perform those operations, a few
					 * additional conditions must be met:
					 * - caller must allocate at least
					 * digest_length of memory at the end of
					 * source and (in case of out-of-place
					 * operations) destination buffer; those
					 * buffers can be linear or split using
					 * scatter-gather lists,
					 * - digest data pointer must point to
					 * the end of source or (in case of
					 * out-of-place operations) destination
					 * data, which is pointer to the
					 * data buffer + auth.data.offset +
					 * auth.data.length,
					 * - cipher.data.offset +
					 * cipher.data.length must be greater
					 * than auth.data.offset +
					 * auth.data.length and is typically
					 * equal to auth.data.offset +
					 * auth.data.length + digest_length.
					 *
					 * Note, that for security reasons, it
					 * is PMDs' responsibility to not
					 * leave an unencrypted digest in any
					 * buffer after performing auth-cipher
					 * operations.
					 *
					 */
					rte_iova_t phys_addr;
					/**< Physical address of digest */
				} digest; /**< Digest parameters */
			} auth;
		};
	};
};


/**
 * Reset the fields of a symmetric operation to their default values.
 *
 * @param	op	The crypto operation to be reset.
 */
static inline void
__rte_crypto_sym_op_reset(struct rte_crypto_sym_op *op)
{
	memset(op, 0, sizeof(*op));
}


/**
 * Allocate space for symmetric crypto xforms in the private data space of the
 * crypto operation. This also defaults the crypto xform type to
 * RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED and configures the chaining of the xforms
 * in the crypto operation
 *
 * @return
 * - On success returns pointer to first crypto xform in crypto operations chain
 * - On failure returns NULL
 */
static inline struct rte_crypto_sym_xform *
__rte_crypto_sym_op_sym_xforms_alloc(struct rte_crypto_sym_op *sym_op,
		void *priv_data, uint8_t nb_xforms)
{
	struct rte_crypto_sym_xform *xform;

	sym_op->xform = xform = (struct rte_crypto_sym_xform *)priv_data;

	do {
		xform->type = RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED;
		xform = xform->next = --nb_xforms > 0 ? xform + 1 : NULL;
	} while (xform);

	return sym_op->xform;
}


/**
 * Attach a session to a symmetric crypto operation
 *
 * @param	sym_op	crypto operation
 * @param	sess	cryptodev session
 */
static inline int
__rte_crypto_sym_op_attach_sym_session(struct rte_crypto_sym_op *sym_op,
		struct rte_cryptodev_sym_session *sess)
{
	sym_op->session = sess;

	return 0;
}


#ifdef __cplusplus
}
#endif

#endif /* _RTE_CRYPTO_SYM_H_ */