DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2019 Intel Corporation
 */

#include <rte_malloc.h>
#include <rte_eal.h>
#include <rte_log.h>
#include <rte_compressdev.h>

#include "comp_perf.h"
#include "comp_perf_options.h"
#include "comp_perf_test_benchmark.h"
#include "comp_perf_test_common.h"
#include "comp_perf_test_verify.h"


#define DIV_CEIL(a, b)  ((a) / (b) + ((a) % (b) != 0))

struct cperf_buffer_info {
	uint16_t total_segments;
	uint16_t segment_sz;
	uint16_t last_segment_sz;
	uint32_t total_buffs;	      /*number of buffers = number of ops*/
	uint16_t segments_per_buff;
	uint16_t segments_per_last_buff;
	size_t input_data_sz;
};

static struct cperf_buffer_info buffer_info;

int
param_range_check(uint16_t size, const struct rte_param_log2_range *range)
{
	unsigned int next_size;

	/* Check lower/upper bounds */
	if (size < range->min)
		return -1;

	if (size > range->max)
		return -1;

	/* If range is actually only one value, size is correct */
	if (range->increment == 0)
		return 0;

	/* Check if value is one of the supported sizes */
	for (next_size = range->min; next_size <= range->max;
			next_size += range->increment)
		if (size == next_size)
			return 0;

	return -1;
}

static uint32_t
find_buf_size(uint32_t input_size)
{
	uint32_t i;

	/* From performance point of view the buffer size should be a
	 * power of 2 but also should be enough to store incompressible data
	 */

	/* We're looking for nearest power of 2 buffer size, which is greater
	 * than input_size
	 */
	uint32_t size =
		!input_size ? MIN_COMPRESSED_BUF_SIZE : (input_size << 1);

	for (i = UINT16_MAX + 1; !(i & size); i >>= 1)
		;

	return i > ((UINT16_MAX + 1) >> 1)
			? (uint32_t)((float)input_size * EXPANSE_RATIO)
			: i;
}

void
comp_perf_free_memory(struct comp_test_data *test_data,
		      struct cperf_mem_resources *mem)
{
	uint32_t i;

	if (mem->decomp_bufs != NULL)
		for (i = 0; i < mem->total_bufs; i++)
			rte_pktmbuf_free(mem->decomp_bufs[i]);

	if (mem->comp_bufs != NULL)
		for (i = 0; i < mem->total_bufs; i++)
			rte_pktmbuf_free(mem->comp_bufs[i]);

	rte_free(mem->decomp_bufs);
	rte_free(mem->comp_bufs);
	rte_free(mem->decompressed_data);
	rte_free(mem->compressed_data);
	rte_mempool_free(mem->op_pool);
	rte_mempool_free(mem->decomp_buf_pool);
	rte_mempool_free(mem->comp_buf_pool);

	/* external mbuf support */
	if (mem->decomp_memzones != NULL) {
		for (i = 0; i < test_data->total_segs; i++)
			rte_memzone_free(mem->decomp_memzones[i]);
		rte_free(mem->decomp_memzones);
	}
	if (mem->comp_memzones != NULL) {
		for (i = 0; i < test_data->total_segs; i++)
			rte_memzone_free(mem->comp_memzones[i]);
		rte_free(mem->comp_memzones);
	}
	rte_free(mem->decomp_buf_infos);
	rte_free(mem->comp_buf_infos);
}

static void
comp_perf_extbuf_free_cb(void *addr __rte_unused, void *opaque __rte_unused)
{
}

static const struct rte_memzone *
comp_perf_make_memzone(const char *name, struct cperf_mem_resources *mem,
		       unsigned int number, size_t size)
{
	unsigned int socket_id = rte_socket_id();
	char mz_name[RTE_MEMZONE_NAMESIZE];
	const struct rte_memzone *memzone;

	snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "%s_s%u_d%u_q%u_%d", name,
		 socket_id, mem->dev_id, mem->qp_id, number);
	memzone = rte_memzone_lookup(mz_name);
	if (memzone != NULL && memzone->len != size) {
		rte_memzone_free(memzone);
		memzone = NULL;
	}
	if (memzone == NULL) {
		memzone = rte_memzone_reserve_aligned(mz_name, size, socket_id,
				RTE_MEMZONE_IOVA_CONTIG, RTE_CACHE_LINE_SIZE);
		if (memzone == NULL)
			RTE_LOG(ERR, USER1, "Can't allocate memory zone %s\n",
				mz_name);
	}
	return memzone;
}

static int
comp_perf_allocate_external_mbufs(struct comp_test_data *test_data,
				  struct cperf_mem_resources *mem)
{
	uint32_t i;

	mem->comp_memzones = rte_zmalloc_socket(NULL,
		test_data->total_segs * sizeof(struct rte_memzone *),
		0, rte_socket_id());

	if (mem->comp_memzones == NULL) {
		RTE_LOG(ERR, USER1,
			"Memory to hold the compression memzones could not be allocated\n");
		return -1;
	}

	mem->decomp_memzones = rte_zmalloc_socket(NULL,
		test_data->total_segs * sizeof(struct rte_memzone *),
		0, rte_socket_id());

	if (mem->decomp_memzones == NULL) {
		RTE_LOG(ERR, USER1,
			"Memory to hold the decompression memzones could not be allocated\n");
		return -1;
	}

	mem->comp_buf_infos = rte_zmalloc_socket(NULL,
		test_data->total_segs * sizeof(struct rte_mbuf_ext_shared_info),
		0, rte_socket_id());

	if (mem->comp_buf_infos == NULL) {
		RTE_LOG(ERR, USER1,
			"Memory to hold the compression buf infos could not be allocated\n");
		return -1;
	}

	mem->decomp_buf_infos = rte_zmalloc_socket(NULL,
		test_data->total_segs * sizeof(struct rte_mbuf_ext_shared_info),
		0, rte_socket_id());

	if (mem->decomp_buf_infos == NULL) {
		RTE_LOG(ERR, USER1,
			"Memory to hold the decompression buf infos could not be allocated\n");
		return -1;
	}

	for (i = 0; i < test_data->total_segs; i++) {
		mem->comp_memzones[i] = comp_perf_make_memzone("comp", mem,
				i, test_data->out_seg_sz);
		if (mem->comp_memzones[i] == NULL) {
			RTE_LOG(ERR, USER1,
				"Memory to hold the compression memzone could not be allocated\n");
			return -1;
		}

		mem->decomp_memzones[i] = comp_perf_make_memzone("decomp", mem,
				i, test_data->seg_sz);
		if (mem->decomp_memzones[i] == NULL) {
			RTE_LOG(ERR, USER1,
				"Memory to hold the decompression memzone could not be allocated\n");
			return -1;
		}

		mem->comp_buf_infos[i].free_cb =
				comp_perf_extbuf_free_cb;
		mem->comp_buf_infos[i].fcb_opaque = NULL;
		rte_mbuf_ext_refcnt_set(&mem->comp_buf_infos[i], 1);

		mem->decomp_buf_infos[i].free_cb =
				comp_perf_extbuf_free_cb;
		mem->decomp_buf_infos[i].fcb_opaque = NULL;
		rte_mbuf_ext_refcnt_set(&mem->decomp_buf_infos[i], 1);
	}

	return 0;
}

int
comp_perf_allocate_memory(struct comp_test_data *test_data,
			  struct cperf_mem_resources *mem)
{
	uint16_t comp_mbuf_size;
	uint16_t decomp_mbuf_size;

	test_data->out_seg_sz = find_buf_size(test_data->seg_sz);

	/* Number of segments for input and output
	 * (compression and decompression)
	 */
	test_data->total_segs = DIV_CEIL(test_data->input_data_sz,
			test_data->seg_sz);

	if (test_data->use_external_mbufs != 0) {
		if (comp_perf_allocate_external_mbufs(test_data, mem) < 0)
			return -1;
		comp_mbuf_size = 0;
		decomp_mbuf_size = 0;
	} else {
		comp_mbuf_size = test_data->out_seg_sz + RTE_PKTMBUF_HEADROOM;
		decomp_mbuf_size = test_data->seg_sz + RTE_PKTMBUF_HEADROOM;
	}

	char pool_name[32] = "";

	snprintf(pool_name, sizeof(pool_name), "comp_buf_pool_%u_qp_%u",
			mem->dev_id, mem->qp_id);
	mem->comp_buf_pool = rte_pktmbuf_pool_create(pool_name,
				test_data->total_segs,
				0, 0,
				comp_mbuf_size,
				rte_socket_id());
	if (mem->comp_buf_pool == NULL) {
		RTE_LOG(ERR, USER1, "Mbuf mempool could not be created\n");
		return -1;
	}

	snprintf(pool_name, sizeof(pool_name), "decomp_buf_pool_%u_qp_%u",
			mem->dev_id, mem->qp_id);
	mem->decomp_buf_pool = rte_pktmbuf_pool_create(pool_name,
				test_data->total_segs,
				0, 0,
				decomp_mbuf_size,
				rte_socket_id());
	if (mem->decomp_buf_pool == NULL) {
		RTE_LOG(ERR, USER1, "Mbuf mempool could not be created\n");
		return -1;
	}

	mem->total_bufs = DIV_CEIL(test_data->total_segs,
				   test_data->max_sgl_segs);

	snprintf(pool_name, sizeof(pool_name), "op_pool_%u_qp_%u",
			mem->dev_id, mem->qp_id);
	mem->op_pool = rte_comp_op_pool_create(pool_name,
				  mem->total_bufs,
				  0, 0, rte_socket_id());
	if (mem->op_pool == NULL) {
		RTE_LOG(ERR, USER1, "Comp op mempool could not be created\n");
		return -1;
	}

	/*
	 * Compressed data might be a bit larger than input data,
	 * if data cannot be compressed
	 */
	mem->compressed_data = rte_zmalloc_socket(NULL,
				RTE_MAX(
				    (size_t) test_data->out_seg_sz *
							  test_data->total_segs,
				    (size_t) MIN_COMPRESSED_BUF_SIZE),
				0,
				rte_socket_id());
	if (mem->compressed_data == NULL) {
		RTE_LOG(ERR, USER1, "Memory to hold the data from the input "
				"file could not be allocated\n");
		return -1;
	}

	mem->decompressed_data = rte_zmalloc_socket(NULL,
				test_data->input_data_sz, 0,
				rte_socket_id());
	if (mem->decompressed_data == NULL) {
		RTE_LOG(ERR, USER1, "Memory to hold the data from the input "
				"file could not be allocated\n");
		return -1;
	}

	mem->comp_bufs = rte_zmalloc_socket(NULL,
			mem->total_bufs * sizeof(struct rte_mbuf *),
			0, rte_socket_id());
	if (mem->comp_bufs == NULL) {
		RTE_LOG(ERR, USER1, "Memory to hold the compression mbufs"
				" could not be allocated\n");
		return -1;
	}

	mem->decomp_bufs = rte_zmalloc_socket(NULL,
			mem->total_bufs * sizeof(struct rte_mbuf *),
			0, rte_socket_id());
	if (mem->decomp_bufs == NULL) {
		RTE_LOG(ERR, USER1, "Memory to hold the decompression mbufs"
				" could not be allocated\n");
		return -1;
	}

	buffer_info.total_segments = test_data->total_segs;
	buffer_info.segment_sz = test_data->seg_sz;
	buffer_info.total_buffs = mem->total_bufs;
	buffer_info.segments_per_buff = test_data->max_sgl_segs;
	buffer_info.input_data_sz = test_data->input_data_sz;

	return 0;
}

int
prepare_bufs(struct comp_test_data *test_data, struct cperf_mem_resources *mem)
{
	uint32_t remaining_data = test_data->input_data_sz;
	uint8_t *input_data_ptr = test_data->input_data;
	size_t data_sz = 0;
	uint8_t *data_addr;
	uint32_t i, j;
	uint16_t segs_per_mbuf = 0;
	uint32_t cmz = 0;
	uint32_t dmz = 0;

	for (i = 0; i < mem->total_bufs; i++) {
		/* Allocate data in input mbuf and copy data from input file */
		mem->decomp_bufs[i] =
			rte_pktmbuf_alloc(mem->decomp_buf_pool);
		if (mem->decomp_bufs[i] == NULL) {
			RTE_LOG(ERR, USER1, "Could not allocate mbuf\n");
			return -1;
		}

		data_sz = RTE_MIN(remaining_data, test_data->seg_sz);

		if (test_data->use_external_mbufs != 0) {
			rte_pktmbuf_attach_extbuf(mem->decomp_bufs[i],
					mem->decomp_memzones[dmz]->addr,
					mem->decomp_memzones[dmz]->iova,
					test_data->seg_sz,
					&mem->decomp_buf_infos[dmz]);
			dmz++;
		}

		data_addr = (uint8_t *) rte_pktmbuf_append(
					mem->decomp_bufs[i], data_sz);
		if (data_addr == NULL) {
			RTE_LOG(ERR, USER1, "Could not append data\n");
			return -1;
		}
		rte_memcpy(data_addr, input_data_ptr, data_sz);

		input_data_ptr += data_sz;
		remaining_data -= data_sz;

		/* Already one segment in the mbuf */
		segs_per_mbuf = 1;

		/* Chain mbufs if needed for input mbufs */
		while (segs_per_mbuf < test_data->max_sgl_segs
				&& remaining_data > 0) {
			struct rte_mbuf *next_seg =
				rte_pktmbuf_alloc(mem->decomp_buf_pool);

			if (next_seg == NULL) {
				RTE_LOG(ERR, USER1,
					"Could not allocate mbuf\n");
				return -1;
			}

			data_sz = RTE_MIN(remaining_data, test_data->seg_sz);

			if (test_data->use_external_mbufs != 0) {
				rte_pktmbuf_attach_extbuf(
					next_seg,
					mem->decomp_memzones[dmz]->addr,
					mem->decomp_memzones[dmz]->iova,
					test_data->seg_sz,
					&mem->decomp_buf_infos[dmz]);
				dmz++;
			}

			data_addr = (uint8_t *)rte_pktmbuf_append(next_seg,
				data_sz);

			if (data_addr == NULL) {
				RTE_LOG(ERR, USER1, "Could not append data\n");
				return -1;
			}

			rte_memcpy(data_addr, input_data_ptr, data_sz);
			input_data_ptr += data_sz;
			remaining_data -= data_sz;

			if (rte_pktmbuf_chain(mem->decomp_bufs[i],
					next_seg) < 0) {
				RTE_LOG(ERR, USER1, "Could not chain mbufs\n");
				return -1;
			}
			segs_per_mbuf++;
		}

		/* Allocate data in output mbuf */
		mem->comp_bufs[i] =
			rte_pktmbuf_alloc(mem->comp_buf_pool);
		if (mem->comp_bufs[i] == NULL) {
			RTE_LOG(ERR, USER1, "Could not allocate mbuf\n");
			return -1;
		}

		if (test_data->use_external_mbufs != 0) {
			rte_pktmbuf_attach_extbuf(mem->comp_bufs[i],
					mem->comp_memzones[cmz]->addr,
					mem->comp_memzones[cmz]->iova,
					test_data->out_seg_sz,
					&mem->comp_buf_infos[cmz]);
			cmz++;
		}

		data_addr = (uint8_t *) rte_pktmbuf_append(
					mem->comp_bufs[i],
					test_data->out_seg_sz);
		if (data_addr == NULL) {
			RTE_LOG(ERR, USER1, "Could not append data\n");
			return -1;
		}

		/* Chain mbufs if needed for output mbufs */
		for (j = 1; j < segs_per_mbuf; j++) {
			struct rte_mbuf *next_seg =
				rte_pktmbuf_alloc(mem->comp_buf_pool);

			if (next_seg == NULL) {
				RTE_LOG(ERR, USER1,
					"Could not allocate mbuf\n");
				return -1;
			}

			if (test_data->use_external_mbufs != 0) {
				rte_pktmbuf_attach_extbuf(
					next_seg,
					mem->comp_memzones[cmz]->addr,
					mem->comp_memzones[cmz]->iova,
					test_data->out_seg_sz,
					&mem->comp_buf_infos[cmz]);
				cmz++;
			}

			data_addr = (uint8_t *)rte_pktmbuf_append(next_seg,
				test_data->out_seg_sz);
			if (data_addr == NULL) {
				RTE_LOG(ERR, USER1, "Could not append data\n");
				return -1;
			}

			if (rte_pktmbuf_chain(mem->comp_bufs[i],
					next_seg) < 0) {
				RTE_LOG(ERR, USER1, "Could not chain mbufs\n");
				return -1;
			}
		}
	}

	buffer_info.segments_per_last_buff = segs_per_mbuf;
	buffer_info.last_segment_sz = data_sz;

	return 0;
}

void
print_test_dynamics(void)
{
	uint32_t opt_total_segs = DIV_CEIL(buffer_info.input_data_sz,
			MAX_SEG_SIZE);

	if (buffer_info.total_buffs > 1) {
		printf("\nWarning: for the current input parameters, number"
				" of ops is higher than one, which may result"
				" in sub-optimal performance.\n");
		printf("To improve the performance (for the current"
				" input data) following parameters are"
				" suggested:\n");
		printf("	* Segment size: %d\n", MAX_SEG_SIZE);
		printf("	* Number of segments: %u\n", opt_total_segs);
	} else if (buffer_info.total_buffs == 1) {
		printf("\nInfo: there is only one op with %u segments -"
				" the compression ratio is the best.\n",
			buffer_info.segments_per_last_buff);
		if (buffer_info.segment_sz < MAX_SEG_SIZE)
			printf("To reduce compression time, please use"
					" bigger segment size: %d.\n",
				MAX_SEG_SIZE);
		else if (buffer_info.segment_sz == MAX_SEG_SIZE)
			printf("Segment size is optimal for the best"
					" performance.\n");
	} else
		printf("Warning: something wrong happened!!\n");

	printf("\nFor the current input parameters (segment size = %u,"
			" maximum segments per SGL = %u):\n",
		buffer_info.segment_sz,
		buffer_info.segments_per_buff);
	printf("	* Total number of buffers: %d\n",
		buffer_info.total_segments);
	printf("	* %u buffer(s) %u bytes long, last buffer %u"
			" byte(s) long\n",
		buffer_info.total_segments - 1,
		buffer_info.segment_sz,
		buffer_info.last_segment_sz);
	printf("	* Number of ops: %u\n", buffer_info.total_buffs);
	printf("	* Total memory allocation: %u\n",
		(buffer_info.total_segments - 1) * buffer_info.segment_sz
		+ buffer_info.last_segment_sz);
	if (buffer_info.total_buffs > 1)
		printf("	* %u ops: %u segment(s) in each,"
				" segment size %u\n",
			buffer_info.total_buffs - 1,
			buffer_info.segments_per_buff,
			buffer_info.segment_sz);
	if (buffer_info.segments_per_last_buff > 1) {
		printf("	* 1 op %u segments:\n",
				buffer_info.segments_per_last_buff);
		printf("		o %u segment size %u\n",
			buffer_info.segments_per_last_buff - 1,
			buffer_info.segment_sz);
		printf("		o last segment size %u\n",
			buffer_info.last_segment_sz);
	} else if (buffer_info.segments_per_last_buff == 1) {
		printf("	* 1 op (the last one): %u segment %u"
				" byte(s) long\n\n",
			buffer_info.segments_per_last_buff,
			buffer_info.last_segment_sz);
	}
	printf("\n");
}