DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright 2018-2019 NXP
 */

#ifndef _PFE_H_
#define _PFE_H_

#include "cbus.h"

/*
 * WARNING: non atomic version.
 */
static inline void
set_bit(unsigned long nr, void *addr)
{
	int *m = ((int *)addr) + (nr >> 5);
	*m |= 1 << (nr & 31);
}

static inline int
test_bit(int nr, const void *addr)
{
	return (1UL & (((const int *)addr)[nr >> 5] >> (nr & 31))) != 0UL;
}

/*
 * WARNING: non atomic version.
 */
static inline void
clear_bit(unsigned long nr, void *addr)
{
	int *m = ((int *)addr) + (nr >> 5);
	*m &= ~(1 << (nr & 31));
}

/*
 * WARNING: non atomic version.
 */
static inline int
test_and_clear_bit(unsigned long nr, void *addr)
{
	unsigned long mask = 1 << (nr & 0x1f);
	int *m = ((int *)addr) + (nr >> 5);
	int old = *m;

	*m = old & ~mask;
	return (old & mask) != 0;
}

/*
 * WARNING: non atomic version.
 */
static inline int
test_and_set_bit(unsigned long nr, void *addr)
{
	unsigned long mask = 1 << (nr & 0x1f);
	int *m = ((int *)addr) + (nr >> 5);
	int old = *m;

	*m = old | mask;
	return (old & mask) != 0;
}

#ifndef BIT
#define BIT(nr)                (1UL << (nr))
#endif
#define CLASS_DMEM_BASE_ADDR(i)	(0x00000000 | ((i) << 20))
/*
 * Only valid for mem access register interface
 */
#define CLASS_IMEM_BASE_ADDR(i)	(0x00000000 | ((i) << 20))
#define CLASS_DMEM_SIZE	0x00002000
#define CLASS_IMEM_SIZE	0x00008000

#define TMU_DMEM_BASE_ADDR(i)	(0x00000000 + ((i) << 20))
/*
 * Only valid for mem access register interface
 */
#define TMU_IMEM_BASE_ADDR(i)	(0x00000000 + ((i) << 20))
#define TMU_DMEM_SIZE	0x00000800
#define TMU_IMEM_SIZE	0x00002000

#define UTIL_DMEM_BASE_ADDR	0x00000000
#define UTIL_DMEM_SIZE	0x00002000

#define PE_LMEM_BASE_ADDR	0xc3010000
#define PE_LMEM_SIZE	0x8000
#define PE_LMEM_END	(PE_LMEM_BASE_ADDR + PE_LMEM_SIZE)

#define DMEM_BASE_ADDR	0x00000000
#define DMEM_SIZE	0x2000	/* TMU has less... */
#define DMEM_END	(DMEM_BASE_ADDR + DMEM_SIZE)

#define PMEM_BASE_ADDR	0x00010000
#define PMEM_SIZE	0x8000	/* TMU has less... */
#define PMEM_END	(PMEM_BASE_ADDR + PMEM_SIZE)

#define writel(v, p) ({*(volatile unsigned int *)(p) = (v); })
#define readl(p) (*(const volatile unsigned int *)(p))

/* These check memory ranges from PE point of view/memory map */
#define IS_DMEM(addr, len)				\
	({ typeof(addr) addr_ = (addr);			\
	((unsigned long)(addr_) >= DMEM_BASE_ADDR) &&	\
	(((unsigned long)(addr_) + (len)) <= DMEM_END); })

#define IS_PMEM(addr, len)				\
	({ typeof(addr) addr_ = (addr);			\
	((unsigned long)(addr_) >= PMEM_BASE_ADDR) &&	\
	(((unsigned long)(addr_) + (len)) <= PMEM_END); })

#define IS_PE_LMEM(addr, len)				\
	({ typeof(addr) addr_ = (addr);			\
	((unsigned long)(addr_) >=			\
	PE_LMEM_BASE_ADDR) &&				\
	(((unsigned long)(addr_) +			\
	(len)) <= PE_LMEM_END); })

#define IS_PFE_LMEM(addr, len)				\
	({ typeof(addr) addr_ = (addr);			\
	((unsigned long)(addr_) >=			\
	CBUS_VIRT_TO_PFE(LMEM_BASE_ADDR)) &&		\
	(((unsigned long)(addr_) + (len)) <=		\
	CBUS_VIRT_TO_PFE(LMEM_END)); })

#define __IS_PHYS_DDR(addr, len)			\
	({ typeof(addr) addr_ = (addr);			\
	((unsigned long)(addr_) >=			\
	DDR_PHYS_BASE_ADDR) &&				\
	(((unsigned long)(addr_) + (len)) <=		\
	DDR_PHYS_END); })

#define IS_PHYS_DDR(addr, len)	__IS_PHYS_DDR(DDR_PFE_TO_PHYS(addr), len)

/*
 * If using a run-time virtual address for the cbus base address use this code
 */
extern void *cbus_base_addr;
extern void *ddr_base_addr;
extern unsigned long ddr_phys_base_addr;
extern unsigned int ddr_size;

#define CBUS_BASE_ADDR	cbus_base_addr
#define DDR_PHYS_BASE_ADDR	ddr_phys_base_addr
#define DDR_BASE_ADDR	ddr_base_addr
#define DDR_SIZE	ddr_size

#define DDR_PHYS_END	(DDR_PHYS_BASE_ADDR + DDR_SIZE)

#define LS1012A_PFE_RESET_WA	/*
				 * PFE doesn't have global reset and re-init
				 * should takecare few things to make PFE
				 * functional after reset
				 */
#define PFE_CBUS_PHYS_BASE_ADDR	0xc0000000	/* CBUS physical base address
						 * as seen by PE's.
						 */
/* CBUS physical base address as seen by PE's. */
#define PFE_CBUS_PHYS_BASE_ADDR_FROM_PFE	0xc0000000

#define DDR_PHYS_TO_PFE(p)	(((unsigned long)(p)) & 0x7FFFFFFF)
#define DDR_PFE_TO_PHYS(p)	(((unsigned long)(p)) | 0x80000000)
#define CBUS_PHYS_TO_PFE(p)	(((p) - PFE_CBUS_PHYS_BASE_ADDR) + \
				PFE_CBUS_PHYS_BASE_ADDR_FROM_PFE)
/* Translates to PFE address map */

#define DDR_PHYS_TO_VIRT(p)	(((p) - DDR_PHYS_BASE_ADDR) + DDR_BASE_ADDR)
#define DDR_VIRT_TO_PHYS(v)	(((v) - DDR_BASE_ADDR) + DDR_PHYS_BASE_ADDR)
#define DDR_VIRT_TO_PFE(p)	(DDR_PHYS_TO_PFE(DDR_VIRT_TO_PHYS(p)))

#define CBUS_VIRT_TO_PFE(v)	(((v) - CBUS_BASE_ADDR) + \
				PFE_CBUS_PHYS_BASE_ADDR)
#define CBUS_PFE_TO_VIRT(p)	(((unsigned long)(p) - \
				PFE_CBUS_PHYS_BASE_ADDR) + CBUS_BASE_ADDR)

/* The below part of the code is used in QOS control driver from host */
#define TMU_APB_BASE_ADDR       0xc1000000      /* TMU base address seen by
						 * pe's
						 */

enum {
	CLASS0_ID = 0,
	CLASS1_ID,
	CLASS2_ID,
	CLASS3_ID,
	CLASS4_ID,
	CLASS5_ID,
	TMU0_ID,
	TMU1_ID,
	TMU2_ID,
	TMU3_ID,
#if !defined(CONFIG_FSL_PFE_UTIL_DISABLED)
	UTIL_ID,
#endif
	MAX_PE
};

#define CLASS_MASK	(BIT(CLASS0_ID) | BIT(CLASS1_ID) |\
			BIT(CLASS2_ID) | BIT(CLASS3_ID) |\
			BIT(CLASS4_ID) | BIT(CLASS5_ID))
#define CLASS_MAX_ID	CLASS5_ID

#define TMU_MASK	(BIT(TMU0_ID) | BIT(TMU1_ID) |\
			BIT(TMU3_ID))

#define TMU_MAX_ID	TMU3_ID

#if !defined(CONFIG_FSL_PFE_UTIL_DISABLED)
#define UTIL_MASK	BIT(UTIL_ID)
#endif

struct pe_status {
	u32	cpu_state;
	u32	activity_counter;
	u32	rx;
	union {
	u32	tx;
	u32	tmu_qstatus;
	};
	u32	drop;
#if defined(CFG_PE_DEBUG)
	u32	debug_indicator;
	u32	debug[16];
#endif
} __rte_aligned(16);

struct pe_sync_mailbox {
	u32 stop;
	u32 stopped;
};

/* Drop counter definitions */

#define	CLASS_NUM_DROP_COUNTERS	13
#define	UTIL_NUM_DROP_COUNTERS	8

/* PE information.
 * Structure containing PE's specific information. It is used to create
 * generic C functions common to all PE's.
 * Before using the library functions this structure needs to be initialized
 * with the different registers virtual addresses
 * (according to the ARM MMU mmaping). The default initialization supports a
 * virtual == physical mapping.
 */
struct pe_info {
	u32 dmem_base_addr;	/* PE's dmem base address */
	u32 pmem_base_addr;	/* PE's pmem base address */
	u32 pmem_size;	/* PE's pmem size */

	void *mem_access_wdata;	/* PE's _MEM_ACCESS_WDATA register
				 * address
				 */
	void *mem_access_addr;	/* PE's _MEM_ACCESS_ADDR register
				 * address
				 */
	void *mem_access_rdata;	/* PE's _MEM_ACCESS_RDATA register
				 * address
				 */
};

void pe_lmem_read(u32 *dst, u32 len, u32 offset);
void pe_lmem_write(u32 *src, u32 len, u32 offset);

void pe_dmem_memcpy_to32(int id, u32 dst, const void *src, unsigned int len);
void pe_pmem_memcpy_to32(int id, u32 dst, const void *src, unsigned int len);

u32 pe_pmem_read(int id, u32 addr, u8 size);

void pe_dmem_write(int id, u32 val, u32 addr, u8 size);
u32 pe_dmem_read(int id, u32 addr, u8 size);
void class_pe_lmem_memcpy_to32(u32 dst, const void *src, unsigned int len);
void class_pe_lmem_memset(u32 dst, int val, unsigned int len);
void class_bus_write(u32 val, u32 addr, u8 size);
u32 class_bus_read(u32 addr, u8 size);

#define class_bus_readl(addr)	class_bus_read(addr, 4)
#define class_bus_readw(addr)	class_bus_read(addr, 2)
#define class_bus_readb(addr)	class_bus_read(addr, 1)

#define class_bus_writel(val, addr)	class_bus_write(val, addr, 4)
#define class_bus_writew(val, addr)	class_bus_write(val, addr, 2)
#define class_bus_writeb(val, addr)	class_bus_write(val, addr, 1)

#define pe_dmem_readl(id, addr)	pe_dmem_read(id, addr, 4)
#define pe_dmem_readw(id, addr)	pe_dmem_read(id, addr, 2)
#define pe_dmem_readb(id, addr)	pe_dmem_read(id, addr, 1)

#define pe_dmem_writel(id, val, addr)	pe_dmem_write(id, val, addr, 4)
#define pe_dmem_writew(id, val, addr)	pe_dmem_write(id, val, addr, 2)
#define pe_dmem_writeb(id, val, addr)	pe_dmem_write(id, val, addr, 1)

/*int pe_load_elf_section(int id, const void *data, elf32_shdr *shdr); */
//int pe_load_elf_section(int id, const void *data, struct elf32_shdr *shdr,
//			struct device *dev);

void pfe_lib_init(void *cbus_base, void *ddr_base, unsigned long ddr_phys_base,
		  unsigned int ddr_size);
void bmu_init(void *base, struct BMU_CFG *cfg);
void bmu_reset(void *base);
void bmu_enable(void *base);
void bmu_disable(void *base);
void bmu_set_config(void *base, struct BMU_CFG *cfg);

/*
 * An enumerated type for loopback values.  This can be one of three values, no
 * loopback -normal operation, local loopback with internal loopback module of
 * MAC or PHY loopback which is through the external PHY.
 */
#ifndef __MAC_LOOP_ENUM__
#define __MAC_LOOP_ENUM__
enum mac_loop {LB_NONE, LB_EXT, LB_LOCAL};
#endif

void gemac_init(void *base, void *config);
void gemac_disable_rx_checksum_offload(void *base);
void gemac_enable_rx_checksum_offload(void *base);
void gemac_set_mdc_div(void *base, int mdc_div);
void gemac_set_speed(void *base, enum mac_speed gem_speed);
void gemac_set_duplex(void *base, int duplex);
void gemac_set_mode(void *base, int mode);
void gemac_enable(void *base);
void gemac_tx_disable(void *base);
void gemac_tx_enable(void *base);
void gemac_disable(void *base);
void gemac_reset(void *base);
void gemac_set_address(void *base, struct spec_addr *addr);
struct spec_addr gemac_get_address(void *base);
void gemac_set_loop(void *base, enum mac_loop gem_loop);
void gemac_set_laddr1(void *base, struct pfe_mac_addr *address);
void gemac_set_laddr2(void *base, struct pfe_mac_addr *address);
void gemac_set_laddr3(void *base, struct pfe_mac_addr *address);
void gemac_set_laddr4(void *base, struct pfe_mac_addr *address);
void gemac_set_laddrN(void *base, struct pfe_mac_addr *address,
		      unsigned int entry_index);
void gemac_clear_laddr1(void *base);
void gemac_clear_laddr2(void *base);
void gemac_clear_laddr3(void *base);
void gemac_clear_laddr4(void *base);
void gemac_clear_laddrN(void *base, unsigned int entry_index);
struct pfe_mac_addr gemac_get_hash(void *base);
void gemac_set_hash(void *base, struct pfe_mac_addr *hash);
struct pfe_mac_addr gem_get_laddr1(void *base);
struct pfe_mac_addr gem_get_laddr2(void *base);
struct pfe_mac_addr gem_get_laddr3(void *base);
struct pfe_mac_addr gem_get_laddr4(void *base);
struct pfe_mac_addr gem_get_laddrN(void *base, unsigned int entry_index);
void gemac_set_config(void *base, struct gemac_cfg *cfg);
void gemac_allow_broadcast(void *base);
void gemac_no_broadcast(void *base);
void gemac_enable_1536_rx(void *base);
void gemac_disable_1536_rx(void *base);
int gemac_set_rx(void *base, int mtu);
void gemac_enable_rx_jmb(void *base);
void gemac_disable_rx_jmb(void *base);
void gemac_enable_stacked_vlan(void *base);
void gemac_disable_stacked_vlan(void *base);
void gemac_enable_pause_rx(void *base);
void gemac_disable_pause_rx(void *base);
void gemac_enable_pause_tx(void *base);
void gemac_disable_pause_tx(void *base);
void gemac_enable_copy_all(void *base);
void gemac_disable_copy_all(void *base);
void gemac_set_bus_width(void *base, int width);
void gemac_set_wol(void *base, u32 wol_conf);

void gpi_init(void *base, struct gpi_cfg *cfg);
void gpi_reset(void *base);
void gpi_enable(void *base);
void gpi_disable(void *base);
void gpi_set_config(void *base, struct gpi_cfg *cfg);

void hif_init(void);
void hif_tx_enable(void);
void hif_tx_disable(void);
void hif_rx_enable(void);
void hif_rx_disable(void);

/* Get Chip Revision level
 *
 */
static inline unsigned int CHIP_REVISION(void)
{
	/*For LS1012A return always 1 */
	return 1;
}

/* Start HIF rx DMA
 *
 */
static inline void hif_rx_dma_start(void)
{
	writel(HIF_CTRL_DMA_EN | HIF_CTRL_BDP_CH_START_WSTB, HIF_RX_CTRL);
}

/* Start HIF tx DMA
 *
 */
static inline void hif_tx_dma_start(void)
{
	writel(HIF_CTRL_DMA_EN | HIF_CTRL_BDP_CH_START_WSTB, HIF_TX_CTRL);
}


static inline void *pfe_mem_ptov(phys_addr_t paddr)
{
	return rte_mem_iova2virt(paddr);
}

static phys_addr_t pfe_mem_vtop(uint64_t vaddr) __attribute__((unused));

static inline phys_addr_t pfe_mem_vtop(uint64_t vaddr)
{
	const struct rte_memseg *memseg;

	memseg = rte_mem_virt2memseg((void *)(uintptr_t)vaddr, NULL);
	if (memseg)
		return memseg->phys_addr + RTE_PTR_DIFF(vaddr, memseg->addr);

	return (size_t)NULL;
}

#endif /* _PFE_H_ */