DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
/*-
 *   BSD LICENSE
 *
 *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
 *   All rights reserved.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of Intel Corporation nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <stdarg.h>
#include <unistd.h>
#include <inttypes.h>
#include <errno.h>
#include <sys/queue.h>

#include <rte_common.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_malloc.h>
#include <rte_atomic.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_branch_prediction.h>
#include <rte_ring.h>
#include <rte_errno.h>
#include <rte_string_fns.h>
#include <rte_spinlock.h>

#include "rte_mempool.h"

TAILQ_HEAD(rte_mempool_list, rte_tailq_entry);

static struct rte_tailq_elem rte_mempool_tailq = {
	.name = "RTE_MEMPOOL",
};
EAL_REGISTER_TAILQ(rte_mempool_tailq)

#define CACHE_FLUSHTHRESH_MULTIPLIER 1.5
#define CALC_CACHE_FLUSHTHRESH(c)	\
	((typeof(c))((c) * CACHE_FLUSHTHRESH_MULTIPLIER))

/*
 * return the greatest common divisor between a and b (fast algorithm)
 *
 */
static unsigned get_gcd(unsigned a, unsigned b)
{
	unsigned c;

	if (0 == a)
		return b;
	if (0 == b)
		return a;

	if (a < b) {
		c = a;
		a = b;
		b = c;
	}

	while (b != 0) {
		c = a % b;
		a = b;
		b = c;
	}

	return a;
}

/*
 * Depending on memory configuration, objects addresses are spread
 * between channels and ranks in RAM: the pool allocator will add
 * padding between objects. This function return the new size of the
 * object.
 */
static unsigned optimize_object_size(unsigned obj_size)
{
	unsigned nrank, nchan;
	unsigned new_obj_size;

	/* get number of channels */
	nchan = rte_memory_get_nchannel();
	if (nchan == 0)
		nchan = 1;

	nrank = rte_memory_get_nrank();
	if (nrank == 0)
		nrank = 1;

	/* process new object size */
	new_obj_size = (obj_size + RTE_MEMPOOL_ALIGN_MASK) / RTE_MEMPOOL_ALIGN;
	while (get_gcd(new_obj_size, nrank * nchan) != 1)
		new_obj_size++;
	return new_obj_size * RTE_MEMPOOL_ALIGN;
}

static void
mempool_add_elem(struct rte_mempool *mp, void *obj, uint32_t obj_idx,
	rte_mempool_obj_ctor_t *obj_init, void *obj_init_arg)
{
	struct rte_mempool_objhdr *hdr;
	struct rte_mempool_objtlr *tlr __rte_unused;

	obj = (char *)obj + mp->header_size;

	/* set mempool ptr in header */
	hdr = RTE_PTR_SUB(obj, sizeof(*hdr));
	hdr->mp = mp;

#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
	hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE2;
	tlr = __mempool_get_trailer(obj);
	tlr->cookie = RTE_MEMPOOL_TRAILER_COOKIE;
#endif
	/* call the initializer */
	if (obj_init)
		obj_init(mp, obj_init_arg, obj, obj_idx);

	/* enqueue in ring */
	rte_ring_sp_enqueue(mp->ring, obj);
}

uint32_t
rte_mempool_obj_iter(void *vaddr, uint32_t elt_num, size_t elt_sz, size_t align,
	const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift,
	rte_mempool_obj_iter_t obj_iter, void *obj_iter_arg)
{
	uint32_t i, j, k;
	uint32_t pgn, pgf;
	uintptr_t end, start, va;
	uintptr_t pg_sz;

	pg_sz = (uintptr_t)1 << pg_shift;
	va = (uintptr_t)vaddr;

	i = 0;
	j = 0;

	while (i != elt_num && j != pg_num) {

		start = RTE_ALIGN_CEIL(va, align);
		end = start + elt_sz;

		/* index of the first page for the next element. */
		pgf = (end >> pg_shift) - (start >> pg_shift);

		/* index of the last page for the current element. */
		pgn = ((end - 1) >> pg_shift) - (start >> pg_shift);
		pgn += j;

		/* do we have enough space left for the element. */
		if (pgn >= pg_num)
			break;

		for (k = j;
				k != pgn &&
				paddr[k] + pg_sz == paddr[k + 1];
				k++)
			;

		/*
		 * if next pgn chunks of memory physically continuous,
		 * use it to create next element.
		 * otherwise, just skip that chunk unused.
		 */
		if (k == pgn) {
			if (obj_iter != NULL)
				obj_iter(obj_iter_arg, (void *)start,
					(void *)end, i);
			va = end;
			j += pgf;
			i++;
		} else {
			va = RTE_ALIGN_CEIL((va + 1), pg_sz);
			j++;
		}
	}

	return i;
}

/*
 * Populate  mempool with the objects.
 */

struct mempool_populate_arg {
	struct rte_mempool     *mp;
	rte_mempool_obj_ctor_t *obj_init;
	void                   *obj_init_arg;
};

static void
mempool_obj_populate(void *arg, void *start, void *end, uint32_t idx)
{
	struct mempool_populate_arg *pa = arg;

	mempool_add_elem(pa->mp, start, idx, pa->obj_init, pa->obj_init_arg);
	pa->mp->elt_va_end = (uintptr_t)end;
}

static void
mempool_populate(struct rte_mempool *mp, size_t num, size_t align,
	rte_mempool_obj_ctor_t *obj_init, void *obj_init_arg)
{
	uint32_t elt_sz;
	struct mempool_populate_arg arg;

	elt_sz = mp->elt_size + mp->header_size + mp->trailer_size;
	arg.mp = mp;
	arg.obj_init = obj_init;
	arg.obj_init_arg = obj_init_arg;

	mp->size = rte_mempool_obj_iter((void *)mp->elt_va_start,
		num, elt_sz, align,
		mp->elt_pa, mp->pg_num, mp->pg_shift,
		mempool_obj_populate, &arg);
}

uint32_t
rte_mempool_calc_obj_size(uint32_t elt_size, uint32_t flags,
	struct rte_mempool_objsz *sz)
{
	struct rte_mempool_objsz lsz;

	sz = (sz != NULL) ? sz : &lsz;

	/*
	 * In header, we have at least the pointer to the pool, and
	 * optionaly a 64 bits cookie.
	 */
	sz->header_size = 0;
	sz->header_size += sizeof(struct rte_mempool *); /* ptr to pool */
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
	sz->header_size += sizeof(uint64_t); /* cookie */
#endif
	if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0)
		sz->header_size = RTE_ALIGN_CEIL(sz->header_size,
			RTE_MEMPOOL_ALIGN);

	/* trailer contains the cookie in debug mode */
	sz->trailer_size = 0;
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
	sz->trailer_size += sizeof(uint64_t); /* cookie */
#endif
	/* element size is 8 bytes-aligned at least */
	sz->elt_size = RTE_ALIGN_CEIL(elt_size, sizeof(uint64_t));

	/* expand trailer to next cache line */
	if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0) {
		sz->total_size = sz->header_size + sz->elt_size +
			sz->trailer_size;
		sz->trailer_size += ((RTE_MEMPOOL_ALIGN -
				  (sz->total_size & RTE_MEMPOOL_ALIGN_MASK)) &
				 RTE_MEMPOOL_ALIGN_MASK);
	}

	/*
	 * increase trailer to add padding between objects in order to
	 * spread them across memory channels/ranks
	 */
	if ((flags & MEMPOOL_F_NO_SPREAD) == 0) {
		unsigned new_size;
		new_size = optimize_object_size(sz->header_size + sz->elt_size +
			sz->trailer_size);
		sz->trailer_size = new_size - sz->header_size - sz->elt_size;
	}

	if (! rte_eal_has_hugepages()) {
		/*
		 * compute trailer size so that pool elements fit exactly in
		 * a standard page
		 */
		int page_size = getpagesize();
		int new_size = page_size - sz->header_size - sz->elt_size;
		if (new_size < 0 || (unsigned int)new_size < sz->trailer_size) {
			printf("When hugepages are disabled, pool objects "
			       "can't exceed PAGE_SIZE: %d + %d + %d > %d\n",
			       sz->header_size, sz->elt_size, sz->trailer_size,
			       page_size);
			return 0;
		}
		sz->trailer_size = new_size;
	}

	/* this is the size of an object, including header and trailer */
	sz->total_size = sz->header_size + sz->elt_size + sz->trailer_size;

	return sz->total_size;
}


/*
 * Calculate maximum amount of memory required to store given number of objects.
 */
size_t
rte_mempool_xmem_size(uint32_t elt_num, size_t elt_sz, uint32_t pg_shift)
{
	size_t n, pg_num, pg_sz, sz;

	pg_sz = (size_t)1 << pg_shift;

	if ((n = pg_sz / elt_sz) > 0) {
		pg_num = (elt_num + n - 1) / n;
		sz = pg_num << pg_shift;
	} else {
		sz = RTE_ALIGN_CEIL(elt_sz, pg_sz) * elt_num;
	}

	return sz;
}

/*
 * Calculate how much memory would be actually required with the
 * given memory footprint to store required number of elements.
 */
static void
mempool_lelem_iter(void *arg, __rte_unused void *start, void *end,
	__rte_unused uint32_t idx)
{
	*(uintptr_t *)arg = (uintptr_t)end;
}

ssize_t
rte_mempool_xmem_usage(void *vaddr, uint32_t elt_num, size_t elt_sz,
	const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift)
{
	uint32_t n;
	uintptr_t va, uv;
	size_t pg_sz, usz;

	pg_sz = (size_t)1 << pg_shift;
	va = (uintptr_t)vaddr;
	uv = va;

	if ((n = rte_mempool_obj_iter(vaddr, elt_num, elt_sz, 1,
			paddr, pg_num, pg_shift, mempool_lelem_iter,
			&uv)) != elt_num) {
		return -(ssize_t)n;
	}

	uv = RTE_ALIGN_CEIL(uv, pg_sz);
	usz = uv - va;
	return usz;
}

/* create the mempool */
struct rte_mempool *
rte_mempool_create(const char *name, unsigned n, unsigned elt_size,
		   unsigned cache_size, unsigned private_data_size,
		   rte_mempool_ctor_t *mp_init, void *mp_init_arg,
		   rte_mempool_obj_ctor_t *obj_init, void *obj_init_arg,
		   int socket_id, unsigned flags)
{
#ifdef RTE_LIBRTE_XEN_DOM0
	return rte_dom0_mempool_create(name, n, elt_size,
		cache_size, private_data_size,
		mp_init, mp_init_arg,
		obj_init, obj_init_arg,
		socket_id, flags);
#else
	return rte_mempool_xmem_create(name, n, elt_size,
		cache_size, private_data_size,
		mp_init, mp_init_arg,
		obj_init, obj_init_arg,
		socket_id, flags,
		NULL, NULL, MEMPOOL_PG_NUM_DEFAULT, MEMPOOL_PG_SHIFT_MAX);
#endif
}

/*
 * Create the mempool over already allocated chunk of memory.
 * That external memory buffer can consists of physically disjoint pages.
 * Setting vaddr to NULL, makes mempool to fallback to original behaviour
 * and allocate space for mempool and it's elements as one big chunk of
 * physically continuos memory.
 * */
struct rte_mempool *
rte_mempool_xmem_create(const char *name, unsigned n, unsigned elt_size,
		unsigned cache_size, unsigned private_data_size,
		rte_mempool_ctor_t *mp_init, void *mp_init_arg,
		rte_mempool_obj_ctor_t *obj_init, void *obj_init_arg,
		int socket_id, unsigned flags, void *vaddr,
		const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift)
{
	char mz_name[RTE_MEMZONE_NAMESIZE];
	char rg_name[RTE_RING_NAMESIZE];
	struct rte_mempool_list *mempool_list;
	struct rte_mempool *mp = NULL;
	struct rte_tailq_entry *te;
	struct rte_ring *r;
	const struct rte_memzone *mz;
	size_t mempool_size;
	int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY;
	int rg_flags = 0;
	void *obj;
	struct rte_mempool_objsz objsz;
	void *startaddr;
	int page_size = getpagesize();

	/* compilation-time checks */
	RTE_BUILD_BUG_ON((sizeof(struct rte_mempool) &
			  RTE_CACHE_LINE_MASK) != 0);
#if RTE_MEMPOOL_CACHE_MAX_SIZE > 0
	RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_cache) &
			  RTE_CACHE_LINE_MASK) != 0);
	RTE_BUILD_BUG_ON((offsetof(struct rte_mempool, local_cache) &
			  RTE_CACHE_LINE_MASK) != 0);
#endif
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
	RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_debug_stats) &
			  RTE_CACHE_LINE_MASK) != 0);
	RTE_BUILD_BUG_ON((offsetof(struct rte_mempool, stats) &
			  RTE_CACHE_LINE_MASK) != 0);
#endif

	mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);

	/* asked cache too big */
	if (cache_size > RTE_MEMPOOL_CACHE_MAX_SIZE ||
	    CALC_CACHE_FLUSHTHRESH(cache_size) > n) {
		rte_errno = EINVAL;
		return NULL;
	}

	/* check that we have both VA and PA */
	if (vaddr != NULL && paddr == NULL) {
		rte_errno = EINVAL;
		return NULL;
	}

	/* Check that pg_num and pg_shift parameters are valid. */
	if (pg_num < RTE_DIM(mp->elt_pa) || pg_shift > MEMPOOL_PG_SHIFT_MAX) {
		rte_errno = EINVAL;
		return NULL;
	}

	/* "no cache align" imply "no spread" */
	if (flags & MEMPOOL_F_NO_CACHE_ALIGN)
		flags |= MEMPOOL_F_NO_SPREAD;

	/* ring flags */
	if (flags & MEMPOOL_F_SP_PUT)
		rg_flags |= RING_F_SP_ENQ;
	if (flags & MEMPOOL_F_SC_GET)
		rg_flags |= RING_F_SC_DEQ;

	/* calculate mempool object sizes. */
	if (!rte_mempool_calc_obj_size(elt_size, flags, &objsz)) {
		rte_errno = EINVAL;
		return NULL;
	}

	rte_rwlock_write_lock(RTE_EAL_MEMPOOL_RWLOCK);

	/* allocate the ring that will be used to store objects */
	/* Ring functions will return appropriate errors if we are
	 * running as a secondary process etc., so no checks made
	 * in this function for that condition */
	snprintf(rg_name, sizeof(rg_name), RTE_MEMPOOL_MZ_FORMAT, name);
	r = rte_ring_create(rg_name, rte_align32pow2(n+1), socket_id, rg_flags);
	if (r == NULL)
		goto exit;

	/*
	 * reserve a memory zone for this mempool: private data is
	 * cache-aligned
	 */
	private_data_size = (private_data_size +
			     RTE_MEMPOOL_ALIGN_MASK) & (~RTE_MEMPOOL_ALIGN_MASK);

	if (! rte_eal_has_hugepages()) {
		/*
		 * expand private data size to a whole page, so that the
		 * first pool element will start on a new standard page
		 */
		int head = sizeof(struct rte_mempool);
		int new_size = (private_data_size + head) % page_size;
		if (new_size) {
			private_data_size += page_size - new_size;
		}
	}

	/* try to allocate tailq entry */
	te = rte_zmalloc("MEMPOOL_TAILQ_ENTRY", sizeof(*te), 0);
	if (te == NULL) {
		RTE_LOG(ERR, MEMPOOL, "Cannot allocate tailq entry!\n");
		goto exit;
	}

	/*
	 * If user provided an external memory buffer, then use it to
	 * store mempool objects. Otherwise reserve a memzone that is large
	 * enough to hold mempool header and metadata plus mempool objects.
	 */
	mempool_size = MEMPOOL_HEADER_SIZE(mp, pg_num) + private_data_size;
	mempool_size = RTE_ALIGN_CEIL(mempool_size, RTE_MEMPOOL_ALIGN);
	if (vaddr == NULL)
		mempool_size += (size_t)objsz.total_size * n;

	if (! rte_eal_has_hugepages()) {
		/*
		 * we want the memory pool to start on a page boundary,
		 * because pool elements crossing page boundaries would
		 * result in discontiguous physical addresses
		 */
		mempool_size += page_size;
	}

	snprintf(mz_name, sizeof(mz_name), RTE_MEMPOOL_MZ_FORMAT, name);

	mz = rte_memzone_reserve(mz_name, mempool_size, socket_id, mz_flags);

	/*
	 * no more memory: in this case we loose previously reserved
	 * space for the ring as we cannot free it
	 */
	if (mz == NULL) {
		rte_free(te);
		goto exit;
	}

	if (rte_eal_has_hugepages()) {
		startaddr = (void*)mz->addr;
	} else {
		/* align memory pool start address on a page boundary */
		unsigned long addr = (unsigned long)mz->addr;
		if (addr & (page_size - 1)) {
			addr += page_size;
			addr &= ~(page_size - 1);
		}
		startaddr = (void*)addr;
	}

	/* init the mempool structure */
	mp = startaddr;
	memset(mp, 0, sizeof(*mp));
	snprintf(mp->name, sizeof(mp->name), "%s", name);
	mp->phys_addr = mz->phys_addr;
	mp->ring = r;
	mp->size = n;
	mp->flags = flags;
	mp->elt_size = objsz.elt_size;
	mp->header_size = objsz.header_size;
	mp->trailer_size = objsz.trailer_size;
	mp->cache_size = cache_size;
	mp->cache_flushthresh = CALC_CACHE_FLUSHTHRESH(cache_size);
	mp->private_data_size = private_data_size;

	/* calculate address of the first element for continuous mempool. */
	obj = (char *)mp + MEMPOOL_HEADER_SIZE(mp, pg_num) +
		private_data_size;
	obj = RTE_PTR_ALIGN_CEIL(obj, RTE_MEMPOOL_ALIGN);

	/* populate address translation fields. */
	mp->pg_num = pg_num;
	mp->pg_shift = pg_shift;
	mp->pg_mask = RTE_LEN2MASK(mp->pg_shift, typeof(mp->pg_mask));

	/* mempool elements allocated together with mempool */
	if (vaddr == NULL) {
		mp->elt_va_start = (uintptr_t)obj;
		mp->elt_pa[0] = mp->phys_addr +
			(mp->elt_va_start - (uintptr_t)mp);

	/* mempool elements in a separate chunk of memory. */
	} else {
		mp->elt_va_start = (uintptr_t)vaddr;
		memcpy(mp->elt_pa, paddr, sizeof (mp->elt_pa[0]) * pg_num);
	}

	mp->elt_va_end = mp->elt_va_start;

	/* call the initializer */
	if (mp_init)
		mp_init(mp, mp_init_arg);

	mempool_populate(mp, n, 1, obj_init, obj_init_arg);

	te->data = (void *) mp;

	rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
	TAILQ_INSERT_TAIL(mempool_list, te, next);
	rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);

exit:
	rte_rwlock_write_unlock(RTE_EAL_MEMPOOL_RWLOCK);

	return mp;
}

/* Return the number of entries in the mempool */
unsigned
rte_mempool_count(const struct rte_mempool *mp)
{
	unsigned count;

	count = rte_ring_count(mp->ring);

#if RTE_MEMPOOL_CACHE_MAX_SIZE > 0
	{
		unsigned lcore_id;
		if (mp->cache_size == 0)
			return count;

		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
			count += mp->local_cache[lcore_id].len;
	}
#endif

	/*
	 * due to race condition (access to len is not locked), the
	 * total can be greater than size... so fix the result
	 */
	if (count > mp->size)
		return mp->size;
	return count;
}

/* dump the cache status */
static unsigned
rte_mempool_dump_cache(FILE *f, const struct rte_mempool *mp)
{
#if RTE_MEMPOOL_CACHE_MAX_SIZE > 0
	unsigned lcore_id;
	unsigned count = 0;
	unsigned cache_count;

	fprintf(f, "  cache infos:\n");
	fprintf(f, "    cache_size=%"PRIu32"\n", mp->cache_size);
	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
		cache_count = mp->local_cache[lcore_id].len;
		fprintf(f, "    cache_count[%u]=%u\n", lcore_id, cache_count);
		count += cache_count;
	}
	fprintf(f, "    total_cache_count=%u\n", count);
	return count;
#else
	RTE_SET_USED(mp);
	fprintf(f, "  cache disabled\n");
	return 0;
#endif
}

#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
/* check cookies before and after objects */
#ifndef __INTEL_COMPILER
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif

struct mempool_audit_arg {
	const struct rte_mempool *mp;
	uintptr_t obj_end;
	uint32_t obj_num;
};

static void
mempool_obj_audit(void *arg, void *start, void *end, uint32_t idx)
{
	struct mempool_audit_arg *pa = arg;
	void *obj;

	obj = (char *)start + pa->mp->header_size;
	pa->obj_end = (uintptr_t)end;
	pa->obj_num = idx + 1;
	__mempool_check_cookies(pa->mp, &obj, 1, 2);
}

static void
mempool_audit_cookies(const struct rte_mempool *mp)
{
	uint32_t elt_sz, num;
	struct mempool_audit_arg arg;

	elt_sz = mp->elt_size + mp->header_size + mp->trailer_size;

	arg.mp = mp;
	arg.obj_end = mp->elt_va_start;
	arg.obj_num = 0;

	num = rte_mempool_obj_iter((void *)mp->elt_va_start,
		mp->size, elt_sz, 1,
		mp->elt_pa, mp->pg_num, mp->pg_shift,
		mempool_obj_audit, &arg);

	if (num != mp->size) {
			rte_panic("rte_mempool_obj_iter(mempool=%p, size=%u) "
			"iterated only over %u elements\n",
			mp, mp->size, num);
	} else if (arg.obj_end != mp->elt_va_end || arg.obj_num != mp->size) {
			rte_panic("rte_mempool_obj_iter(mempool=%p, size=%u) "
			"last callback va_end: %#tx (%#tx expeceted), "
			"num of objects: %u (%u expected)\n",
			mp, mp->size,
			arg.obj_end, mp->elt_va_end,
			arg.obj_num, mp->size);
	}
}

#ifndef __INTEL_COMPILER
#pragma GCC diagnostic error "-Wcast-qual"
#endif
#else
#define mempool_audit_cookies(mp) do {} while(0)
#endif

#if RTE_MEMPOOL_CACHE_MAX_SIZE > 0
/* check cookies before and after objects */
static void
mempool_audit_cache(const struct rte_mempool *mp)
{
	/* check cache size consistency */
	unsigned lcore_id;
	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
		if (mp->local_cache[lcore_id].len > mp->cache_flushthresh) {
			RTE_LOG(CRIT, MEMPOOL, "badness on cache[%u]\n",
				lcore_id);
			rte_panic("MEMPOOL: invalid cache len\n");
		}
	}
}
#else
#define mempool_audit_cache(mp) do {} while(0)
#endif


/* check the consistency of mempool (size, cookies, ...) */
void
rte_mempool_audit(const struct rte_mempool *mp)
{
	mempool_audit_cache(mp);
	mempool_audit_cookies(mp);

	/* For case where mempool DEBUG is not set, and cache size is 0 */
	RTE_SET_USED(mp);
}

/* dump the status of the mempool on the console */
void
rte_mempool_dump(FILE *f, const struct rte_mempool *mp)
{
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
	struct rte_mempool_debug_stats sum;
	unsigned lcore_id;
#endif
	unsigned common_count;
	unsigned cache_count;

	RTE_VERIFY(f != NULL);
	RTE_VERIFY(mp != NULL);

	fprintf(f, "mempool <%s>@%p\n", mp->name, mp);
	fprintf(f, "  flags=%x\n", mp->flags);
	fprintf(f, "  ring=<%s>@%p\n", mp->ring->name, mp->ring);
	fprintf(f, "  phys_addr=0x%" PRIx64 "\n", mp->phys_addr);
	fprintf(f, "  size=%"PRIu32"\n", mp->size);
	fprintf(f, "  header_size=%"PRIu32"\n", mp->header_size);
	fprintf(f, "  elt_size=%"PRIu32"\n", mp->elt_size);
	fprintf(f, "  trailer_size=%"PRIu32"\n", mp->trailer_size);
	fprintf(f, "  total_obj_size=%"PRIu32"\n",
	       mp->header_size + mp->elt_size + mp->trailer_size);

	fprintf(f, "  private_data_size=%"PRIu32"\n", mp->private_data_size);
	fprintf(f, "  pg_num=%"PRIu32"\n", mp->pg_num);
	fprintf(f, "  pg_shift=%"PRIu32"\n", mp->pg_shift);
	fprintf(f, "  pg_mask=%#tx\n", mp->pg_mask);
	fprintf(f, "  elt_va_start=%#tx\n", mp->elt_va_start);
	fprintf(f, "  elt_va_end=%#tx\n", mp->elt_va_end);
	fprintf(f, "  elt_pa[0]=0x%" PRIx64 "\n", mp->elt_pa[0]);

	if (mp->size != 0)
		fprintf(f, "  avg bytes/object=%#Lf\n",
			(long double)(mp->elt_va_end - mp->elt_va_start) /
			mp->size);

	cache_count = rte_mempool_dump_cache(f, mp);
	common_count = rte_ring_count(mp->ring);
	if ((cache_count + common_count) > mp->size)
		common_count = mp->size - cache_count;
	fprintf(f, "  common_pool_count=%u\n", common_count);

	/* sum and dump statistics */
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
	memset(&sum, 0, sizeof(sum));
	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
		sum.put_bulk += mp->stats[lcore_id].put_bulk;
		sum.put_objs += mp->stats[lcore_id].put_objs;
		sum.get_success_bulk += mp->stats[lcore_id].get_success_bulk;
		sum.get_success_objs += mp->stats[lcore_id].get_success_objs;
		sum.get_fail_bulk += mp->stats[lcore_id].get_fail_bulk;
		sum.get_fail_objs += mp->stats[lcore_id].get_fail_objs;
	}
	fprintf(f, "  stats:\n");
	fprintf(f, "    put_bulk=%"PRIu64"\n", sum.put_bulk);
	fprintf(f, "    put_objs=%"PRIu64"\n", sum.put_objs);
	fprintf(f, "    get_success_bulk=%"PRIu64"\n", sum.get_success_bulk);
	fprintf(f, "    get_success_objs=%"PRIu64"\n", sum.get_success_objs);
	fprintf(f, "    get_fail_bulk=%"PRIu64"\n", sum.get_fail_bulk);
	fprintf(f, "    get_fail_objs=%"PRIu64"\n", sum.get_fail_objs);
#else
	fprintf(f, "  no statistics available\n");
#endif

	rte_mempool_audit(mp);
}

/* dump the status of all mempools on the console */
void
rte_mempool_list_dump(FILE *f)
{
	const struct rte_mempool *mp = NULL;
	struct rte_tailq_entry *te;
	struct rte_mempool_list *mempool_list;

	mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);

	rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK);

	TAILQ_FOREACH(te, mempool_list, next) {
		mp = (struct rte_mempool *) te->data;
		rte_mempool_dump(f, mp);
	}

	rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK);
}

/* search a mempool from its name */
struct rte_mempool *
rte_mempool_lookup(const char *name)
{
	struct rte_mempool *mp = NULL;
	struct rte_tailq_entry *te;
	struct rte_mempool_list *mempool_list;

	mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);

	rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK);

	TAILQ_FOREACH(te, mempool_list, next) {
		mp = (struct rte_mempool *) te->data;
		if (strncmp(name, mp->name, RTE_MEMPOOL_NAMESIZE) == 0)
			break;
	}

	rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK);

	if (te == NULL) {
		rte_errno = ENOENT;
		return NULL;
	}

	return mp;
}

void rte_mempool_walk(void (*func)(const struct rte_mempool *, void *),
		      void *arg)
{
	struct rte_tailq_entry *te = NULL;
	struct rte_mempool_list *mempool_list;

	mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);

	rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK);

	TAILQ_FOREACH(te, mempool_list, next) {
		(*func)((struct rte_mempool *) te->data, arg);
	}

	rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK);
}