DPDK logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2010-2014 Intel Corporation.
 * Copyright(c) 2016 6WIND S.A.
 */

#include <stdbool.h>
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <stdarg.h>
#include <unistd.h>
#include <inttypes.h>
#include <errno.h>
#include <sys/queue.h>
#include <sys/mman.h>

#include <rte_common.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_malloc.h>
#include <rte_atomic.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_branch_prediction.h>
#include <rte_errno.h>
#include <rte_string_fns.h>
#include <rte_spinlock.h>
#include <rte_tailq.h>

#include "rte_mempool.h"

TAILQ_HEAD(rte_mempool_list, rte_tailq_entry);

static struct rte_tailq_elem rte_mempool_tailq = {
	.name = "RTE_MEMPOOL",
};
EAL_REGISTER_TAILQ(rte_mempool_tailq)

#define CACHE_FLUSHTHRESH_MULTIPLIER 1.5
#define CALC_CACHE_FLUSHTHRESH(c)	\
	((typeof(c))((c) * CACHE_FLUSHTHRESH_MULTIPLIER))

#if defined(RTE_ARCH_X86)
/*
 * return the greatest common divisor between a and b (fast algorithm)
 *
 */
static unsigned get_gcd(unsigned a, unsigned b)
{
	unsigned c;

	if (0 == a)
		return b;
	if (0 == b)
		return a;

	if (a < b) {
		c = a;
		a = b;
		b = c;
	}

	while (b != 0) {
		c = a % b;
		a = b;
		b = c;
	}

	return a;
}

/*
 * Depending on memory configuration on x86 arch, objects addresses are spread
 * between channels and ranks in RAM: the pool allocator will add
 * padding between objects. This function return the new size of the
 * object.
 */
static unsigned int
arch_mem_object_align(unsigned int obj_size)
{
	unsigned nrank, nchan;
	unsigned new_obj_size;

	/* get number of channels */
	nchan = rte_memory_get_nchannel();
	if (nchan == 0)
		nchan = 4;

	nrank = rte_memory_get_nrank();
	if (nrank == 0)
		nrank = 1;

	/* process new object size */
	new_obj_size = (obj_size + RTE_MEMPOOL_ALIGN_MASK) / RTE_MEMPOOL_ALIGN;
	while (get_gcd(new_obj_size, nrank * nchan) != 1)
		new_obj_size++;
	return new_obj_size * RTE_MEMPOOL_ALIGN;
}
#else
static unsigned int
arch_mem_object_align(unsigned int obj_size)
{
	return obj_size;
}
#endif

struct pagesz_walk_arg {
	int socket_id;
	size_t min;
};

static int
find_min_pagesz(const struct rte_memseg_list *msl, void *arg)
{
	struct pagesz_walk_arg *wa = arg;
	bool valid;

	/*
	 * we need to only look at page sizes available for a particular socket
	 * ID.  so, we either need an exact match on socket ID (can match both
	 * native and external memory), or, if SOCKET_ID_ANY was specified as a
	 * socket ID argument, we must only look at native memory and ignore any
	 * page sizes associated with external memory.
	 */
	valid = msl->socket_id == wa->socket_id;
	valid |= wa->socket_id == SOCKET_ID_ANY && msl->external == 0;

	if (valid && msl->page_sz < wa->min)
		wa->min = msl->page_sz;

	return 0;
}

static size_t
get_min_page_size(int socket_id)
{
	struct pagesz_walk_arg wa;

	wa.min = SIZE_MAX;
	wa.socket_id = socket_id;

	rte_memseg_list_walk(find_min_pagesz, &wa);

	return wa.min == SIZE_MAX ? (size_t) getpagesize() : wa.min;
}


static void
mempool_add_elem(struct rte_mempool *mp, __rte_unused void *opaque,
		 void *obj, rte_iova_t iova)
{
	struct rte_mempool_objhdr *hdr;
	struct rte_mempool_objtlr *tlr __rte_unused;

	/* set mempool ptr in header */
	hdr = RTE_PTR_SUB(obj, sizeof(*hdr));
	hdr->mp = mp;
	hdr->iova = iova;
	STAILQ_INSERT_TAIL(&mp->elt_list, hdr, next);
	mp->populated_size++;

#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
	hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE2;
	tlr = __mempool_get_trailer(obj);
	tlr->cookie = RTE_MEMPOOL_TRAILER_COOKIE;
#endif
}

/* call obj_cb() for each mempool element */
uint32_t
rte_mempool_obj_iter(struct rte_mempool *mp,
	rte_mempool_obj_cb_t *obj_cb, void *obj_cb_arg)
{
	struct rte_mempool_objhdr *hdr;
	void *obj;
	unsigned n = 0;

	STAILQ_FOREACH(hdr, &mp->elt_list, next) {
		obj = (char *)hdr + sizeof(*hdr);
		obj_cb(mp, obj_cb_arg, obj, n);
		n++;
	}

	return n;
}

/* call mem_cb() for each mempool memory chunk */
uint32_t
rte_mempool_mem_iter(struct rte_mempool *mp,
	rte_mempool_mem_cb_t *mem_cb, void *mem_cb_arg)
{
	struct rte_mempool_memhdr *hdr;
	unsigned n = 0;

	STAILQ_FOREACH(hdr, &mp->mem_list, next) {
		mem_cb(mp, mem_cb_arg, hdr, n);
		n++;
	}

	return n;
}

/* get the header, trailer and total size of a mempool element. */
uint32_t
rte_mempool_calc_obj_size(uint32_t elt_size, uint32_t flags,
	struct rte_mempool_objsz *sz)
{
	struct rte_mempool_objsz lsz;

	sz = (sz != NULL) ? sz : &lsz;

	sz->header_size = sizeof(struct rte_mempool_objhdr);
	if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0)
		sz->header_size = RTE_ALIGN_CEIL(sz->header_size,
			RTE_MEMPOOL_ALIGN);

#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
	sz->trailer_size = sizeof(struct rte_mempool_objtlr);
#else
	sz->trailer_size = 0;
#endif

	/* element size is 8 bytes-aligned at least */
	sz->elt_size = RTE_ALIGN_CEIL(elt_size, sizeof(uint64_t));

	/* expand trailer to next cache line */
	if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0) {
		sz->total_size = sz->header_size + sz->elt_size +
			sz->trailer_size;
		sz->trailer_size += ((RTE_MEMPOOL_ALIGN -
				  (sz->total_size & RTE_MEMPOOL_ALIGN_MASK)) &
				 RTE_MEMPOOL_ALIGN_MASK);
	}

	/*
	 * increase trailer to add padding between objects in order to
	 * spread them across memory channels/ranks
	 */
	if ((flags & MEMPOOL_F_NO_SPREAD) == 0) {
		unsigned new_size;
		new_size = arch_mem_object_align
			    (sz->header_size + sz->elt_size + sz->trailer_size);
		sz->trailer_size = new_size - sz->header_size - sz->elt_size;
	}

	/* this is the size of an object, including header and trailer */
	sz->total_size = sz->header_size + sz->elt_size + sz->trailer_size;

	return sz->total_size;
}

/* free a memchunk allocated with rte_memzone_reserve() */
static void
rte_mempool_memchunk_mz_free(__rte_unused struct rte_mempool_memhdr *memhdr,
	void *opaque)
{
	const struct rte_memzone *mz = opaque;
	rte_memzone_free(mz);
}

/* Free memory chunks used by a mempool. Objects must be in pool */
static void
rte_mempool_free_memchunks(struct rte_mempool *mp)
{
	struct rte_mempool_memhdr *memhdr;
	void *elt;

	while (!STAILQ_EMPTY(&mp->elt_list)) {
		rte_mempool_ops_dequeue_bulk(mp, &elt, 1);
		(void)elt;
		STAILQ_REMOVE_HEAD(&mp->elt_list, next);
		mp->populated_size--;
	}

	while (!STAILQ_EMPTY(&mp->mem_list)) {
		memhdr = STAILQ_FIRST(&mp->mem_list);
		STAILQ_REMOVE_HEAD(&mp->mem_list, next);
		if (memhdr->free_cb != NULL)
			memhdr->free_cb(memhdr, memhdr->opaque);
		rte_free(memhdr);
		mp->nb_mem_chunks--;
	}
}

static int
mempool_ops_alloc_once(struct rte_mempool *mp)
{
	int ret;

	/* create the internal ring if not already done */
	if ((mp->flags & MEMPOOL_F_POOL_CREATED) == 0) {
		ret = rte_mempool_ops_alloc(mp);
		if (ret != 0)
			return ret;
		mp->flags |= MEMPOOL_F_POOL_CREATED;
	}
	return 0;
}

/* Add objects in the pool, using a physically contiguous memory
 * zone. Return the number of objects added, or a negative value
 * on error.
 */
static int
__rte_mempool_populate_iova(struct rte_mempool *mp, char *vaddr,
	rte_iova_t iova, size_t len, rte_mempool_memchunk_free_cb_t *free_cb,
	void *opaque)
{
	unsigned i = 0;
	size_t off;
	struct rte_mempool_memhdr *memhdr;
	int ret;

	ret = mempool_ops_alloc_once(mp);
	if (ret != 0)
		return ret;

	/* mempool is already populated */
	if (mp->populated_size >= mp->size)
		return -ENOSPC;

	memhdr = rte_zmalloc("MEMPOOL_MEMHDR", sizeof(*memhdr), 0);
	if (memhdr == NULL)
		return -ENOMEM;

	memhdr->mp = mp;
	memhdr->addr = vaddr;
	memhdr->iova = iova;
	memhdr->len = len;
	memhdr->free_cb = free_cb;
	memhdr->opaque = opaque;

	if (mp->flags & MEMPOOL_F_NO_CACHE_ALIGN)
		off = RTE_PTR_ALIGN_CEIL(vaddr, 8) - vaddr;
	else
		off = RTE_PTR_ALIGN_CEIL(vaddr, RTE_MEMPOOL_ALIGN) - vaddr;

	if (off > len) {
		ret = 0;
		goto fail;
	}

	i = rte_mempool_ops_populate(mp, mp->size - mp->populated_size,
		(char *)vaddr + off,
		(iova == RTE_BAD_IOVA) ? RTE_BAD_IOVA : (iova + off),
		len - off, mempool_add_elem, NULL);

	/* not enough room to store one object */
	if (i == 0) {
		ret = 0;
		goto fail;
	}

	STAILQ_INSERT_TAIL(&mp->mem_list, memhdr, next);
	mp->nb_mem_chunks++;
	return i;

fail:
	rte_free(memhdr);
	return ret;
}

int
rte_mempool_populate_iova(struct rte_mempool *mp, char *vaddr,
	rte_iova_t iova, size_t len, rte_mempool_memchunk_free_cb_t *free_cb,
	void *opaque)
{
	int ret;

	ret = __rte_mempool_populate_iova(mp, vaddr, iova, len, free_cb,
					opaque);
	if (ret == 0)
		ret = -EINVAL;

	return ret;
}

static rte_iova_t
get_iova(void *addr)
{
	struct rte_memseg *ms;

	/* try registered memory first */
	ms = rte_mem_virt2memseg(addr, NULL);
	if (ms == NULL || ms->iova == RTE_BAD_IOVA)
		/* fall back to actual physical address */
		return rte_mem_virt2iova(addr);
	return ms->iova + RTE_PTR_DIFF(addr, ms->addr);
}

/* Populate the mempool with a virtual area. Return the number of
 * objects added, or a negative value on error.
 */
int
rte_mempool_populate_virt(struct rte_mempool *mp, char *addr,
	size_t len, size_t pg_sz, rte_mempool_memchunk_free_cb_t *free_cb,
	void *opaque)
{
	rte_iova_t iova;
	size_t off, phys_len;
	int ret, cnt = 0;

	if (mp->flags & MEMPOOL_F_NO_IOVA_CONTIG)
		return rte_mempool_populate_iova(mp, addr, RTE_BAD_IOVA,
			len, free_cb, opaque);

	for (off = 0; off < len &&
		     mp->populated_size < mp->size; off += phys_len) {

		iova = get_iova(addr + off);

		/* populate with the largest group of contiguous pages */
		for (phys_len = RTE_MIN(
			(size_t)(RTE_PTR_ALIGN_CEIL(addr + off + 1, pg_sz) -
				(addr + off)),
			len - off);
		     off + phys_len < len;
		     phys_len = RTE_MIN(phys_len + pg_sz, len - off)) {
			rte_iova_t iova_tmp;

			iova_tmp = get_iova(addr + off + phys_len);

			if (iova_tmp == RTE_BAD_IOVA ||
					iova_tmp != iova + phys_len)
				break;
		}

		ret = __rte_mempool_populate_iova(mp, addr + off, iova,
			phys_len, free_cb, opaque);
		if (ret == 0)
			continue;
		if (ret < 0)
			goto fail;
		/* no need to call the free callback for next chunks */
		free_cb = NULL;
		cnt += ret;
	}

	if (cnt == 0)
		return -EINVAL;

	return cnt;

 fail:
	rte_mempool_free_memchunks(mp);
	return ret;
}

/* Get the minimal page size used in a mempool before populating it. */
int
rte_mempool_get_page_size(struct rte_mempool *mp, size_t *pg_sz)
{
	bool need_iova_contig_obj;
	bool alloc_in_ext_mem;
	int ret;

	/* check if we can retrieve a valid socket ID */
	ret = rte_malloc_heap_socket_is_external(mp->socket_id);
	if (ret < 0)
		return -EINVAL;
	alloc_in_ext_mem = (ret == 1);
	need_iova_contig_obj = !(mp->flags & MEMPOOL_F_NO_IOVA_CONTIG);

	if (!need_iova_contig_obj)
		*pg_sz = 0;
	else if (rte_eal_has_hugepages() || alloc_in_ext_mem)
		*pg_sz = get_min_page_size(mp->socket_id);
	else
		*pg_sz = getpagesize();

	return 0;
}

/* Default function to populate the mempool: allocate memory in memzones,
 * and populate them. Return the number of objects added, or a negative
 * value on error.
 */
int
rte_mempool_populate_default(struct rte_mempool *mp)
{
	unsigned int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY;
	char mz_name[RTE_MEMZONE_NAMESIZE];
	const struct rte_memzone *mz;
	ssize_t mem_size;
	size_t align, pg_sz, pg_shift = 0;
	rte_iova_t iova;
	unsigned mz_id, n;
	int ret;
	bool need_iova_contig_obj;
	size_t max_alloc_size = SIZE_MAX;

	ret = mempool_ops_alloc_once(mp);
	if (ret != 0)
		return ret;

	/* mempool must not be populated */
	if (mp->nb_mem_chunks != 0)
		return -EEXIST;

	/*
	 * the following section calculates page shift and page size values.
	 *
	 * these values impact the result of calc_mem_size operation, which
	 * returns the amount of memory that should be allocated to store the
	 * desired number of objects. when not zero, it allocates more memory
	 * for the padding between objects, to ensure that an object does not
	 * cross a page boundary. in other words, page size/shift are to be set
	 * to zero if mempool elements won't care about page boundaries.
	 * there are several considerations for page size and page shift here.
	 *
	 * if we don't need our mempools to have physically contiguous objects,
	 * then just set page shift and page size to 0, because the user has
	 * indicated that there's no need to care about anything.
	 *
	 * if we do need contiguous objects (if a mempool driver has its
	 * own calc_size() method returning min_chunk_size = mem_size),
	 * there is also an option to reserve the entire mempool memory
	 * as one contiguous block of memory.
	 *
	 * if we require contiguous objects, but not necessarily the entire
	 * mempool reserved space to be contiguous, pg_sz will be != 0,
	 * and the default ops->populate() will take care of not placing
	 * objects across pages.
	 *
	 * if our IO addresses are physical, we may get memory from bigger
	 * pages, or we might get memory from smaller pages, and how much of it
	 * we require depends on whether we want bigger or smaller pages.
	 * However, requesting each and every memory size is too much work, so
	 * what we'll do instead is walk through the page sizes available, pick
	 * the smallest one and set up page shift to match that one. We will be
	 * wasting some space this way, but it's much nicer than looping around
	 * trying to reserve each and every page size.
	 *
	 * If we fail to get enough contiguous memory, then we'll go and
	 * reserve space in smaller chunks.
	 */

	need_iova_contig_obj = !(mp->flags & MEMPOOL_F_NO_IOVA_CONTIG);
	ret = rte_mempool_get_page_size(mp, &pg_sz);
	if (ret < 0)
		return ret;

	if (pg_sz != 0)
		pg_shift = rte_bsf32(pg_sz);

	for (mz_id = 0, n = mp->size; n > 0; mz_id++, n -= ret) {
		size_t min_chunk_size;

		mem_size = rte_mempool_ops_calc_mem_size(
			mp, n, pg_shift, &min_chunk_size, &align);

		if (mem_size < 0) {
			ret = mem_size;
			goto fail;
		}

		ret = snprintf(mz_name, sizeof(mz_name),
			RTE_MEMPOOL_MZ_FORMAT "_%d", mp->name, mz_id);
		if (ret < 0 || ret >= (int)sizeof(mz_name)) {
			ret = -ENAMETOOLONG;
			goto fail;
		}

		/* if we're trying to reserve contiguous memory, add appropriate
		 * memzone flag.
		 */
		if (min_chunk_size == (size_t)mem_size)
			mz_flags |= RTE_MEMZONE_IOVA_CONTIG;

		/* Allocate a memzone, retrying with a smaller area on ENOMEM */
		do {
			mz = rte_memzone_reserve_aligned(mz_name,
				RTE_MIN((size_t)mem_size, max_alloc_size),
				mp->socket_id, mz_flags, align);

			if (mz == NULL && rte_errno != ENOMEM)
				break;

			max_alloc_size = RTE_MIN(max_alloc_size,
						(size_t)mem_size) / 2;
		} while (mz == NULL && max_alloc_size >= min_chunk_size);

		if (mz == NULL) {
			ret = -rte_errno;
			goto fail;
		}

		if (need_iova_contig_obj)
			iova = mz->iova;
		else
			iova = RTE_BAD_IOVA;

		if (pg_sz == 0 || (mz_flags & RTE_MEMZONE_IOVA_CONTIG))
			ret = rte_mempool_populate_iova(mp, mz->addr,
				iova, mz->len,
				rte_mempool_memchunk_mz_free,
				(void *)(uintptr_t)mz);
		else
			ret = rte_mempool_populate_virt(mp, mz->addr,
				mz->len, pg_sz,
				rte_mempool_memchunk_mz_free,
				(void *)(uintptr_t)mz);
		if (ret < 0) {
			rte_memzone_free(mz);
			goto fail;
		}
	}

	return mp->size;

 fail:
	rte_mempool_free_memchunks(mp);
	return ret;
}

/* return the memory size required for mempool objects in anonymous mem */
static ssize_t
get_anon_size(const struct rte_mempool *mp)
{
	ssize_t size;
	size_t pg_sz, pg_shift;
	size_t min_chunk_size;
	size_t align;

	pg_sz = getpagesize();
	pg_shift = rte_bsf32(pg_sz);
	size = rte_mempool_ops_calc_mem_size(mp, mp->size, pg_shift,
					     &min_chunk_size, &align);

	return size;
}

/* unmap a memory zone mapped by rte_mempool_populate_anon() */
static void
rte_mempool_memchunk_anon_free(struct rte_mempool_memhdr *memhdr,
	void *opaque)
{
	ssize_t size;

	/*
	 * Calculate size since memhdr->len has contiguous chunk length
	 * which may be smaller if anon map is split into many contiguous
	 * chunks. Result must be the same as we calculated on populate.
	 */
	size = get_anon_size(memhdr->mp);
	if (size < 0)
		return;

	munmap(opaque, size);
}

/* populate the mempool with an anonymous mapping */
int
rte_mempool_populate_anon(struct rte_mempool *mp)
{
	ssize_t size;
	int ret;
	char *addr;

	/* mempool is already populated, error */
	if ((!STAILQ_EMPTY(&mp->mem_list)) || mp->nb_mem_chunks != 0) {
		rte_errno = EINVAL;
		return 0;
	}

	ret = mempool_ops_alloc_once(mp);
	if (ret < 0) {
		rte_errno = -ret;
		return 0;
	}

	size = get_anon_size(mp);
	if (size < 0) {
		rte_errno = -size;
		return 0;
	}

	/* get chunk of virtually continuous memory */
	addr = mmap(NULL, size, PROT_READ | PROT_WRITE,
		MAP_SHARED | MAP_ANONYMOUS, -1, 0);
	if (addr == MAP_FAILED) {
		rte_errno = errno;
		return 0;
	}
	/* can't use MMAP_LOCKED, it does not exist on BSD */
	if (mlock(addr, size) < 0) {
		rte_errno = errno;
		munmap(addr, size);
		return 0;
	}

	ret = rte_mempool_populate_virt(mp, addr, size, getpagesize(),
		rte_mempool_memchunk_anon_free, addr);
	if (ret < 0) {
		rte_errno = -ret;
		goto fail;
	}

	return mp->populated_size;

 fail:
	rte_mempool_free_memchunks(mp);
	return 0;
}

/* free a mempool */
void
rte_mempool_free(struct rte_mempool *mp)
{
	struct rte_mempool_list *mempool_list = NULL;
	struct rte_tailq_entry *te;

	if (mp == NULL)
		return;

	mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
	rte_mcfg_tailq_write_lock();
	/* find out tailq entry */
	TAILQ_FOREACH(te, mempool_list, next) {
		if (te->data == (void *)mp)
			break;
	}

	if (te != NULL) {
		TAILQ_REMOVE(mempool_list, te, next);
		rte_free(te);
	}
	rte_mcfg_tailq_write_unlock();

	rte_mempool_free_memchunks(mp);
	rte_mempool_ops_free(mp);
	rte_memzone_free(mp->mz);
}

static void
mempool_cache_init(struct rte_mempool_cache *cache, uint32_t size)
{
	cache->size = size;
	cache->flushthresh = CALC_CACHE_FLUSHTHRESH(size);
	cache->len = 0;
}

/*
 * Create and initialize a cache for objects that are retrieved from and
 * returned to an underlying mempool. This structure is identical to the
 * local_cache[lcore_id] pointed to by the mempool structure.
 */
struct rte_mempool_cache *
rte_mempool_cache_create(uint32_t size, int socket_id)
{
	struct rte_mempool_cache *cache;

	if (size == 0 || size > RTE_MEMPOOL_CACHE_MAX_SIZE) {
		rte_errno = EINVAL;
		return NULL;
	}

	cache = rte_zmalloc_socket("MEMPOOL_CACHE", sizeof(*cache),
				  RTE_CACHE_LINE_SIZE, socket_id);
	if (cache == NULL) {
		RTE_LOG(ERR, MEMPOOL, "Cannot allocate mempool cache.\n");
		rte_errno = ENOMEM;
		return NULL;
	}

	mempool_cache_init(cache, size);

	return cache;
}

/*
 * Free a cache. It's the responsibility of the user to make sure that any
 * remaining objects in the cache are flushed to the corresponding
 * mempool.
 */
void
rte_mempool_cache_free(struct rte_mempool_cache *cache)
{
	rte_free(cache);
}

/* create an empty mempool */
struct rte_mempool *
rte_mempool_create_empty(const char *name, unsigned n, unsigned elt_size,
	unsigned cache_size, unsigned private_data_size,
	int socket_id, unsigned flags)
{
	char mz_name[RTE_MEMZONE_NAMESIZE];
	struct rte_mempool_list *mempool_list;
	struct rte_mempool *mp = NULL;
	struct rte_tailq_entry *te = NULL;
	const struct rte_memzone *mz = NULL;
	size_t mempool_size;
	unsigned int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY;
	struct rte_mempool_objsz objsz;
	unsigned lcore_id;
	int ret;

	/* compilation-time checks */
	RTE_BUILD_BUG_ON((sizeof(struct rte_mempool) &
			  RTE_CACHE_LINE_MASK) != 0);
	RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_cache) &
			  RTE_CACHE_LINE_MASK) != 0);
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
	RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_debug_stats) &
			  RTE_CACHE_LINE_MASK) != 0);
	RTE_BUILD_BUG_ON((offsetof(struct rte_mempool, stats) &
			  RTE_CACHE_LINE_MASK) != 0);
#endif

	mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);

	/* asked for zero items */
	if (n == 0) {
		rte_errno = EINVAL;
		return NULL;
	}

	/* asked cache too big */
	if (cache_size > RTE_MEMPOOL_CACHE_MAX_SIZE ||
	    CALC_CACHE_FLUSHTHRESH(cache_size) > n) {
		rte_errno = EINVAL;
		return NULL;
	}

	/* "no cache align" imply "no spread" */
	if (flags & MEMPOOL_F_NO_CACHE_ALIGN)
		flags |= MEMPOOL_F_NO_SPREAD;

	/* calculate mempool object sizes. */
	if (!rte_mempool_calc_obj_size(elt_size, flags, &objsz)) {
		rte_errno = EINVAL;
		return NULL;
	}

	rte_mcfg_mempool_write_lock();

	/*
	 * reserve a memory zone for this mempool: private data is
	 * cache-aligned
	 */
	private_data_size = (private_data_size +
			     RTE_MEMPOOL_ALIGN_MASK) & (~RTE_MEMPOOL_ALIGN_MASK);


	/* try to allocate tailq entry */
	te = rte_zmalloc("MEMPOOL_TAILQ_ENTRY", sizeof(*te), 0);
	if (te == NULL) {
		RTE_LOG(ERR, MEMPOOL, "Cannot allocate tailq entry!\n");
		goto exit_unlock;
	}

	mempool_size = MEMPOOL_HEADER_SIZE(mp, cache_size);
	mempool_size += private_data_size;
	mempool_size = RTE_ALIGN_CEIL(mempool_size, RTE_MEMPOOL_ALIGN);

	ret = snprintf(mz_name, sizeof(mz_name), RTE_MEMPOOL_MZ_FORMAT, name);
	if (ret < 0 || ret >= (int)sizeof(mz_name)) {
		rte_errno = ENAMETOOLONG;
		goto exit_unlock;
	}

	mz = rte_memzone_reserve(mz_name, mempool_size, socket_id, mz_flags);
	if (mz == NULL)
		goto exit_unlock;

	/* init the mempool structure */
	mp = mz->addr;
	memset(mp, 0, MEMPOOL_HEADER_SIZE(mp, cache_size));
	ret = strlcpy(mp->name, name, sizeof(mp->name));
	if (ret < 0 || ret >= (int)sizeof(mp->name)) {
		rte_errno = ENAMETOOLONG;
		goto exit_unlock;
	}
	mp->mz = mz;
	mp->size = n;
	mp->flags = flags;
	mp->socket_id = socket_id;
	mp->elt_size = objsz.elt_size;
	mp->header_size = objsz.header_size;
	mp->trailer_size = objsz.trailer_size;
	/* Size of default caches, zero means disabled. */
	mp->cache_size = cache_size;
	mp->private_data_size = private_data_size;
	STAILQ_INIT(&mp->elt_list);
	STAILQ_INIT(&mp->mem_list);

	/*
	 * local_cache pointer is set even if cache_size is zero.
	 * The local_cache points to just past the elt_pa[] array.
	 */
	mp->local_cache = (struct rte_mempool_cache *)
		RTE_PTR_ADD(mp, MEMPOOL_HEADER_SIZE(mp, 0));

	/* Init all default caches. */
	if (cache_size != 0) {
		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
			mempool_cache_init(&mp->local_cache[lcore_id],
					   cache_size);
	}

	te->data = mp;

	rte_mcfg_tailq_write_lock();
	TAILQ_INSERT_TAIL(mempool_list, te, next);
	rte_mcfg_tailq_write_unlock();
	rte_mcfg_mempool_write_unlock();

	return mp;

exit_unlock:
	rte_mcfg_mempool_write_unlock();
	rte_free(te);
	rte_mempool_free(mp);
	return NULL;
}

/* create the mempool */
struct rte_mempool *
rte_mempool_create(const char *name, unsigned n, unsigned elt_size,
	unsigned cache_size, unsigned private_data_size,
	rte_mempool_ctor_t *mp_init, void *mp_init_arg,
	rte_mempool_obj_cb_t *obj_init, void *obj_init_arg,
	int socket_id, unsigned flags)
{
	int ret;
	struct rte_mempool *mp;

	mp = rte_mempool_create_empty(name, n, elt_size, cache_size,
		private_data_size, socket_id, flags);
	if (mp == NULL)
		return NULL;

	/*
	 * Since we have 4 combinations of the SP/SC/MP/MC examine the flags to
	 * set the correct index into the table of ops structs.
	 */
	if ((flags & MEMPOOL_F_SP_PUT) && (flags & MEMPOOL_F_SC_GET))
		ret = rte_mempool_set_ops_byname(mp, "ring_sp_sc", NULL);
	else if (flags & MEMPOOL_F_SP_PUT)
		ret = rte_mempool_set_ops_byname(mp, "ring_sp_mc", NULL);
	else if (flags & MEMPOOL_F_SC_GET)
		ret = rte_mempool_set_ops_byname(mp, "ring_mp_sc", NULL);
	else
		ret = rte_mempool_set_ops_byname(mp, "ring_mp_mc", NULL);

	if (ret)
		goto fail;

	/* call the mempool priv initializer */
	if (mp_init)
		mp_init(mp, mp_init_arg);

	if (rte_mempool_populate_default(mp) < 0)
		goto fail;

	/* call the object initializers */
	if (obj_init)
		rte_mempool_obj_iter(mp, obj_init, obj_init_arg);

	return mp;

 fail:
	rte_mempool_free(mp);
	return NULL;
}

/* Return the number of entries in the mempool */
unsigned int
rte_mempool_avail_count(const struct rte_mempool *mp)
{
	unsigned count;
	unsigned lcore_id;

	count = rte_mempool_ops_get_count(mp);

	if (mp->cache_size == 0)
		return count;

	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
		count += mp->local_cache[lcore_id].len;

	/*
	 * due to race condition (access to len is not locked), the
	 * total can be greater than size... so fix the result
	 */
	if (count > mp->size)
		return mp->size;
	return count;
}

/* return the number of entries allocated from the mempool */
unsigned int
rte_mempool_in_use_count(const struct rte_mempool *mp)
{
	return mp->size - rte_mempool_avail_count(mp);
}

/* dump the cache status */
static unsigned
rte_mempool_dump_cache(FILE *f, const struct rte_mempool *mp)
{
	unsigned lcore_id;
	unsigned count = 0;
	unsigned cache_count;

	fprintf(f, "  internal cache infos:\n");
	fprintf(f, "    cache_size=%"PRIu32"\n", mp->cache_size);

	if (mp->cache_size == 0)
		return count;

	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
		cache_count = mp->local_cache[lcore_id].len;
		fprintf(f, "    cache_count[%u]=%"PRIu32"\n",
			lcore_id, cache_count);
		count += cache_count;
	}
	fprintf(f, "    total_cache_count=%u\n", count);
	return count;
}

#ifndef __INTEL_COMPILER
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif

/* check and update cookies or panic (internal) */
void rte_mempool_check_cookies(const struct rte_mempool *mp,
	void * const *obj_table_const, unsigned n, int free)
{
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
	struct rte_mempool_objhdr *hdr;
	struct rte_mempool_objtlr *tlr;
	uint64_t cookie;
	void *tmp;
	void *obj;
	void **obj_table;

	/* Force to drop the "const" attribute. This is done only when
	 * DEBUG is enabled */
	tmp = (void *) obj_table_const;
	obj_table = tmp;

	while (n--) {
		obj = obj_table[n];

		if (rte_mempool_from_obj(obj) != mp)
			rte_panic("MEMPOOL: object is owned by another "
				  "mempool\n");

		hdr = __mempool_get_header(obj);
		cookie = hdr->cookie;

		if (free == 0) {
			if (cookie != RTE_MEMPOOL_HEADER_COOKIE1) {
				RTE_LOG(CRIT, MEMPOOL,
					"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
					obj, (const void *) mp, cookie);
				rte_panic("MEMPOOL: bad header cookie (put)\n");
			}
			hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE2;
		} else if (free == 1) {
			if (cookie != RTE_MEMPOOL_HEADER_COOKIE2) {
				RTE_LOG(CRIT, MEMPOOL,
					"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
					obj, (const void *) mp, cookie);
				rte_panic("MEMPOOL: bad header cookie (get)\n");
			}
			hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE1;
		} else if (free == 2) {
			if (cookie != RTE_MEMPOOL_HEADER_COOKIE1 &&
			    cookie != RTE_MEMPOOL_HEADER_COOKIE2) {
				RTE_LOG(CRIT, MEMPOOL,
					"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
					obj, (const void *) mp, cookie);
				rte_panic("MEMPOOL: bad header cookie (audit)\n");
			}
		}
		tlr = __mempool_get_trailer(obj);
		cookie = tlr->cookie;
		if (cookie != RTE_MEMPOOL_TRAILER_COOKIE) {
			RTE_LOG(CRIT, MEMPOOL,
				"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
				obj, (const void *) mp, cookie);
			rte_panic("MEMPOOL: bad trailer cookie\n");
		}
	}
#else
	RTE_SET_USED(mp);
	RTE_SET_USED(obj_table_const);
	RTE_SET_USED(n);
	RTE_SET_USED(free);
#endif
}

void
rte_mempool_contig_blocks_check_cookies(const struct rte_mempool *mp,
	void * const *first_obj_table_const, unsigned int n, int free)
{
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
	struct rte_mempool_info info;
	const size_t total_elt_sz =
		mp->header_size + mp->elt_size + mp->trailer_size;
	unsigned int i, j;

	rte_mempool_ops_get_info(mp, &info);

	for (i = 0; i < n; ++i) {
		void *first_obj = first_obj_table_const[i];

		for (j = 0; j < info.contig_block_size; ++j) {
			void *obj;

			obj = (void *)((uintptr_t)first_obj + j * total_elt_sz);
			rte_mempool_check_cookies(mp, &obj, 1, free);
		}
	}
#else
	RTE_SET_USED(mp);
	RTE_SET_USED(first_obj_table_const);
	RTE_SET_USED(n);
	RTE_SET_USED(free);
#endif
}

#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
static void
mempool_obj_audit(struct rte_mempool *mp, __rte_unused void *opaque,
	void *obj, __rte_unused unsigned idx)
{
	__mempool_check_cookies(mp, &obj, 1, 2);
}

static void
mempool_audit_cookies(struct rte_mempool *mp)
{
	unsigned num;

	num = rte_mempool_obj_iter(mp, mempool_obj_audit, NULL);
	if (num != mp->size) {
		rte_panic("rte_mempool_obj_iter(mempool=%p, size=%u) "
			"iterated only over %u elements\n",
			mp, mp->size, num);
	}
}
#else
#define mempool_audit_cookies(mp) do {} while(0)
#endif

#ifndef __INTEL_COMPILER
#pragma GCC diagnostic error "-Wcast-qual"
#endif

/* check cookies before and after objects */
static void
mempool_audit_cache(const struct rte_mempool *mp)
{
	/* check cache size consistency */
	unsigned lcore_id;

	if (mp->cache_size == 0)
		return;

	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
		const struct rte_mempool_cache *cache;
		cache = &mp->local_cache[lcore_id];
		if (cache->len > cache->flushthresh) {
			RTE_LOG(CRIT, MEMPOOL, "badness on cache[%u]\n",
				lcore_id);
			rte_panic("MEMPOOL: invalid cache len\n");
		}
	}
}

/* check the consistency of mempool (size, cookies, ...) */
void
rte_mempool_audit(struct rte_mempool *mp)
{
	mempool_audit_cache(mp);
	mempool_audit_cookies(mp);

	/* For case where mempool DEBUG is not set, and cache size is 0 */
	RTE_SET_USED(mp);
}

/* dump the status of the mempool on the console */
void
rte_mempool_dump(FILE *f, struct rte_mempool *mp)
{
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
	struct rte_mempool_info info;
	struct rte_mempool_debug_stats sum;
	unsigned lcore_id;
#endif
	struct rte_mempool_memhdr *memhdr;
	unsigned common_count;
	unsigned cache_count;
	size_t mem_len = 0;

	RTE_ASSERT(f != NULL);
	RTE_ASSERT(mp != NULL);

	fprintf(f, "mempool <%s>@%p\n", mp->name, mp);
	fprintf(f, "  flags=%x\n", mp->flags);
	fprintf(f, "  pool=%p\n", mp->pool_data);
	fprintf(f, "  iova=0x%" PRIx64 "\n", mp->mz->iova);
	fprintf(f, "  nb_mem_chunks=%u\n", mp->nb_mem_chunks);
	fprintf(f, "  size=%"PRIu32"\n", mp->size);
	fprintf(f, "  populated_size=%"PRIu32"\n", mp->populated_size);
	fprintf(f, "  header_size=%"PRIu32"\n", mp->header_size);
	fprintf(f, "  elt_size=%"PRIu32"\n", mp->elt_size);
	fprintf(f, "  trailer_size=%"PRIu32"\n", mp->trailer_size);
	fprintf(f, "  total_obj_size=%"PRIu32"\n",
	       mp->header_size + mp->elt_size + mp->trailer_size);

	fprintf(f, "  private_data_size=%"PRIu32"\n", mp->private_data_size);

	STAILQ_FOREACH(memhdr, &mp->mem_list, next)
		mem_len += memhdr->len;
	if (mem_len != 0) {
		fprintf(f, "  avg bytes/object=%#Lf\n",
			(long double)mem_len / mp->size);
	}

	cache_count = rte_mempool_dump_cache(f, mp);
	common_count = rte_mempool_ops_get_count(mp);
	if ((cache_count + common_count) > mp->size)
		common_count = mp->size - cache_count;
	fprintf(f, "  common_pool_count=%u\n", common_count);

	/* sum and dump statistics */
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
	rte_mempool_ops_get_info(mp, &info);
	memset(&sum, 0, sizeof(sum));
	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
		sum.put_bulk += mp->stats[lcore_id].put_bulk;
		sum.put_objs += mp->stats[lcore_id].put_objs;
		sum.get_success_bulk += mp->stats[lcore_id].get_success_bulk;
		sum.get_success_objs += mp->stats[lcore_id].get_success_objs;
		sum.get_fail_bulk += mp->stats[lcore_id].get_fail_bulk;
		sum.get_fail_objs += mp->stats[lcore_id].get_fail_objs;
		sum.get_success_blks += mp->stats[lcore_id].get_success_blks;
		sum.get_fail_blks += mp->stats[lcore_id].get_fail_blks;
	}
	fprintf(f, "  stats:\n");
	fprintf(f, "    put_bulk=%"PRIu64"\n", sum.put_bulk);
	fprintf(f, "    put_objs=%"PRIu64"\n", sum.put_objs);
	fprintf(f, "    get_success_bulk=%"PRIu64"\n", sum.get_success_bulk);
	fprintf(f, "    get_success_objs=%"PRIu64"\n", sum.get_success_objs);
	fprintf(f, "    get_fail_bulk=%"PRIu64"\n", sum.get_fail_bulk);
	fprintf(f, "    get_fail_objs=%"PRIu64"\n", sum.get_fail_objs);
	if (info.contig_block_size > 0) {
		fprintf(f, "    get_success_blks=%"PRIu64"\n",
			sum.get_success_blks);
		fprintf(f, "    get_fail_blks=%"PRIu64"\n", sum.get_fail_blks);
	}
#else
	fprintf(f, "  no statistics available\n");
#endif

	rte_mempool_audit(mp);
}

/* dump the status of all mempools on the console */
void
rte_mempool_list_dump(FILE *f)
{
	struct rte_mempool *mp = NULL;
	struct rte_tailq_entry *te;
	struct rte_mempool_list *mempool_list;

	mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);

	rte_mcfg_mempool_read_lock();

	TAILQ_FOREACH(te, mempool_list, next) {
		mp = (struct rte_mempool *) te->data;
		rte_mempool_dump(f, mp);
	}

	rte_mcfg_mempool_read_unlock();
}

/* search a mempool from its name */
struct rte_mempool *
rte_mempool_lookup(const char *name)
{
	struct rte_mempool *mp = NULL;
	struct rte_tailq_entry *te;
	struct rte_mempool_list *mempool_list;

	mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);

	rte_mcfg_mempool_read_lock();

	TAILQ_FOREACH(te, mempool_list, next) {
		mp = (struct rte_mempool *) te->data;
		if (strncmp(name, mp->name, RTE_MEMPOOL_NAMESIZE) == 0)
			break;
	}

	rte_mcfg_mempool_read_unlock();

	if (te == NULL) {
		rte_errno = ENOENT;
		return NULL;
	}

	return mp;
}

void rte_mempool_walk(void (*func)(struct rte_mempool *, void *),
		      void *arg)
{
	struct rte_tailq_entry *te = NULL;
	struct rte_mempool_list *mempool_list;
	void *tmp_te;

	mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);

	rte_mcfg_mempool_read_lock();

	TAILQ_FOREACH_SAFE(te, mempool_list, next, tmp_te) {
		(*func)((struct rte_mempool *) te->data, arg);
	}

	rte_mcfg_mempool_read_unlock();
}