DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2018 Intel Corporation
 */

#include <rte_malloc.h>
#include <rte_eal.h>
#include <rte_log.h>
#include <rte_cycles.h>
#include <rte_compressdev.h>

#include "comp_perf_test_throughput.h"

void
cperf_throughput_test_destructor(void *arg)
{
	if (arg) {
		comp_perf_free_memory(
			((struct cperf_benchmark_ctx *)arg)->ver.options,
			&((struct cperf_benchmark_ctx *)arg)->ver.mem);
		rte_free(arg);
	}
}

void *
cperf_throughput_test_constructor(uint8_t dev_id, uint16_t qp_id,
		struct comp_test_data *options)
{
	struct cperf_benchmark_ctx *ctx = NULL;

	ctx = rte_malloc(NULL, sizeof(struct cperf_benchmark_ctx), 0);

	if (ctx == NULL)
		return NULL;

	ctx->ver.mem.dev_id = dev_id;
	ctx->ver.mem.qp_id = qp_id;
	ctx->ver.options = options;
	ctx->ver.silent = 1; /* ver. part will be silent */

	if (!comp_perf_allocate_memory(ctx->ver.options, &ctx->ver.mem)
			&& !prepare_bufs(ctx->ver.options, &ctx->ver.mem))
		return ctx;

	cperf_throughput_test_destructor(ctx);
	return NULL;
}

static int
main_loop(struct cperf_benchmark_ctx *ctx, enum rte_comp_xform_type type)
{
	struct comp_test_data *test_data = ctx->ver.options;
	struct cperf_mem_resources *mem = &ctx->ver.mem;
	uint8_t dev_id = mem->dev_id;
	uint32_t i, iter, num_iter;
	struct rte_comp_op **ops, **deq_ops;
	void *priv_xform = NULL;
	struct rte_comp_xform xform;
	struct rte_mbuf **input_bufs, **output_bufs;
	int res = 0;
	int allocated = 0;
	uint32_t out_seg_sz;

	if (test_data == NULL || !test_data->burst_sz) {
		RTE_LOG(ERR, USER1,
			"Unknown burst size\n");
		return -1;
	}

	ops = rte_zmalloc_socket(NULL,
		2 * mem->total_bufs * sizeof(struct rte_comp_op *),
		0, rte_socket_id());

	if (ops == NULL) {
		RTE_LOG(ERR, USER1,
			"Can't allocate memory for ops strucures\n");
		return -1;
	}

	deq_ops = &ops[mem->total_bufs];

	if (type == RTE_COMP_COMPRESS) {
		xform = (struct rte_comp_xform) {
			.type = RTE_COMP_COMPRESS,
			.compress = {
				.algo = RTE_COMP_ALGO_DEFLATE,
				.deflate.huffman = test_data->huffman_enc,
				.level = test_data->level,
				.window_size = test_data->window_sz,
				.chksum = RTE_COMP_CHECKSUM_NONE,
				.hash_algo = RTE_COMP_HASH_ALGO_NONE
			}
		};
		input_bufs = mem->decomp_bufs;
		output_bufs = mem->comp_bufs;
		out_seg_sz = test_data->out_seg_sz;
	} else {
		xform = (struct rte_comp_xform) {
			.type = RTE_COMP_DECOMPRESS,
			.decompress = {
				.algo = RTE_COMP_ALGO_DEFLATE,
				.chksum = RTE_COMP_CHECKSUM_NONE,
				.window_size = test_data->window_sz,
				.hash_algo = RTE_COMP_HASH_ALGO_NONE
			}
		};
		input_bufs = mem->comp_bufs;
		output_bufs = mem->decomp_bufs;
		out_seg_sz = test_data->seg_sz;
	}

	/* Create private xform */
	if (rte_compressdev_private_xform_create(dev_id, &xform,
			&priv_xform) < 0) {
		RTE_LOG(ERR, USER1, "Private xform could not be created\n");
		res = -1;
		goto end;
	}

	uint64_t tsc_start, tsc_end, tsc_duration;

	num_iter = test_data->num_iter;
	tsc_start = tsc_end = tsc_duration = 0;
	tsc_start = rte_rdtsc_precise();

	for (iter = 0; iter < num_iter; iter++) {
		uint32_t total_ops = mem->total_bufs;
		uint32_t remaining_ops = mem->total_bufs;
		uint32_t total_deq_ops = 0;
		uint32_t total_enq_ops = 0;
		uint16_t ops_unused = 0;
		uint16_t num_enq = 0;
		uint16_t num_deq = 0;

		while (remaining_ops > 0) {
			uint16_t num_ops = RTE_MIN(remaining_ops,
						   test_data->burst_sz);
			uint16_t ops_needed = num_ops - ops_unused;

			/*
			 * Move the unused operations from the previous
			 * enqueue_burst call to the front, to maintain order
			 */
			if ((ops_unused > 0) && (num_enq > 0)) {
				size_t nb_b_to_mov =
				      ops_unused * sizeof(struct rte_comp_op *);

				memmove(ops, &ops[num_enq], nb_b_to_mov);
			}

			/* Allocate compression operations */
			if (ops_needed && !rte_comp_op_bulk_alloc(
						mem->op_pool,
						&ops[ops_unused],
						ops_needed)) {
				RTE_LOG(ERR, USER1,
				      "Could not allocate enough operations\n");
				res = -1;
				goto end;
			}
			allocated += ops_needed;

			for (i = 0; i < ops_needed; i++) {
				/*
				 * Calculate next buffer to attach to operation
				 */
				uint32_t buf_id = total_enq_ops + i +
						ops_unused;
				uint16_t op_id = ops_unused + i;
				/* Reset all data in output buffers */
				struct rte_mbuf *m = output_bufs[buf_id];

				m->pkt_len = out_seg_sz * m->nb_segs;
				while (m) {
					m->data_len = m->buf_len - m->data_off;
					m = m->next;
				}
				ops[op_id]->m_src = input_bufs[buf_id];
				ops[op_id]->m_dst = output_bufs[buf_id];
				ops[op_id]->src.offset = 0;
				ops[op_id]->src.length =
					rte_pktmbuf_pkt_len(input_bufs[buf_id]);
				ops[op_id]->dst.offset = 0;
				ops[op_id]->flush_flag = RTE_COMP_FLUSH_FINAL;
				ops[op_id]->input_chksum = buf_id;
				ops[op_id]->private_xform = priv_xform;
			}

			if (unlikely(test_data->perf_comp_force_stop))
				goto end;

			num_enq = rte_compressdev_enqueue_burst(dev_id,
								mem->qp_id, ops,
								num_ops);
			if (num_enq == 0) {
				struct rte_compressdev_stats stats;

				rte_compressdev_stats_get(dev_id, &stats);
				if (stats.enqueue_err_count) {
					res = -1;
					goto end;
				}
			}

			ops_unused = num_ops - num_enq;
			remaining_ops -= num_enq;
			total_enq_ops += num_enq;

			num_deq = rte_compressdev_dequeue_burst(dev_id,
							   mem->qp_id,
							   deq_ops,
							   test_data->burst_sz);
			total_deq_ops += num_deq;

			if (iter == num_iter - 1) {
				for (i = 0; i < num_deq; i++) {
					struct rte_comp_op *op = deq_ops[i];

					if (op->status !=
						RTE_COMP_OP_STATUS_SUCCESS) {
						RTE_LOG(ERR, USER1,
				       "Some operations were not successful\n");
						goto end;
					}

					struct rte_mbuf *m = op->m_dst;

					m->pkt_len = op->produced;
					uint32_t remaining_data = op->produced;
					uint16_t data_to_append;

					while (remaining_data > 0) {
						data_to_append =
							RTE_MIN(remaining_data,
							     out_seg_sz);
						m->data_len = data_to_append;
						remaining_data -=
								data_to_append;
						m = m->next;
					}
				}
			}
			rte_mempool_put_bulk(mem->op_pool,
					     (void **)deq_ops, num_deq);
			allocated -= num_deq;
		}

		/* Dequeue the last operations */
		while (total_deq_ops < total_ops) {
			if (unlikely(test_data->perf_comp_force_stop))
				goto end;

			num_deq = rte_compressdev_dequeue_burst(dev_id,
							   mem->qp_id,
							   deq_ops,
							   test_data->burst_sz);
			if (num_deq == 0) {
				struct rte_compressdev_stats stats;

				rte_compressdev_stats_get(dev_id, &stats);
				if (stats.dequeue_err_count) {
					res = -1;
					goto end;
				}
			}

			total_deq_ops += num_deq;

			if (iter == num_iter - 1) {
				for (i = 0; i < num_deq; i++) {
					struct rte_comp_op *op = deq_ops[i];

					if (op->status !=
						RTE_COMP_OP_STATUS_SUCCESS) {
						RTE_LOG(ERR, USER1,
				       "Some operations were not successful\n");
						goto end;
					}

					struct rte_mbuf *m = op->m_dst;

					m->pkt_len = op->produced;
					uint32_t remaining_data = op->produced;
					uint16_t data_to_append;

					while (remaining_data > 0) {
						data_to_append =
						RTE_MIN(remaining_data,
							out_seg_sz);
						m->data_len = data_to_append;
						remaining_data -=
								data_to_append;
						m = m->next;
					}
				}
			}
			rte_mempool_put_bulk(mem->op_pool,
					     (void **)deq_ops, num_deq);
			allocated -= num_deq;
		}
	}

	tsc_end = rte_rdtsc_precise();
	tsc_duration = tsc_end - tsc_start;

	if (type == RTE_COMP_COMPRESS)
		ctx->comp_tsc_duration[test_data->level] =
				tsc_duration / num_iter;
	else
		ctx->decomp_tsc_duration[test_data->level] =
				tsc_duration / num_iter;

end:
	rte_mempool_put_bulk(mem->op_pool, (void **)ops, allocated);
	rte_compressdev_private_xform_free(dev_id, priv_xform);
	rte_free(ops);

	if (test_data->perf_comp_force_stop) {
		RTE_LOG(ERR, USER1,
		      "lcore: %d Perf. test has been aborted by user\n",
			mem->lcore_id);
		res = -1;
	}
	return res;
}

int
cperf_throughput_test_runner(void *test_ctx)
{
	struct cperf_benchmark_ctx *ctx = test_ctx;
	struct comp_test_data *test_data = ctx->ver.options;
	uint32_t lcore = rte_lcore_id();
	static rte_atomic16_t display_once = RTE_ATOMIC16_INIT(0);
	int i, ret = EXIT_SUCCESS;

	ctx->ver.mem.lcore_id = lcore;

	/*
	 * printing information about current compression thread
	 */
	if (rte_atomic16_test_and_set(&ctx->ver.mem.print_info_once))
		printf("    lcore: %u,"
				" driver name: %s,"
				" device name: %s,"
				" device id: %u,"
				" socket id: %u,"
				" queue pair id: %u\n",
			lcore,
			ctx->ver.options->driver_name,
			rte_compressdev_name_get(ctx->ver.mem.dev_id),
			ctx->ver.mem.dev_id,
			rte_compressdev_socket_id(ctx->ver.mem.dev_id),
			ctx->ver.mem.qp_id);

	/*
	 * First the verification part is needed
	 */
	if (cperf_verify_test_runner(&ctx->ver)) {
		ret =  EXIT_FAILURE;
		goto end;
	}

	/*
	 * Run the tests twice, discarding the first performance
	 * results, before the cache is warmed up
	 */
	for (i = 0; i < 2; i++) {
		if (main_loop(ctx, RTE_COMP_COMPRESS) < 0) {
			ret = EXIT_FAILURE;
			goto end;
		}
	}

	for (i = 0; i < 2; i++) {
		if (main_loop(ctx, RTE_COMP_DECOMPRESS) < 0) {
			ret = EXIT_FAILURE;
			goto end;
		}
	}

	ctx->comp_tsc_byte =
			(double)(ctx->comp_tsc_duration[test_data->level]) /
					test_data->input_data_sz;

	ctx->decomp_tsc_byte =
			(double)(ctx->decomp_tsc_duration[test_data->level]) /
					test_data->input_data_sz;

	ctx->comp_gbps = rte_get_tsc_hz() / ctx->comp_tsc_byte * 8 /
			1000000000;

	ctx->decomp_gbps = rte_get_tsc_hz() / ctx->decomp_tsc_byte * 8 /
			1000000000;

	if (rte_atomic16_test_and_set(&display_once)) {
		printf("\n%12s%6s%12s%17s%15s%16s\n",
			"lcore id", "Level", "Comp size", "Comp ratio [%]",
			"Comp [Gbps]", "Decomp [Gbps]");
	}

	printf("%12u%6u%12zu%17.2f%15.2f%16.2f\n",
		ctx->ver.mem.lcore_id,
		test_data->level, ctx->ver.comp_data_sz, ctx->ver.ratio,
		ctx->comp_gbps,
		ctx->decomp_gbps);

end:
	return ret;
}