DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2017 Cavium, Inc
 */

#include "ssovf_worker.h"

static __rte_always_inline void
ssows_new_event(struct ssows *ws, const struct rte_event *ev)
{
	const uint64_t event_ptr = ev->u64;
	const uint32_t tag = (uint32_t)ev->event;
	const uint8_t new_tt = ev->sched_type;
	const uint8_t grp = ev->queue_id;

	ssows_add_work(ws, event_ptr, tag, new_tt, grp);
}

static __rte_always_inline void
ssows_fwd_swtag(struct ssows *ws, const struct rte_event *ev, const uint8_t grp)
{
	const uint8_t cur_tt = ws->cur_tt;
	const uint8_t new_tt = ev->sched_type;
	const uint32_t tag = (uint32_t)ev->event;
	/*
	 * cur_tt/new_tt     SSO_SYNC_ORDERED SSO_SYNC_ATOMIC SSO_SYNC_UNTAGGED
	 *
	 * SSO_SYNC_ORDERED        norm           norm             untag
	 * SSO_SYNC_ATOMIC         norm           norm		   untag
	 * SSO_SYNC_UNTAGGED       full           full             NOOP
	 */
	if (unlikely(cur_tt == SSO_SYNC_UNTAGGED)) {
		if (new_tt != SSO_SYNC_UNTAGGED) {
			ssows_swtag_full(ws, ev->u64, tag,
				new_tt, grp);
		}
	} else {
		if (likely(new_tt != SSO_SYNC_UNTAGGED))
			ssows_swtag_norm(ws, tag, new_tt);
		else
			ssows_swtag_untag(ws);
	}
	ws->swtag_req = 1;
}

#define OCT_EVENT_TYPE_GRP_FWD (RTE_EVENT_TYPE_MAX - 1)

static __rte_always_inline void
ssows_fwd_group(struct ssows *ws, const struct rte_event *ev, const uint8_t grp)
{
	const uint64_t event_ptr = ev->u64;
	const uint32_t tag = (uint32_t)ev->event;
	const uint8_t cur_tt = ws->cur_tt;
	const uint8_t new_tt = ev->sched_type;

	if (cur_tt == SSO_SYNC_ORDERED) {
		/* Create unique tag based on custom event type and new grp */
		uint32_t newtag = OCT_EVENT_TYPE_GRP_FWD << 28;

		newtag |= grp << 20;
		newtag |= tag;
		ssows_swtag_norm(ws, newtag, SSO_SYNC_ATOMIC);
		rte_smp_wmb();
		ssows_swtag_wait(ws);
	} else {
		rte_smp_wmb();
	}
	ssows_add_work(ws, event_ptr, tag, new_tt, grp);
}

static __rte_always_inline void
ssows_forward_event(struct ssows *ws, const struct rte_event *ev)
{
	const uint8_t grp = ev->queue_id;

	/* Group hasn't changed, Use SWTAG to forward the event */
	if (ws->cur_grp == grp)
		ssows_fwd_swtag(ws, ev, grp);
	else
	/*
	 * Group has been changed for group based work pipelining,
	 * Use deschedule/add_work operation to transfer the event to
	 * new group/core
	 */
		ssows_fwd_group(ws, ev, grp);
}

static __rte_always_inline void
ssows_release_event(struct ssows *ws)
{
	if (likely(ws->cur_tt != SSO_SYNC_UNTAGGED))
		ssows_swtag_untag(ws);
}

#define R(name, f2, f1, f0, flags)					     \
static uint16_t __rte_noinline	__rte_hot				     \
ssows_deq_ ##name(void *port, struct rte_event *ev, uint64_t timeout_ticks)  \
{									     \
	struct ssows *ws = port;					     \
									     \
	RTE_SET_USED(timeout_ticks);					     \
									     \
	if (ws->swtag_req) {						     \
		ws->swtag_req = 0;					     \
		ssows_swtag_wait(ws);					     \
		return 1;						     \
	} else {							     \
		return ssows_get_work(ws, ev, flags);		             \
	}								     \
}									     \
									     \
static uint16_t __rte_hot						     \
ssows_deq_burst_ ##name(void *port, struct rte_event ev[],		     \
			 uint16_t nb_events, uint64_t timeout_ticks)	     \
{									     \
	RTE_SET_USED(nb_events);					     \
									     \
	return ssows_deq_ ##name(port, ev, timeout_ticks);		     \
}									     \
									     \
static uint16_t __rte_hot						     \
ssows_deq_timeout_ ##name(void *port, struct rte_event *ev,		     \
			  uint64_t timeout_ticks)			     \
{									     \
	struct ssows *ws = port;					     \
	uint64_t iter;							     \
	uint16_t ret = 1;						     \
									     \
	if (ws->swtag_req) {						     \
		ws->swtag_req = 0;					     \
		ssows_swtag_wait(ws);					     \
	} else {							     \
		ret = ssows_get_work(ws, ev, flags);			     \
		for (iter = 1; iter < timeout_ticks && (ret == 0); iter++)   \
			ret = ssows_get_work(ws, ev, flags);		     \
	}								     \
	return ret;							     \
}									     \
									     \
static uint16_t __rte_hot						     \
ssows_deq_timeout_burst_ ##name(void *port, struct rte_event ev[],	     \
				uint16_t nb_events, uint64_t timeout_ticks)  \
{									     \
	RTE_SET_USED(nb_events);					     \
									     \
	return ssows_deq_timeout_ ##name(port, ev, timeout_ticks);	     \
}

SSO_RX_ADPTR_ENQ_FASTPATH_FUNC
#undef R

__rte_always_inline uint16_t __rte_hot
ssows_enq(void *port, const struct rte_event *ev)
{
	struct ssows *ws = port;
	uint16_t ret = 1;

	switch (ev->op) {
	case RTE_EVENT_OP_NEW:
		rte_smp_wmb();
		ssows_new_event(ws, ev);
		break;
	case RTE_EVENT_OP_FORWARD:
		ssows_forward_event(ws, ev);
		break;
	case RTE_EVENT_OP_RELEASE:
		ssows_release_event(ws);
		break;
	default:
		ret = 0;
	}
	return ret;
}

uint16_t __rte_hot
ssows_enq_burst(void *port, const struct rte_event ev[], uint16_t nb_events)
{
	RTE_SET_USED(nb_events);
	return ssows_enq(port, ev);
}

uint16_t __rte_hot
ssows_enq_new_burst(void *port, const struct rte_event ev[], uint16_t nb_events)
{
	uint16_t i;
	struct ssows *ws = port;

	rte_smp_wmb();
	for (i = 0; i < nb_events; i++)
		ssows_new_event(ws,  &ev[i]);

	return nb_events;
}

uint16_t __rte_hot
ssows_enq_fwd_burst(void *port, const struct rte_event ev[], uint16_t nb_events)
{
	struct ssows *ws = port;
	RTE_SET_USED(nb_events);

	ssows_forward_event(ws,  ev);

	return 1;
}

void
ssows_flush_events(struct ssows *ws, uint8_t queue_id,
				ssows_handle_event_t fn, void *arg)
{
	uint32_t reg_off;
	struct rte_event ev;
	uint64_t enable, aq_cnt = 1, cq_ds_cnt = 1;
	uint64_t get_work0, get_work1;
	uint64_t sched_type_queue;
	uint8_t *base = ssovf_bar(OCTEONTX_SSO_GROUP, queue_id, 0);

	enable = ssovf_read64(base + SSO_VHGRP_QCTL);
	if (!enable)
		return;

	reg_off = SSOW_VHWS_OP_GET_WORK0;
	reg_off |= 1 << 17; /* Grouped */
	reg_off |= 1 << 16; /* WAIT */
	reg_off |= queue_id << 4; /* INDEX_GGRP_MASK(group number) */
	while (aq_cnt || cq_ds_cnt) {
		aq_cnt = ssovf_read64(base + SSO_VHGRP_AQ_CNT);
		cq_ds_cnt = ssovf_read64(base + SSO_VHGRP_INT_CNT);
		/* Extract cq and ds count */
		cq_ds_cnt &= 0x1FFF1FFF0000;

		ssovf_load_pair(get_work0, get_work1, ws->base + reg_off);

		sched_type_queue = (get_work0 >> 32) & 0xfff;
		ws->cur_tt = sched_type_queue & 0x3;
		ws->cur_grp = sched_type_queue >> 2;
		sched_type_queue = sched_type_queue << 38;
		ev.event = sched_type_queue | (get_work0 & 0xffffffff);
		if (get_work1 && ev.event_type == RTE_EVENT_TYPE_ETHDEV)
			ev.mbuf = ssovf_octeontx_wqe_to_pkt(get_work1,
					(ev.event >> 20) & 0x7F,
					OCCTX_RX_OFFLOAD_NONE |
					OCCTX_RX_MULTI_SEG_F,
					ws->lookup_mem);
		else
			ev.u64 = get_work1;

		if (fn != NULL && ev.u64 != 0)
			fn(arg, ev);
	}
}

void
ssows_reset(struct ssows *ws)
{
	uint64_t tag;
	uint64_t pend_tag;
	uint8_t pend_tt;
	uint8_t tt;

	tag = ssovf_read64(ws->base + SSOW_VHWS_TAG);
	pend_tag = ssovf_read64(ws->base + SSOW_VHWS_PENDTAG);

	if (pend_tag & (1ULL << 63)) { /* Tagswitch pending */
		pend_tt = (pend_tag >> 32) & 0x3;
		if (pend_tt == SSO_SYNC_ORDERED || pend_tt == SSO_SYNC_ATOMIC)
			ssows_desched(ws);
	} else {
		tt = (tag >> 32) & 0x3;
		if (tt == SSO_SYNC_ORDERED || tt == SSO_SYNC_ATOMIC)
			ssows_swtag_untag(ws);
	}
}

static __rte_always_inline uint16_t
__sso_event_tx_adapter_enqueue(void *port, struct rte_event ev[],
			       uint16_t nb_events, uint64_t *cmd,
			       const uint16_t flag)
{
	uint16_t port_id;
	uint16_t queue_id;
	struct rte_mbuf *m;
	struct rte_eth_dev *ethdev;
	struct ssows *ws = port;
	struct octeontx_txq *txq;

	switch (ev->sched_type) {
	case SSO_SYNC_ORDERED:
		ssows_swtag_norm(ws, ev->event, SSO_SYNC_ATOMIC);
		rte_cio_wmb();
		ssows_swtag_wait(ws);
		break;
	case SSO_SYNC_UNTAGGED:
		ssows_swtag_full(ws, ev->u64, ev->event, SSO_SYNC_ATOMIC,
				ev->queue_id);
		rte_cio_wmb();
		ssows_swtag_wait(ws);
		break;
	case SSO_SYNC_ATOMIC:
		rte_cio_wmb();
		break;
	}

	m = ev[0].mbuf;
	port_id = m->port;
	queue_id = rte_event_eth_tx_adapter_txq_get(m);
	ethdev = &rte_eth_devices[port_id];
	txq = ethdev->data->tx_queues[queue_id];

	return __octeontx_xmit_pkts(txq, &m, nb_events, cmd, flag);
}

#define T(name, f3, f2, f1, f0, sz, flags)				     \
static uint16_t __rte_noinline	__rte_hot				     \
sso_event_tx_adapter_enqueue_ ## name(void *port, struct rte_event ev[],     \
				  uint16_t nb_events)			     \
{									     \
	uint64_t cmd[sz];						     \
	return __sso_event_tx_adapter_enqueue(port, ev, nb_events, cmd,	     \
					      flags);			     \
}

SSO_TX_ADPTR_ENQ_FASTPATH_FUNC
#undef T

void
ssovf_fastpath_fns_set(struct rte_eventdev *dev)
{
	struct ssovf_evdev *edev = ssovf_pmd_priv(dev);

	dev->enqueue       = ssows_enq;
	dev->enqueue_burst = ssows_enq_burst;
	dev->enqueue_new_burst = ssows_enq_new_burst;
	dev->enqueue_forward_burst = ssows_enq_fwd_burst;

	const event_tx_adapter_enqueue ssow_txa_enqueue[2][2][2][2] = {
#define T(name, f3, f2, f1, f0, sz, flags)				\
	[f3][f2][f1][f0] =  sso_event_tx_adapter_enqueue_ ##name,

SSO_TX_ADPTR_ENQ_FASTPATH_FUNC
#undef T
	};

	dev->txa_enqueue = ssow_txa_enqueue
		[!!(edev->tx_offload_flags & OCCTX_TX_OFFLOAD_MBUF_NOFF_F)]
		[!!(edev->tx_offload_flags & OCCTX_TX_OFFLOAD_OL3_OL4_CSUM_F)]
		[!!(edev->tx_offload_flags & OCCTX_TX_OFFLOAD_L3_L4_CSUM_F)]
		[!!(edev->tx_offload_flags & OCCTX_TX_MULTI_SEG_F)];

	dev->txa_enqueue_same_dest = dev->txa_enqueue;

	/* Assigning dequeue func pointers */
	const event_dequeue_t ssow_deq[2][2][2] = {
#define R(name, f2, f1, f0, flags)					\
	[f2][f1][f0] =  ssows_deq_ ##name,

SSO_RX_ADPTR_ENQ_FASTPATH_FUNC
#undef R
	};

	dev->dequeue = ssow_deq
		[!!(edev->rx_offload_flags & OCCTX_RX_VLAN_FLTR_F)]
		[!!(edev->rx_offload_flags & OCCTX_RX_OFFLOAD_CSUM_F)]
		[!!(edev->rx_offload_flags & OCCTX_RX_MULTI_SEG_F)];

	const event_dequeue_burst_t ssow_deq_burst[2][2][2] = {
#define R(name, f2, f1, f0, flags)					\
	[f2][f1][f0] =  ssows_deq_burst_ ##name,

SSO_RX_ADPTR_ENQ_FASTPATH_FUNC
#undef R
	};

	dev->dequeue_burst = ssow_deq_burst
		[!!(edev->rx_offload_flags & OCCTX_RX_VLAN_FLTR_F)]
		[!!(edev->rx_offload_flags & OCCTX_RX_OFFLOAD_CSUM_F)]
		[!!(edev->rx_offload_flags & OCCTX_RX_MULTI_SEG_F)];

	if (edev->is_timeout_deq) {
		const event_dequeue_t ssow_deq_timeout[2][2][2] = {
#define R(name, f2, f1, f0, flags)					\
	[f2][f1][f0] =  ssows_deq_timeout_ ##name,

SSO_RX_ADPTR_ENQ_FASTPATH_FUNC
#undef R
		};

	dev->dequeue = ssow_deq_timeout
		[!!(edev->rx_offload_flags & OCCTX_RX_VLAN_FLTR_F)]
		[!!(edev->rx_offload_flags & OCCTX_RX_OFFLOAD_CSUM_F)]
		[!!(edev->rx_offload_flags & OCCTX_RX_MULTI_SEG_F)];

	const event_dequeue_burst_t ssow_deq_timeout_burst[2][2][2] = {
#define R(name, f2, f1, f0, flags)					\
	[f2][f1][f0] =  ssows_deq_timeout_burst_ ##name,

SSO_RX_ADPTR_ENQ_FASTPATH_FUNC
#undef R
		};

	dev->dequeue_burst = ssow_deq_timeout_burst
		[!!(edev->rx_offload_flags & OCCTX_RX_VLAN_FLTR_F)]
		[!!(edev->rx_offload_flags & OCCTX_RX_OFFLOAD_CSUM_F)]
		[!!(edev->rx_offload_flags & OCCTX_RX_MULTI_SEG_F)];
	}
}

static void
octeontx_create_rx_ol_flags_array(void *mem)
{
	uint16_t idx, errcode, errlev;
	uint32_t val, *ol_flags;

	/* Skip ptype array memory */
	ol_flags = (uint32_t *)mem;

	for (idx = 0; idx < BIT(ERRCODE_ERRLEN_WIDTH); idx++) {
		errcode = idx & 0xff;
		errlev = (idx & 0x700) >> 8;

		val = PKT_RX_IP_CKSUM_UNKNOWN;
		val |= PKT_RX_L4_CKSUM_UNKNOWN;
		val |= PKT_RX_OUTER_L4_CKSUM_UNKNOWN;

		switch (errlev) {
		case OCCTX_ERRLEV_RE:
			if (errcode) {
				val |= PKT_RX_IP_CKSUM_BAD;
				val |= PKT_RX_L4_CKSUM_BAD;
			} else {
				val |= PKT_RX_IP_CKSUM_GOOD;
				val |= PKT_RX_L4_CKSUM_GOOD;
			}
			break;
		case OCCTX_ERRLEV_LC:
			if (errcode == OCCTX_EC_IP4_CSUM) {
				val |= PKT_RX_IP_CKSUM_BAD;
				val |= PKT_RX_EIP_CKSUM_BAD;
			} else {
				val |= PKT_RX_IP_CKSUM_GOOD;
			}
			break;
		case OCCTX_ERRLEV_LD:
			/* Check if parsed packet is neither IPv4 or IPV6 */
			if (errcode == OCCTX_EC_IP4_NOT)
				break;
			val |= PKT_RX_IP_CKSUM_GOOD;
			if (errcode == OCCTX_EC_L4_CSUM)
				val |= PKT_RX_OUTER_L4_CKSUM_BAD;
			else
				val |= PKT_RX_L4_CKSUM_GOOD;
			break;
		case OCCTX_ERRLEV_LE:
			if (errcode == OCCTX_EC_IP4_CSUM)
				val |= PKT_RX_IP_CKSUM_BAD;
			else
				val |= PKT_RX_IP_CKSUM_GOOD;
			break;
		case OCCTX_ERRLEV_LF:
			/* Check if parsed packet is neither IPv4 or IPV6 */
			if (errcode == OCCTX_EC_IP4_NOT)
				break;
			val |= PKT_RX_IP_CKSUM_GOOD;
			if (errcode == OCCTX_EC_L4_CSUM)
				val |= PKT_RX_L4_CKSUM_BAD;
			else
				val |= PKT_RX_L4_CKSUM_GOOD;
			break;
		}

		ol_flags[idx] = val;
	}
}

void *
octeontx_fastpath_lookup_mem_get(void)
{
	const char name[] = OCCTX_FASTPATH_LOOKUP_MEM;
	const struct rte_memzone *mz;
	void *mem;

	mz = rte_memzone_lookup(name);
	if (mz != NULL)
		return mz->addr;

	/* Request for the first time */
	mz = rte_memzone_reserve_aligned(name, LOOKUP_ARRAY_SZ,
					 SOCKET_ID_ANY, 0, OCCTX_ALIGN);
	if (mz != NULL) {
		mem = mz->addr;
		/* Form the rx ol_flags based on errcode */
		octeontx_create_rx_ol_flags_array(mem);
		return mem;
	}
	return NULL;
}