DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright (c) 2007-2013 Broadcom Corporation.
 *
 * Eric Davis        <edavis@broadcom.com>
 * David Christensen <davidch@broadcom.com>
 * Gary Zambrano     <zambrano@broadcom.com>
 *
 * Copyright (c) 2013-2015 Brocade Communications Systems, Inc.
 * Copyright (c) 2015-2018 Cavium Inc.
 * All rights reserved.
 * www.cavium.com
 */

#ifndef ECORE_INIT_H
#define ECORE_INIT_H

/* Init operation types and structures */
enum {
	OP_RD = 0x1,	/* read a single register */
	OP_WR,		/* write a single register */
	OP_SW,		/* copy a string to the device */
	OP_ZR,		/* clear memory */
	OP_ZP,		/* unzip then copy with DMAE */
	OP_WR_64,	/* write 64 bit pattern */
	OP_WB,		/* copy a string using DMAE */
	OP_WB_ZR,	/* Clear a string using DMAE or indirect-wr */
	OP_IF_MODE_OR,  /* Skip the following ops if all init modes don't match */
	OP_IF_MODE_AND, /* Skip the following ops if any init modes don't match */
	OP_MAX
};

enum {
	STAGE_START,
	STAGE_END,
};

/* Returns the index of start or end of a specific block stage in ops array*/
#define BLOCK_OPS_IDX(block, stage, end) \
	(2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))


/* structs for the various opcodes */
struct raw_op {
	uint32_t op:8;
	uint32_t offset:24;
	uint32_t raw_data;
};

struct op_read {
	uint32_t op:8;
	uint32_t offset:24;
	uint32_t val;
};

struct op_write {
	uint32_t op:8;
	uint32_t offset:24;
	uint32_t val;
};

struct op_arr_write {
	uint32_t op:8;
	uint32_t offset:24;
#ifdef __BIG_ENDIAN
	uint16_t data_len;
	uint16_t data_off;
#else /* __LITTLE_ENDIAN */
	uint16_t data_off;
	uint16_t data_len;
#endif
};

struct op_zero {
	uint32_t op:8;
	uint32_t offset:24;
	uint32_t len;
};

struct op_if_mode {
	uint32_t op:8;
	uint32_t cmd_offset:24;
	uint32_t mode_bit_map;
};


union init_op {
	struct op_read		read;
	struct op_write		write;
	struct op_arr_write	arr_wr;
	struct op_zero		zero;
	struct raw_op		raw;
	struct op_if_mode	if_mode;
};


/* Init Phases */
enum {
	PHASE_COMMON,
	PHASE_PORT0,
	PHASE_PORT1,
	PHASE_PF0,
	PHASE_PF1,
	PHASE_PF2,
	PHASE_PF3,
	PHASE_PF4,
	PHASE_PF5,
	PHASE_PF6,
	PHASE_PF7,
	NUM_OF_INIT_PHASES
};

/* Init Modes */
enum {
	MODE_ASIC                      = 0x00000001,
	MODE_FPGA                      = 0x00000002,
	MODE_EMUL                      = 0x00000004,
	MODE_E2                        = 0x00000008,
	MODE_E3                        = 0x00000010,
	MODE_PORT2                     = 0x00000020,
	MODE_PORT4                     = 0x00000040,
	MODE_SF                        = 0x00000080,
	MODE_MF                        = 0x00000100,
	MODE_MF_SD                     = 0x00000200,
	MODE_MF_SI                     = 0x00000400,
	MODE_MF_AFEX                   = 0x00000800,
	MODE_E3_A0                     = 0x00001000,
	MODE_E3_B0                     = 0x00002000,
	MODE_COS3                      = 0x00004000,
	MODE_COS6                      = 0x00008000,
	MODE_LITTLE_ENDIAN             = 0x00010000,
	MODE_BIG_ENDIAN                = 0x00020000,
};

/* Init Blocks */
enum {
	BLOCK_ATC,
	BLOCK_BRB1,
	BLOCK_CCM,
	BLOCK_CDU,
	BLOCK_CFC,
	BLOCK_CSDM,
	BLOCK_CSEM,
	BLOCK_DBG,
	BLOCK_DMAE,
	BLOCK_DORQ,
	BLOCK_HC,
	BLOCK_IGU,
	BLOCK_MISC,
	BLOCK_NIG,
	BLOCK_PBF,
	BLOCK_PGLUE_B,
	BLOCK_PRS,
	BLOCK_PXP2,
	BLOCK_PXP,
	BLOCK_QM,
	BLOCK_SRC,
	BLOCK_TCM,
	BLOCK_TM,
	BLOCK_TSDM,
	BLOCK_TSEM,
	BLOCK_UCM,
	BLOCK_UPB,
	BLOCK_USDM,
	BLOCK_USEM,
	BLOCK_XCM,
	BLOCK_XPB,
	BLOCK_XSDM,
	BLOCK_XSEM,
	BLOCK_MISC_AEU,
	NUM_OF_INIT_BLOCKS
};

#include "bnx2x.h"

/* Vnics per mode */
#define ECORE_PORT2_MODE_NUM_VNICS 4


/* QM queue numbers */
#define ECORE_ETH_Q		0
#define ECORE_TOE_Q		3
#define ECORE_TOE_ACK_Q		6
#define ECORE_ISCSI_Q		9
#define ECORE_ISCSI_ACK_Q	11
#define ECORE_FCOE_Q		10

/* Vnics per mode */
#define ECORE_PORT4_MODE_NUM_VNICS 2

/* COS offset for port1 in E3 B0 4port mode */
#define ECORE_E3B0_PORT1_COS_OFFSET 3

/* QM Register addresses */
#define ECORE_Q_VOQ_REG_ADDR(pf_q_num)\
	(QM_REG_QVOQIDX_0 + 4 * (pf_q_num))
#define ECORE_VOQ_Q_REG_ADDR(cos, pf_q_num)\
	(QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5)))
#define ECORE_Q_CMDQ_REG_ADDR(pf_q_num)\
	(QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4))

/* extracts the QM queue number for the specified port and vnic */
#define ECORE_PF_Q_NUM(q_num, port, vnic)\
	((((port) << 1) | (vnic)) * 16 + (q_num))


/* Maps the specified queue to the specified COS */
static inline void ecore_map_q_cos(struct bnx2x_softc *sc, uint32_t q_num, uint32_t new_cos)
{
	/* find current COS mapping */
	uint32_t curr_cos = REG_RD(sc, QM_REG_QVOQIDX_0 + q_num * 4);

	/* check if queue->COS mapping has changed */
	if (curr_cos != new_cos) {
		uint32_t num_vnics = ECORE_PORT2_MODE_NUM_VNICS;
		uint32_t reg_addr, reg_bit_map, vnic;

		/* update parameters for 4port mode */
		if (INIT_MODE_FLAGS(sc) & MODE_PORT4) {
			num_vnics = ECORE_PORT4_MODE_NUM_VNICS;
			if (SC_PORT(sc)) {
				curr_cos += ECORE_E3B0_PORT1_COS_OFFSET;
				new_cos += ECORE_E3B0_PORT1_COS_OFFSET;
			}
		}

		/* change queue mapping for each VNIC */
		for (vnic = 0; vnic < num_vnics; vnic++) {
			uint32_t pf_q_num =
				ECORE_PF_Q_NUM(q_num, SC_PORT(sc), vnic);
			uint32_t q_bit_map = 1 << (pf_q_num & 0x1f);

			/* overwrite queue->VOQ mapping */
			REG_WR(sc, ECORE_Q_VOQ_REG_ADDR(pf_q_num), new_cos);

			/* clear queue bit from current COS bit map */
			reg_addr = ECORE_VOQ_Q_REG_ADDR(curr_cos, pf_q_num);
			reg_bit_map = REG_RD(sc, reg_addr);
			REG_WR(sc, reg_addr, reg_bit_map & (~q_bit_map));

			/* set queue bit in new COS bit map */
			reg_addr = ECORE_VOQ_Q_REG_ADDR(new_cos, pf_q_num);
			reg_bit_map = REG_RD(sc, reg_addr);
			REG_WR(sc, reg_addr, reg_bit_map | q_bit_map);

			/* set/clear queue bit in command-queue bit map
			(E2/E3A0 only, valid COS values are 0/1) */
			if (!(INIT_MODE_FLAGS(sc) & MODE_E3_B0)) {
				reg_addr = ECORE_Q_CMDQ_REG_ADDR(pf_q_num);
				reg_bit_map = REG_RD(sc, reg_addr);
				q_bit_map = 1 << (2 * (pf_q_num & 0xf));
				reg_bit_map = new_cos ?
					      (reg_bit_map | q_bit_map) :
					      (reg_bit_map & (~q_bit_map));
				REG_WR(sc, reg_addr, reg_bit_map);
			}
		}
	}
}

/* Configures the QM according to the specified per-traffic-type COSes */
static inline void ecore_dcb_config_qm(struct bnx2x_softc *sc, enum cos_mode mode,
				       struct priority_cos *traffic_cos)
{
	ecore_map_q_cos(sc, ECORE_FCOE_Q,
			traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos);
	ecore_map_q_cos(sc, ECORE_ISCSI_Q,
			traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
	ecore_map_q_cos(sc, ECORE_ISCSI_ACK_Q,
		traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
	if (mode != STATIC_COS) {
		/* required only in OVERRIDE_COS mode */
		ecore_map_q_cos(sc, ECORE_ETH_Q,
				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
		ecore_map_q_cos(sc, ECORE_TOE_Q,
				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
		ecore_map_q_cos(sc, ECORE_TOE_ACK_Q,
				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
	}
}


/*
 * congestion management port init api description
 * the api works as follows:
 * the driver should pass the cmng_init_input struct, the port_init function
 * will prepare the required internal ram structure which will be passed back
 * to the driver (cmng_init) that will write it into the internal ram.
 *
 * IMPORTANT REMARKS:
 * 1. the cmng_init struct does not represent the contiguous internal ram
 *    structure. the driver should use the XSTORM_CMNG_PERPORT_VARS_OFFSET
 *    offset in order to write the port sub struct and the
 *    PFID_FROM_PORT_AND_VNIC offset for writing the vnic sub struct (in other
 *    words - don't use memcpy!).
 * 2. although the cmng_init struct is filled for the maximal vnic number
 *    possible, the driver should only write the valid vnics into the internal
 *    ram according to the appropriate port mode.
 */
#define BITS_TO_BYTES(x) ((x)/8)

/* CMNG constants, as derived from system spec calculations */

/* default MIN rate in case VNIC min rate is configured to zero- 100Mbps */
#define DEF_MIN_RATE 100

/* resolution of the rate shaping timer - 400 usec */
#define RS_PERIODIC_TIMEOUT_USEC 400

/*
 *  number of bytes in single QM arbitration cycle -
 *  coefficient for calculating the fairness timer
 */
#define QM_ARB_BYTES 160000

/* resolution of Min algorithm 1:100 */
#define MIN_RES 100

/*
 *  how many bytes above threshold for
 *  the minimal credit of Min algorithm
 */
#define MIN_ABOVE_THRESH 32768

/*
 *  Fairness algorithm integration time coefficient -
 *  for calculating the actual Tfair
 */
#define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)

/* Memory of fairness algorithm - 2 cycles */
#define FAIR_MEM 2
#define SAFC_TIMEOUT_USEC 52

#define SDM_TICKS 4


static inline void ecore_init_max(const struct cmng_init_input *input_data,
				  uint32_t r_param, struct cmng_init *ram_data)
{
	uint32_t vnic;
	struct cmng_vnic *vdata = &ram_data->vnic;
	struct cmng_struct_per_port *pdata = &ram_data->port;
	/*
	 * rate shaping per-port variables
	 *  100 micro seconds in SDM ticks = 25
	 *  since each tick is 4 microSeconds
	 */

	pdata->rs_vars.rs_periodic_timeout =
	RS_PERIODIC_TIMEOUT_USEC / SDM_TICKS;

	/* this is the threshold below which no timer arming will occur.
	 *  1.25 coefficient is for the threshold to be a little bigger
	 *  then the real time to compensate for timer in-accuracy
	 */
	pdata->rs_vars.rs_threshold =
	(5 * RS_PERIODIC_TIMEOUT_USEC * r_param)/4;

	/* rate shaping per-vnic variables */
	for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
		/* global vnic counter */
		vdata->vnic_max_rate[vnic].vn_counter.rate =
		input_data->vnic_max_rate[vnic];
		/*
		 * maximal Mbps for this vnic
		 * the quota in each timer period - number of bytes
		 * transmitted in this period
		 */
		vdata->vnic_max_rate[vnic].vn_counter.quota =
			RS_PERIODIC_TIMEOUT_USEC *
			(uint32_t)vdata->vnic_max_rate[vnic].vn_counter.rate / 8;
	}

}

static inline void ecore_init_max_per_vn(uint16_t vnic_max_rate,
				  struct rate_shaping_vars_per_vn *ram_data)
{
	/* global vnic counter */
	ram_data->vn_counter.rate = vnic_max_rate;

	/*
	* maximal Mbps for this vnic
	* the quota in each timer period - number of bytes
	* transmitted in this period
	*/
	ram_data->vn_counter.quota =
		RS_PERIODIC_TIMEOUT_USEC * (uint32_t)vnic_max_rate / 8;
}

static inline void ecore_init_min(const struct cmng_init_input *input_data,
				  uint32_t r_param, struct cmng_init *ram_data)
{
	uint32_t vnic, fair_periodic_timeout_usec, vnicWeightSum, tFair;
	struct cmng_vnic *vdata = &ram_data->vnic;
	struct cmng_struct_per_port *pdata = &ram_data->port;

	/* this is the resolution of the fairness timer */
	fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;

	/*
	 * fairness per-port variables
	 * for 10G it is 1000usec. for 1G it is 10000usec.
	 */
	tFair = T_FAIR_COEF / input_data->port_rate;

	/* this is the threshold below which we won't arm the timer anymore */
	pdata->fair_vars.fair_threshold = QM_ARB_BYTES +
					  input_data->fairness_thr;

	/*New limitation - minimal packet size to cause timeout to be armed */
	pdata->fair_vars.size_thr = input_data->size_thr;

	/*
	 *  we multiply by 1e3/8 to get bytes/msec. We don't want the credits
	 *  to pass a credit of the T_FAIR*FAIR_MEM (algorithm resolution)
	 */
	pdata->fair_vars.upper_bound = r_param * tFair * FAIR_MEM;

	/* since each tick is 4 microSeconds */
	pdata->fair_vars.fairness_timeout =
				fair_periodic_timeout_usec / SDM_TICKS;

	/* calculate sum of weights */
	vnicWeightSum = 0;

	for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++)
		vnicWeightSum += input_data->vnic_min_rate[vnic];

	/* global vnic counter */
	if (vnicWeightSum > 0) {
		/* fairness per-vnic variables */
		for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
			/*
			 *  this is the credit for each period of the fairness
			 *  algorithm - number of bytes in T_FAIR (this vnic
			 *  share of the port rate)
			 */
			vdata->vnic_min_rate[vnic].vn_credit_delta =
				((uint32_t)(input_data->vnic_min_rate[vnic]) * 100 *
				(T_FAIR_COEF / (8 * 100 * vnicWeightSum)));
			if (vdata->vnic_min_rate[vnic].vn_credit_delta <
			    pdata->fair_vars.fair_threshold +
			    MIN_ABOVE_THRESH) {
				vdata->vnic_min_rate[vnic].vn_credit_delta =
					pdata->fair_vars.fair_threshold +
					MIN_ABOVE_THRESH;
			}
		}
	}
}

static inline void ecore_init_fw_wrr(const struct cmng_init_input *input_data,
				     uint32_t r_param __rte_unused,
				     struct cmng_init *ram_data)
{
	uint32_t vnic, cos;
	uint32_t cosWeightSum = 0;
	struct cmng_vnic *vdata = &ram_data->vnic;
	struct cmng_struct_per_port *pdata = &ram_data->port;

	for (cos = 0; cos < MAX_COS_NUMBER; cos++)
		cosWeightSum += input_data->cos_min_rate[cos];

	if (cosWeightSum > 0) {

		for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
			/*
			 *  Since cos and vnic shouldn't work together the rate
			 *  to divide between the coses is the port rate.
			 */
			uint32_t *ccd = vdata->vnic_min_rate[vnic].cos_credit_delta;
			for (cos = 0; cos < MAX_COS_NUMBER; cos++) {
				/*
				 * this is the credit for each period of
				 * the fairness algorithm - number of bytes
				 * in T_FAIR (this cos share of the vnic rate)
				 */
				ccd[cos] =
				    ((uint32_t)input_data->cos_min_rate[cos] * 100 *
				    (T_FAIR_COEF / (8 * 100 * cosWeightSum)));
				 if (ccd[cos] < pdata->fair_vars.fair_threshold
						+ MIN_ABOVE_THRESH) {
					ccd[cos] =
					    pdata->fair_vars.fair_threshold +
					    MIN_ABOVE_THRESH;
				}
			}
		}
	}
}

static inline void
ecore_init_safc(const struct cmng_init_input *input_data __rte_unused,
		struct cmng_init *ram_data)
{
	/* in microSeconds */
	ram_data->port.safc_vars.safc_timeout_usec = SAFC_TIMEOUT_USEC;
}

/* Congestion management port init */
static inline void ecore_init_cmng(const struct cmng_init_input *input_data,
				   struct cmng_init *ram_data)
{
	uint32_t r_param;
	ECORE_MEMSET(ram_data, 0, sizeof(struct cmng_init));

	ram_data->port.flags = input_data->flags;

	/*
	 *  number of bytes transmitted in a rate of 10Gbps
	 *  in one usec = 1.25KB.
	 */
	r_param = BITS_TO_BYTES(input_data->port_rate);
	ecore_init_max(input_data, r_param, ram_data);
	ecore_init_min(input_data, r_param, ram_data);
	ecore_init_fw_wrr(input_data, r_param, ram_data);
	ecore_init_safc(input_data, ram_data);
}




/* Returns the index of start or end of a specific block stage in ops array*/
#define BLOCK_OPS_IDX(block, stage, end) \
			(2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))


#define INITOP_SET		0	/* set the HW directly */
#define INITOP_CLEAR		1	/* clear the HW directly */
#define INITOP_INIT		2	/* set the init-value array */

/****************************************************************************
* ILT management
****************************************************************************/
struct ilt_line {
	ecore_dma_addr_t page_mapping;
	void *page;
	uint32_t size;
};

struct ilt_client_info {
	uint32_t page_size;
	uint16_t start;
	uint16_t end;
	uint16_t client_num;
	uint16_t flags;
#define ILT_CLIENT_SKIP_INIT	0x1
#define ILT_CLIENT_SKIP_MEM	0x2
};

struct ecore_ilt {
	uint32_t start_line;
	struct ilt_line		*lines;
	struct ilt_client_info	clients[4];
#define ILT_CLIENT_CDU	0
#define ILT_CLIENT_QM	1
#define ILT_CLIENT_SRC	2
#define ILT_CLIENT_TM	3
};

/****************************************************************************
* SRC configuration
****************************************************************************/
struct src_ent {
	uint8_t opaque[56];
	uint64_t next;
};

/****************************************************************************
* Parity configuration
****************************************************************************/
#define BLOCK_PRTY_INFO(block, en_mask, m1, m1h, m2, m3) \
{ \
	block##_REG_##block##_PRTY_MASK, \
	block##_REG_##block##_PRTY_STS_CLR, \
	en_mask, {m1, m1h, m2, m3}, #block \
}

#define BLOCK_PRTY_INFO_0(block, en_mask, m1, m1h, m2, m3) \
{ \
	block##_REG_##block##_PRTY_MASK_0, \
	block##_REG_##block##_PRTY_STS_CLR_0, \
	en_mask, {m1, m1h, m2, m3}, #block "_0" \
}

#define BLOCK_PRTY_INFO_1(block, en_mask, m1, m1h, m2, m3) \
{ \
	block##_REG_##block##_PRTY_MASK_1, \
	block##_REG_##block##_PRTY_STS_CLR_1, \
	en_mask, {m1, m1h, m2, m3}, #block "_1" \
}

static const struct {
	uint32_t mask_addr;
	uint32_t sts_clr_addr;
	uint32_t en_mask;		/* Mask to enable parity attentions */
	struct {
		uint32_t e1;		/* 57710 */
		uint32_t e1h;	/* 57711 */
		uint32_t e2;		/* 57712 */
		uint32_t e3;		/* 578xx */
	} reg_mask;		/* Register mask (all valid bits) */
	char name[8];		/* Block's longest name is 7 characters long
				 * (name + suffix)
				 */
} ecore_blocks_parity_data[] = {
	/* bit 19 masked */
	/* REG_WR(sc, PXP_REG_PXP_PRTY_MASK, 0x80000); */
	/* bit 5,18,20-31 */
	/* REG_WR(sc, PXP2_REG_PXP2_PRTY_MASK_0, 0xfff40020); */
	/* bit 5 */
	/* REG_WR(sc, PXP2_REG_PXP2_PRTY_MASK_1, 0x20);	*/
	/* REG_WR(sc, HC_REG_HC_PRTY_MASK, 0x0); */
	/* REG_WR(sc, MISC_REG_MISC_PRTY_MASK, 0x0); */

	/* Block IGU, MISC, PXP and PXP2 parity errors as long as we don't
	 * want to handle "system kill" flow at the moment.
	 */
	BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x3ffffff, 0x7ffffff,
			0x7ffffff),
	BLOCK_PRTY_INFO_0(PXP2,	0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
			  0xffffffff),
	BLOCK_PRTY_INFO_1(PXP2,	0x1ffffff, 0x7f, 0x7f, 0x7ff, 0x1ffffff),
	BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0x7, 0, 0),
	BLOCK_PRTY_INFO(NIG, 0xffffffff, 0x3fffffff, 0xffffffff, 0, 0),
	BLOCK_PRTY_INFO_0(NIG,	0xffffffff, 0, 0, 0xffffffff, 0xffffffff),
	BLOCK_PRTY_INFO_1(NIG,	0xffff, 0, 0, 0xff, 0xffff),
	BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0, 0x7ff, 0x7ff),
	BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1, 0x1),
	BLOCK_PRTY_INFO(QM, 0, 0x1ff, 0xfff, 0xfff, 0xfff),
	BLOCK_PRTY_INFO(ATC, 0x1f, 0, 0, 0x1f, 0x1f),
	BLOCK_PRTY_INFO(PGLUE_B, 0x3, 0, 0, 0x3, 0x3),
	BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3, 0x3),
	{GRCBASE_UPB + PB_REG_PB_PRTY_MASK,
		GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf,
		{0xf, 0xf, 0xf, 0xf}, "UPB"},
	{GRCBASE_XPB + PB_REG_PB_PRTY_MASK,
		GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0,
		{0xf, 0xf, 0xf, 0xf}, "XPB"},
	BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7, 0x7),
	BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f, 0x1f),
	BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0xf, 0x3f),
	BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1, 0x1),
	BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf, 0xf),
	BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf, 0xf),
	BLOCK_PRTY_INFO(PRS, (1 << 6), 0xff, 0xff, 0xff, 0xff),
	BLOCK_PRTY_INFO(PBF, 0, 0, 0x3ffff, 0xfffff, 0xfffffff),
	BLOCK_PRTY_INFO(TM, 0, 0, 0x7f, 0x7f, 0x7f),
	BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
	BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
	BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
	BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
	BLOCK_PRTY_INFO(TCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
	BLOCK_PRTY_INFO(CCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
	BLOCK_PRTY_INFO(UCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
	BLOCK_PRTY_INFO(XCM, 0, 0, 0x3fffffff, 0x3fffffff, 0x3fffffff),
	BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
			  0xffffffff),
	BLOCK_PRTY_INFO_1(TSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
	BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
			  0xffffffff),
	BLOCK_PRTY_INFO_1(USEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
	BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
			  0xffffffff),
	BLOCK_PRTY_INFO_1(CSEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
	BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
			  0xffffffff),
	BLOCK_PRTY_INFO_1(XSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
};


/* [28] MCP Latched rom_parity
 * [29] MCP Latched ump_rx_parity
 * [30] MCP Latched ump_tx_parity
 * [31] MCP Latched scpad_parity
 */
#define MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS	\
	(AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY)

#define MISC_AEU_ENABLE_MCP_PRTY_BITS	\
	(MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS | \
	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)

/* Below registers control the MCP parity attention output. When
 * MISC_AEU_ENABLE_MCP_PRTY_BITS are set - attentions are
 * enabled, when cleared - disabled.
 */
static const struct {
	uint32_t addr;
	uint32_t bits;
} mcp_attn_ctl_regs[] = {
	{ MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0,
		MISC_AEU_ENABLE_MCP_PRTY_BITS },
	{ MISC_REG_AEU_ENABLE4_NIG_0,
		MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
	{ MISC_REG_AEU_ENABLE4_PXP_0,
		MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
	{ MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0,
		MISC_AEU_ENABLE_MCP_PRTY_BITS },
	{ MISC_REG_AEU_ENABLE4_NIG_1,
		MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
	{ MISC_REG_AEU_ENABLE4_PXP_1,
		MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS }
};

static inline void ecore_set_mcp_parity(struct bnx2x_softc *sc, uint8_t enable)
{
	unsigned int i;
	uint32_t reg_val;

	for (i = 0; i < ARRAY_SIZE(mcp_attn_ctl_regs); i++) {
		reg_val = REG_RD(sc, mcp_attn_ctl_regs[i].addr);

		if (enable)
			reg_val |= mcp_attn_ctl_regs[i].bits;
		else
			reg_val &= ~mcp_attn_ctl_regs[i].bits;

		REG_WR(sc, mcp_attn_ctl_regs[i].addr, reg_val);
	}
}

static inline uint32_t ecore_parity_reg_mask(struct bnx2x_softc *sc, int idx)
{
	if (CHIP_IS_E1(sc))
		return ecore_blocks_parity_data[idx].reg_mask.e1;
	else if (CHIP_IS_E1H(sc))
		return ecore_blocks_parity_data[idx].reg_mask.e1h;
	else if (CHIP_IS_E2(sc))
		return ecore_blocks_parity_data[idx].reg_mask.e2;
	else /* CHIP_IS_E3 */
		return ecore_blocks_parity_data[idx].reg_mask.e3;
}

static inline void ecore_disable_blocks_parity(struct bnx2x_softc *sc)
{
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(ecore_blocks_parity_data); i++) {
		uint32_t dis_mask = ecore_parity_reg_mask(sc, i);

		if (dis_mask) {
			REG_WR(sc, ecore_blocks_parity_data[i].mask_addr,
			       dis_mask);
			ECORE_MSG(sc, "Setting parity mask "
						 "for %s to\t\t0x%x",
				    ecore_blocks_parity_data[i].name, dis_mask);
		}
	}

	/* Disable MCP parity attentions */
	ecore_set_mcp_parity(sc, false);
}

/**
 * Clear the parity error status registers.
 */
static inline void ecore_clear_blocks_parity(struct bnx2x_softc *sc)
{
	unsigned int i;
	uint32_t reg_val, mcp_aeu_bits =
		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY |
		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY |
		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY |
		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY;

	/* Clear SEM_FAST parities */
	REG_WR(sc, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
	REG_WR(sc, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
	REG_WR(sc, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
	REG_WR(sc, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);

	for (i = 0; i < ARRAY_SIZE(ecore_blocks_parity_data); i++) {
		uint32_t reg_mask = ecore_parity_reg_mask(sc, i);

		if (reg_mask) {
			reg_val = REG_RD(sc, ecore_blocks_parity_data[i].
					 sts_clr_addr);
			if (reg_val & reg_mask)
				ECORE_MSG(sc, "Parity errors in %s: 0x%x",
					   ecore_blocks_parity_data[i].name,
					   reg_val & reg_mask);
		}
	}

	/* Check if there were parity attentions in MCP */
	reg_val = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_MCP);
	if (reg_val & mcp_aeu_bits)
		ECORE_MSG(sc, "Parity error in MCP: 0x%x",
			   reg_val & mcp_aeu_bits);

	/* Clear parity attentions in MCP:
	 * [7]  clears Latched rom_parity
	 * [8]  clears Latched ump_rx_parity
	 * [9]  clears Latched ump_tx_parity
	 * [10] clears Latched scpad_parity (both ports)
	 */
	REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780);
}

static inline void ecore_enable_blocks_parity(struct bnx2x_softc *sc)
{
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(ecore_blocks_parity_data); i++) {
		uint32_t reg_mask = ecore_parity_reg_mask(sc, i);

		if (reg_mask)
			REG_WR(sc, ecore_blocks_parity_data[i].mask_addr,
				ecore_blocks_parity_data[i].en_mask & reg_mask);
	}

	/* Enable MCP parity attentions */
	ecore_set_mcp_parity(sc, true);
}


#endif /* ECORE_INIT_H */