DPDK logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2010-2014 Intel Corporation
 */
#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <errno.h>
#include <sys/queue.h>

#include <rte_memory.h>
#include <rte_errno.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_launch.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_common.h>
#include <rte_string_fns.h>
#include <rte_spinlock.h>
#include <rte_memcpy.h>
#include <rte_memzone.h>
#include <rte_atomic.h>
#include <rte_fbarray.h>

#include "eal_internal_cfg.h"
#include "eal_memalloc.h"
#include "eal_memcfg.h"
#include "eal_private.h"
#include "malloc_elem.h"
#include "malloc_heap.h"
#include "malloc_mp.h"

/* start external socket ID's at a very high number */
#define CONST_MAX(a, b) (a > b ? a : b) /* RTE_MAX is not a constant */
#define EXTERNAL_HEAP_MIN_SOCKET_ID (CONST_MAX((1 << 8), RTE_MAX_NUMA_NODES))

static unsigned
check_hugepage_sz(unsigned flags, uint64_t hugepage_sz)
{
	unsigned check_flag = 0;

	if (!(flags & ~RTE_MEMZONE_SIZE_HINT_ONLY))
		return 1;

	switch (hugepage_sz) {
	case RTE_PGSIZE_256K:
		check_flag = RTE_MEMZONE_256KB;
		break;
	case RTE_PGSIZE_2M:
		check_flag = RTE_MEMZONE_2MB;
		break;
	case RTE_PGSIZE_16M:
		check_flag = RTE_MEMZONE_16MB;
		break;
	case RTE_PGSIZE_256M:
		check_flag = RTE_MEMZONE_256MB;
		break;
	case RTE_PGSIZE_512M:
		check_flag = RTE_MEMZONE_512MB;
		break;
	case RTE_PGSIZE_1G:
		check_flag = RTE_MEMZONE_1GB;
		break;
	case RTE_PGSIZE_4G:
		check_flag = RTE_MEMZONE_4GB;
		break;
	case RTE_PGSIZE_16G:
		check_flag = RTE_MEMZONE_16GB;
	}

	return check_flag & flags;
}

int
malloc_socket_to_heap_id(unsigned int socket_id)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	int i;

	for (i = 0; i < RTE_MAX_HEAPS; i++) {
		struct malloc_heap *heap = &mcfg->malloc_heaps[i];

		if (heap->socket_id == socket_id)
			return i;
	}
	return -1;
}

/*
 * Expand the heap with a memory area.
 */
static struct malloc_elem *
malloc_heap_add_memory(struct malloc_heap *heap, struct rte_memseg_list *msl,
		void *start, size_t len)
{
	struct malloc_elem *elem = start;

	malloc_elem_init(elem, heap, msl, len, elem, len);

	malloc_elem_insert(elem);

	elem = malloc_elem_join_adjacent_free(elem);

	malloc_elem_free_list_insert(elem);

	return elem;
}

static int
malloc_add_seg(const struct rte_memseg_list *msl,
		const struct rte_memseg *ms, size_t len, void *arg __rte_unused)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	struct rte_memseg_list *found_msl;
	struct malloc_heap *heap;
	int msl_idx, heap_idx;

	if (msl->external)
		return 0;

	heap_idx = malloc_socket_to_heap_id(msl->socket_id);
	if (heap_idx < 0) {
		RTE_LOG(ERR, EAL, "Memseg list has invalid socket id\n");
		return -1;
	}
	heap = &mcfg->malloc_heaps[heap_idx];

	/* msl is const, so find it */
	msl_idx = msl - mcfg->memsegs;

	if (msl_idx < 0 || msl_idx >= RTE_MAX_MEMSEG_LISTS)
		return -1;

	found_msl = &mcfg->memsegs[msl_idx];

	malloc_heap_add_memory(heap, found_msl, ms->addr, len);

	heap->total_size += len;

	RTE_LOG(DEBUG, EAL, "Added %zuM to heap on socket %i\n", len >> 20,
			msl->socket_id);
	return 0;
}

/*
 * Iterates through the freelist for a heap to find a free element
 * which can store data of the required size and with the requested alignment.
 * If size is 0, find the biggest available elem.
 * Returns null on failure, or pointer to element on success.
 */
static struct malloc_elem *
find_suitable_element(struct malloc_heap *heap, size_t size,
		unsigned int flags, size_t align, size_t bound, bool contig)
{
	size_t idx;
	struct malloc_elem *elem, *alt_elem = NULL;

	for (idx = malloc_elem_free_list_index(size);
			idx < RTE_HEAP_NUM_FREELISTS; idx++) {
		for (elem = LIST_FIRST(&heap->free_head[idx]);
				!!elem; elem = LIST_NEXT(elem, free_list)) {
			if (malloc_elem_can_hold(elem, size, align, bound,
					contig)) {
				if (check_hugepage_sz(flags,
						elem->msl->page_sz))
					return elem;
				if (alt_elem == NULL)
					alt_elem = elem;
			}
		}
	}

	if ((alt_elem != NULL) && (flags & RTE_MEMZONE_SIZE_HINT_ONLY))
		return alt_elem;

	return NULL;
}

/*
 * Iterates through the freelist for a heap to find a free element with the
 * biggest size and requested alignment. Will also set size to whatever element
 * size that was found.
 * Returns null on failure, or pointer to element on success.
 */
static struct malloc_elem *
find_biggest_element(struct malloc_heap *heap, size_t *size,
		unsigned int flags, size_t align, bool contig)
{
	struct malloc_elem *elem, *max_elem = NULL;
	size_t idx, max_size = 0;

	for (idx = 0; idx < RTE_HEAP_NUM_FREELISTS; idx++) {
		for (elem = LIST_FIRST(&heap->free_head[idx]);
				!!elem; elem = LIST_NEXT(elem, free_list)) {
			size_t cur_size;
			if ((flags & RTE_MEMZONE_SIZE_HINT_ONLY) == 0 &&
					!check_hugepage_sz(flags,
						elem->msl->page_sz))
				continue;
			if (contig) {
				cur_size =
					malloc_elem_find_max_iova_contig(elem,
							align);
			} else {
				void *data_start = RTE_PTR_ADD(elem,
						MALLOC_ELEM_HEADER_LEN);
				void *data_end = RTE_PTR_ADD(elem, elem->size -
						MALLOC_ELEM_TRAILER_LEN);
				void *aligned = RTE_PTR_ALIGN_CEIL(data_start,
						align);
				/* check if aligned data start is beyond end */
				if (aligned >= data_end)
					continue;
				cur_size = RTE_PTR_DIFF(data_end, aligned);
			}
			if (cur_size > max_size) {
				max_size = cur_size;
				max_elem = elem;
			}
		}
	}

	*size = max_size;
	return max_elem;
}

/*
 * Main function to allocate a block of memory from the heap.
 * It locks the free list, scans it, and adds a new memseg if the
 * scan fails. Once the new memseg is added, it re-scans and should return
 * the new element after releasing the lock.
 */
static void *
heap_alloc(struct malloc_heap *heap, const char *type __rte_unused, size_t size,
		unsigned int flags, size_t align, size_t bound, bool contig)
{
	struct malloc_elem *elem;

	size = RTE_CACHE_LINE_ROUNDUP(size);
	align = RTE_CACHE_LINE_ROUNDUP(align);

	/* roundup might cause an overflow */
	if (size == 0)
		return NULL;
	elem = find_suitable_element(heap, size, flags, align, bound, contig);
	if (elem != NULL) {
		elem = malloc_elem_alloc(elem, size, align, bound, contig);

		/* increase heap's count of allocated elements */
		heap->alloc_count++;
	}

	return elem == NULL ? NULL : (void *)(&elem[1]);
}

static void *
heap_alloc_biggest(struct malloc_heap *heap, const char *type __rte_unused,
		unsigned int flags, size_t align, bool contig)
{
	struct malloc_elem *elem;
	size_t size;

	align = RTE_CACHE_LINE_ROUNDUP(align);

	elem = find_biggest_element(heap, &size, flags, align, contig);
	if (elem != NULL) {
		elem = malloc_elem_alloc(elem, size, align, 0, contig);

		/* increase heap's count of allocated elements */
		heap->alloc_count++;
	}

	return elem == NULL ? NULL : (void *)(&elem[1]);
}

/* this function is exposed in malloc_mp.h */
void
rollback_expand_heap(struct rte_memseg **ms, int n_segs,
		struct malloc_elem *elem, void *map_addr, size_t map_len)
{
	if (elem != NULL) {
		malloc_elem_free_list_remove(elem);
		malloc_elem_hide_region(elem, map_addr, map_len);
	}

	eal_memalloc_free_seg_bulk(ms, n_segs);
}

/* this function is exposed in malloc_mp.h */
struct malloc_elem *
alloc_pages_on_heap(struct malloc_heap *heap, uint64_t pg_sz, size_t elt_size,
		int socket, unsigned int flags, size_t align, size_t bound,
		bool contig, struct rte_memseg **ms, int n_segs)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	struct rte_memseg_list *msl;
	struct malloc_elem *elem = NULL;
	size_t alloc_sz;
	int allocd_pages;
	void *ret, *map_addr;

	alloc_sz = (size_t)pg_sz * n_segs;

	/* first, check if we're allowed to allocate this memory */
	if (eal_memalloc_mem_alloc_validate(socket,
			heap->total_size + alloc_sz) < 0) {
		RTE_LOG(DEBUG, EAL, "User has disallowed allocation\n");
		return NULL;
	}

	allocd_pages = eal_memalloc_alloc_seg_bulk(ms, n_segs, pg_sz,
			socket, true);

	/* make sure we've allocated our pages... */
	if (allocd_pages < 0)
		return NULL;

	map_addr = ms[0]->addr;
	msl = rte_mem_virt2memseg_list(map_addr);

	/* check if we wanted contiguous memory but didn't get it */
	if (contig && !eal_memalloc_is_contig(msl, map_addr, alloc_sz)) {
		RTE_LOG(DEBUG, EAL, "%s(): couldn't allocate physically contiguous space\n",
				__func__);
		goto fail;
	}

	/*
	 * Once we have all the memseg lists configured, if there is a dma mask
	 * set, check iova addresses are not out of range. Otherwise the device
	 * setting the dma mask could have problems with the mapped memory.
	 *
	 * There are two situations when this can happen:
	 *	1) memory initialization
	 *	2) dynamic memory allocation
	 *
	 * For 1), an error when checking dma mask implies app can not be
	 * executed. For 2) implies the new memory can not be added.
	 */
	if (mcfg->dma_maskbits &&
	    rte_mem_check_dma_mask_thread_unsafe(mcfg->dma_maskbits)) {
		/*
		 * Currently this can only happen if IOMMU is enabled
		 * and the address width supported by the IOMMU hw is
		 * not enough for using the memory mapped IOVAs.
		 *
		 * If IOVA is VA, advice to try with '--iova-mode pa'
		 * which could solve some situations when IOVA VA is not
		 * really needed.
		 */
		RTE_LOG(ERR, EAL,
			"%s(): couldn't allocate memory due to IOVA exceeding limits of current DMA mask\n",
			__func__);

		/*
		 * If IOVA is VA and it is possible to run with IOVA PA,
		 * because user is root, give and advice for solving the
		 * problem.
		 */
		if ((rte_eal_iova_mode() == RTE_IOVA_VA) &&
		     rte_eal_using_phys_addrs())
			RTE_LOG(ERR, EAL,
				"%s(): Please try initializing EAL with --iova-mode=pa parameter\n",
				__func__);
		goto fail;
	}

	/* add newly minted memsegs to malloc heap */
	elem = malloc_heap_add_memory(heap, msl, map_addr, alloc_sz);

	/* try once more, as now we have allocated new memory */
	ret = find_suitable_element(heap, elt_size, flags, align, bound,
			contig);

	if (ret == NULL)
		goto fail;

	return elem;

fail:
	rollback_expand_heap(ms, n_segs, elem, map_addr, alloc_sz);
	return NULL;
}

static int
try_expand_heap_primary(struct malloc_heap *heap, uint64_t pg_sz,
		size_t elt_size, int socket, unsigned int flags, size_t align,
		size_t bound, bool contig)
{
	struct malloc_elem *elem;
	struct rte_memseg **ms;
	void *map_addr;
	size_t alloc_sz;
	int n_segs;
	bool callback_triggered = false;

	alloc_sz = RTE_ALIGN_CEIL(align + elt_size +
			MALLOC_ELEM_TRAILER_LEN, pg_sz);
	n_segs = alloc_sz / pg_sz;

	/* we can't know in advance how many pages we'll need, so we malloc */
	ms = malloc(sizeof(*ms) * n_segs);
	if (ms == NULL)
		return -1;
	memset(ms, 0, sizeof(*ms) * n_segs);

	elem = alloc_pages_on_heap(heap, pg_sz, elt_size, socket, flags, align,
			bound, contig, ms, n_segs);

	if (elem == NULL)
		goto free_ms;

	map_addr = ms[0]->addr;

	/* notify user about changes in memory map */
	eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC, map_addr, alloc_sz);

	/* notify other processes that this has happened */
	if (request_sync()) {
		/* we couldn't ensure all processes have mapped memory,
		 * so free it back and notify everyone that it's been
		 * freed back.
		 *
		 * technically, we could've avoided adding memory addresses to
		 * the map, but that would've led to inconsistent behavior
		 * between primary and secondary processes, as those get
		 * callbacks during sync. therefore, force primary process to
		 * do alloc-and-rollback syncs as well.
		 */
		callback_triggered = true;
		goto free_elem;
	}
	heap->total_size += alloc_sz;

	RTE_LOG(DEBUG, EAL, "Heap on socket %d was expanded by %zdMB\n",
		socket, alloc_sz >> 20ULL);

	free(ms);

	return 0;

free_elem:
	if (callback_triggered)
		eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE,
				map_addr, alloc_sz);

	rollback_expand_heap(ms, n_segs, elem, map_addr, alloc_sz);

	request_sync();
free_ms:
	free(ms);

	return -1;
}

static int
try_expand_heap_secondary(struct malloc_heap *heap, uint64_t pg_sz,
		size_t elt_size, int socket, unsigned int flags, size_t align,
		size_t bound, bool contig)
{
	struct malloc_mp_req req;
	int req_result;

	memset(&req, 0, sizeof(req));

	req.t = REQ_TYPE_ALLOC;
	req.alloc_req.align = align;
	req.alloc_req.bound = bound;
	req.alloc_req.contig = contig;
	req.alloc_req.flags = flags;
	req.alloc_req.elt_size = elt_size;
	req.alloc_req.page_sz = pg_sz;
	req.alloc_req.socket = socket;
	req.alloc_req.heap = heap; /* it's in shared memory */

	req_result = request_to_primary(&req);

	if (req_result != 0)
		return -1;

	if (req.result != REQ_RESULT_SUCCESS)
		return -1;

	return 0;
}

static int
try_expand_heap(struct malloc_heap *heap, uint64_t pg_sz, size_t elt_size,
		int socket, unsigned int flags, size_t align, size_t bound,
		bool contig)
{
	int ret;

	rte_mcfg_mem_write_lock();

	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
		ret = try_expand_heap_primary(heap, pg_sz, elt_size, socket,
				flags, align, bound, contig);
	} else {
		ret = try_expand_heap_secondary(heap, pg_sz, elt_size, socket,
				flags, align, bound, contig);
	}

	rte_mcfg_mem_write_unlock();
	return ret;
}

static int
compare_pagesz(const void *a, const void *b)
{
	const struct rte_memseg_list * const*mpa = a;
	const struct rte_memseg_list * const*mpb = b;
	const struct rte_memseg_list *msla = *mpa;
	const struct rte_memseg_list *mslb = *mpb;
	uint64_t pg_sz_a = msla->page_sz;
	uint64_t pg_sz_b = mslb->page_sz;

	if (pg_sz_a < pg_sz_b)
		return -1;
	if (pg_sz_a > pg_sz_b)
		return 1;
	return 0;
}

static int
alloc_more_mem_on_socket(struct malloc_heap *heap, size_t size, int socket,
		unsigned int flags, size_t align, size_t bound, bool contig)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	struct rte_memseg_list *requested_msls[RTE_MAX_MEMSEG_LISTS];
	struct rte_memseg_list *other_msls[RTE_MAX_MEMSEG_LISTS];
	uint64_t requested_pg_sz[RTE_MAX_MEMSEG_LISTS];
	uint64_t other_pg_sz[RTE_MAX_MEMSEG_LISTS];
	uint64_t prev_pg_sz;
	int i, n_other_msls, n_other_pg_sz, n_requested_msls, n_requested_pg_sz;
	bool size_hint = (flags & RTE_MEMZONE_SIZE_HINT_ONLY) > 0;
	unsigned int size_flags = flags & ~RTE_MEMZONE_SIZE_HINT_ONLY;
	void *ret;

	memset(requested_msls, 0, sizeof(requested_msls));
	memset(other_msls, 0, sizeof(other_msls));
	memset(requested_pg_sz, 0, sizeof(requested_pg_sz));
	memset(other_pg_sz, 0, sizeof(other_pg_sz));

	/*
	 * go through memseg list and take note of all the page sizes available,
	 * and if any of them were specifically requested by the user.
	 */
	n_requested_msls = 0;
	n_other_msls = 0;
	for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
		struct rte_memseg_list *msl = &mcfg->memsegs[i];

		if (msl->socket_id != socket)
			continue;

		if (msl->base_va == NULL)
			continue;

		/* if pages of specific size were requested */
		if (size_flags != 0 && check_hugepage_sz(size_flags,
				msl->page_sz))
			requested_msls[n_requested_msls++] = msl;
		else if (size_flags == 0 || size_hint)
			other_msls[n_other_msls++] = msl;
	}

	/* sort the lists, smallest first */
	qsort(requested_msls, n_requested_msls, sizeof(requested_msls[0]),
			compare_pagesz);
	qsort(other_msls, n_other_msls, sizeof(other_msls[0]),
			compare_pagesz);

	/* now, extract page sizes we are supposed to try */
	prev_pg_sz = 0;
	n_requested_pg_sz = 0;
	for (i = 0; i < n_requested_msls; i++) {
		uint64_t pg_sz = requested_msls[i]->page_sz;

		if (prev_pg_sz != pg_sz) {
			requested_pg_sz[n_requested_pg_sz++] = pg_sz;
			prev_pg_sz = pg_sz;
		}
	}
	prev_pg_sz = 0;
	n_other_pg_sz = 0;
	for (i = 0; i < n_other_msls; i++) {
		uint64_t pg_sz = other_msls[i]->page_sz;

		if (prev_pg_sz != pg_sz) {
			other_pg_sz[n_other_pg_sz++] = pg_sz;
			prev_pg_sz = pg_sz;
		}
	}

	/* finally, try allocating memory of specified page sizes, starting from
	 * the smallest sizes
	 */
	for (i = 0; i < n_requested_pg_sz; i++) {
		uint64_t pg_sz = requested_pg_sz[i];

		/*
		 * do not pass the size hint here, as user expects other page
		 * sizes first, before resorting to best effort allocation.
		 */
		if (!try_expand_heap(heap, pg_sz, size, socket, size_flags,
				align, bound, contig))
			return 0;
	}
	if (n_other_pg_sz == 0)
		return -1;

	/* now, check if we can reserve anything with size hint */
	ret = find_suitable_element(heap, size, flags, align, bound, contig);
	if (ret != NULL)
		return 0;

	/*
	 * we still couldn't reserve memory, so try expanding heap with other
	 * page sizes, if there are any
	 */
	for (i = 0; i < n_other_pg_sz; i++) {
		uint64_t pg_sz = other_pg_sz[i];

		if (!try_expand_heap(heap, pg_sz, size, socket, flags,
				align, bound, contig))
			return 0;
	}
	return -1;
}

/* this will try lower page sizes first */
static void *
malloc_heap_alloc_on_heap_id(const char *type, size_t size,
		unsigned int heap_id, unsigned int flags, size_t align,
		size_t bound, bool contig)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	struct malloc_heap *heap = &mcfg->malloc_heaps[heap_id];
	unsigned int size_flags = flags & ~RTE_MEMZONE_SIZE_HINT_ONLY;
	int socket_id;
	void *ret;

	rte_spinlock_lock(&(heap->lock));

	align = align == 0 ? 1 : align;

	/* for legacy mode, try once and with all flags */
	if (internal_config.legacy_mem) {
		ret = heap_alloc(heap, type, size, flags, align, bound, contig);
		goto alloc_unlock;
	}

	/*
	 * we do not pass the size hint here, because even if allocation fails,
	 * we may still be able to allocate memory from appropriate page sizes,
	 * we just need to request more memory first.
	 */

	socket_id = rte_socket_id_by_idx(heap_id);
	/*
	 * if socket ID is negative, we cannot find a socket ID for this heap -
	 * which means it's an external heap. those can have unexpected page
	 * sizes, so if the user asked to allocate from there - assume user
	 * knows what they're doing, and allow allocating from there with any
	 * page size flags.
	 */
	if (socket_id < 0)
		size_flags |= RTE_MEMZONE_SIZE_HINT_ONLY;

	ret = heap_alloc(heap, type, size, size_flags, align, bound, contig);
	if (ret != NULL)
		goto alloc_unlock;

	/* if socket ID is invalid, this is an external heap */
	if (socket_id < 0)
		goto alloc_unlock;

	if (!alloc_more_mem_on_socket(heap, size, socket_id, flags, align,
			bound, contig)) {
		ret = heap_alloc(heap, type, size, flags, align, bound, contig);

		/* this should have succeeded */
		if (ret == NULL)
			RTE_LOG(ERR, EAL, "Error allocating from heap\n");
	}
alloc_unlock:
	rte_spinlock_unlock(&(heap->lock));
	return ret;
}

void *
malloc_heap_alloc(const char *type, size_t size, int socket_arg,
		unsigned int flags, size_t align, size_t bound, bool contig)
{
	int socket, heap_id, i;
	void *ret;

	/* return NULL if size is 0 or alignment is not power-of-2 */
	if (size == 0 || (align && !rte_is_power_of_2(align)))
		return NULL;

	if (!rte_eal_has_hugepages() && socket_arg < RTE_MAX_NUMA_NODES)
		socket_arg = SOCKET_ID_ANY;

	if (socket_arg == SOCKET_ID_ANY)
		socket = malloc_get_numa_socket();
	else
		socket = socket_arg;

	/* turn socket ID into heap ID */
	heap_id = malloc_socket_to_heap_id(socket);
	/* if heap id is negative, socket ID was invalid */
	if (heap_id < 0)
		return NULL;

	ret = malloc_heap_alloc_on_heap_id(type, size, heap_id, flags, align,
			bound, contig);
	if (ret != NULL || socket_arg != SOCKET_ID_ANY)
		return ret;

	/* try other heaps. we are only iterating through native DPDK sockets,
	 * so external heaps won't be included.
	 */
	for (i = 0; i < (int) rte_socket_count(); i++) {
		if (i == heap_id)
			continue;
		ret = malloc_heap_alloc_on_heap_id(type, size, i, flags, align,
				bound, contig);
		if (ret != NULL)
			return ret;
	}
	return NULL;
}

static void *
heap_alloc_biggest_on_heap_id(const char *type, unsigned int heap_id,
		unsigned int flags, size_t align, bool contig)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	struct malloc_heap *heap = &mcfg->malloc_heaps[heap_id];
	void *ret;

	rte_spinlock_lock(&(heap->lock));

	align = align == 0 ? 1 : align;

	ret = heap_alloc_biggest(heap, type, flags, align, contig);

	rte_spinlock_unlock(&(heap->lock));

	return ret;
}

void *
malloc_heap_alloc_biggest(const char *type, int socket_arg, unsigned int flags,
		size_t align, bool contig)
{
	int socket, i, cur_socket, heap_id;
	void *ret;

	/* return NULL if align is not power-of-2 */
	if ((align && !rte_is_power_of_2(align)))
		return NULL;

	if (!rte_eal_has_hugepages())
		socket_arg = SOCKET_ID_ANY;

	if (socket_arg == SOCKET_ID_ANY)
		socket = malloc_get_numa_socket();
	else
		socket = socket_arg;

	/* turn socket ID into heap ID */
	heap_id = malloc_socket_to_heap_id(socket);
	/* if heap id is negative, socket ID was invalid */
	if (heap_id < 0)
		return NULL;

	ret = heap_alloc_biggest_on_heap_id(type, heap_id, flags, align,
			contig);
	if (ret != NULL || socket_arg != SOCKET_ID_ANY)
		return ret;

	/* try other heaps */
	for (i = 0; i < (int) rte_socket_count(); i++) {
		cur_socket = rte_socket_id_by_idx(i);
		if (cur_socket == socket)
			continue;
		ret = heap_alloc_biggest_on_heap_id(type, i, flags, align,
				contig);
		if (ret != NULL)
			return ret;
	}
	return NULL;
}

/* this function is exposed in malloc_mp.h */
int
malloc_heap_free_pages(void *aligned_start, size_t aligned_len)
{
	int n_segs, seg_idx, max_seg_idx;
	struct rte_memseg_list *msl;
	size_t page_sz;

	msl = rte_mem_virt2memseg_list(aligned_start);
	if (msl == NULL)
		return -1;

	page_sz = (size_t)msl->page_sz;
	n_segs = aligned_len / page_sz;
	seg_idx = RTE_PTR_DIFF(aligned_start, msl->base_va) / page_sz;
	max_seg_idx = seg_idx + n_segs;

	for (; seg_idx < max_seg_idx; seg_idx++) {
		struct rte_memseg *ms;

		ms = rte_fbarray_get(&msl->memseg_arr, seg_idx);
		eal_memalloc_free_seg(ms);
	}
	return 0;
}

int
malloc_heap_free(struct malloc_elem *elem)
{
	struct malloc_heap *heap;
	void *start, *aligned_start, *end, *aligned_end;
	size_t len, aligned_len, page_sz;
	struct rte_memseg_list *msl;
	unsigned int i, n_segs, before_space, after_space;
	int ret;

	if (!malloc_elem_cookies_ok(elem) || elem->state != ELEM_BUSY)
		return -1;

	/* elem may be merged with previous element, so keep heap address */
	heap = elem->heap;
	msl = elem->msl;
	page_sz = (size_t)msl->page_sz;

	rte_spinlock_lock(&(heap->lock));

	/* mark element as free */
	elem->state = ELEM_FREE;

	elem = malloc_elem_free(elem);

	/* anything after this is a bonus */
	ret = 0;

	/* ...of which we can't avail if we are in legacy mode, or if this is an
	 * externally allocated segment.
	 */
	if (internal_config.legacy_mem || (msl->external > 0))
		goto free_unlock;

	/* check if we can free any memory back to the system */
	if (elem->size < page_sz)
		goto free_unlock;

	/* if user requested to match allocations, the sizes must match - if not,
	 * we will defer freeing these hugepages until the entire original allocation
	 * can be freed
	 */
	if (internal_config.match_allocations && elem->size != elem->orig_size)
		goto free_unlock;

	/* probably, but let's make sure, as we may not be using up full page */
	start = elem;
	len = elem->size;
	aligned_start = RTE_PTR_ALIGN_CEIL(start, page_sz);
	end = RTE_PTR_ADD(elem, len);
	aligned_end = RTE_PTR_ALIGN_FLOOR(end, page_sz);

	aligned_len = RTE_PTR_DIFF(aligned_end, aligned_start);

	/* can't free anything */
	if (aligned_len < page_sz)
		goto free_unlock;

	/* we can free something. however, some of these pages may be marked as
	 * unfreeable, so also check that as well
	 */
	n_segs = aligned_len / page_sz;
	for (i = 0; i < n_segs; i++) {
		const struct rte_memseg *tmp =
				rte_mem_virt2memseg(aligned_start, msl);

		if (tmp->flags & RTE_MEMSEG_FLAG_DO_NOT_FREE) {
			/* this is an unfreeable segment, so move start */
			aligned_start = RTE_PTR_ADD(tmp->addr, tmp->len);
		}
	}

	/* recalculate length and number of segments */
	aligned_len = RTE_PTR_DIFF(aligned_end, aligned_start);
	n_segs = aligned_len / page_sz;

	/* check if we can still free some pages */
	if (n_segs == 0)
		goto free_unlock;

	/* We're not done yet. We also have to check if by freeing space we will
	 * be leaving free elements that are too small to store new elements.
	 * Check if we have enough space in the beginning and at the end, or if
	 * start/end are exactly page aligned.
	 */
	before_space = RTE_PTR_DIFF(aligned_start, elem);
	after_space = RTE_PTR_DIFF(end, aligned_end);
	if (before_space != 0 &&
			before_space < MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
		/* There is not enough space before start, but we may be able to
		 * move the start forward by one page.
		 */
		if (n_segs == 1)
			goto free_unlock;

		/* move start */
		aligned_start = RTE_PTR_ADD(aligned_start, page_sz);
		aligned_len -= page_sz;
		n_segs--;
	}
	if (after_space != 0 && after_space <
			MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
		/* There is not enough space after end, but we may be able to
		 * move the end backwards by one page.
		 */
		if (n_segs == 1)
			goto free_unlock;

		/* move end */
		aligned_end = RTE_PTR_SUB(aligned_end, page_sz);
		aligned_len -= page_sz;
		n_segs--;
	}

	/* now we can finally free us some pages */

	rte_mcfg_mem_write_lock();

	/*
	 * we allow secondary processes to clear the heap of this allocated
	 * memory because it is safe to do so, as even if notifications about
	 * unmapped pages don't make it to other processes, heap is shared
	 * across all processes, and will become empty of this memory anyway,
	 * and nothing can allocate it back unless primary process will be able
	 * to deliver allocation message to every single running process.
	 */

	malloc_elem_free_list_remove(elem);

	malloc_elem_hide_region(elem, (void *) aligned_start, aligned_len);

	heap->total_size -= aligned_len;

	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
		/* notify user about changes in memory map */
		eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE,
				aligned_start, aligned_len);

		/* don't care if any of this fails */
		malloc_heap_free_pages(aligned_start, aligned_len);

		request_sync();
	} else {
		struct malloc_mp_req req;

		memset(&req, 0, sizeof(req));

		req.t = REQ_TYPE_FREE;
		req.free_req.addr = aligned_start;
		req.free_req.len = aligned_len;

		/*
		 * we request primary to deallocate pages, but we don't do it
		 * in this thread. instead, we notify primary that we would like
		 * to deallocate pages, and this process will receive another
		 * request (in parallel) that will do it for us on another
		 * thread.
		 *
		 * we also don't really care if this succeeds - the data is
		 * already removed from the heap, so it is, for all intents and
		 * purposes, hidden from the rest of DPDK even if some other
		 * process (including this one) may have these pages mapped.
		 *
		 * notifications about deallocated memory happen during sync.
		 */
		request_to_primary(&req);
	}

	RTE_LOG(DEBUG, EAL, "Heap on socket %d was shrunk by %zdMB\n",
		msl->socket_id, aligned_len >> 20ULL);

	rte_mcfg_mem_write_unlock();
free_unlock:
	rte_spinlock_unlock(&(heap->lock));
	return ret;
}

int
malloc_heap_resize(struct malloc_elem *elem, size_t size)
{
	int ret;

	if (!malloc_elem_cookies_ok(elem) || elem->state != ELEM_BUSY)
		return -1;

	rte_spinlock_lock(&(elem->heap->lock));

	ret = malloc_elem_resize(elem, size);

	rte_spinlock_unlock(&(elem->heap->lock));

	return ret;
}

/*
 * Function to retrieve data for a given heap
 */
int
malloc_heap_get_stats(struct malloc_heap *heap,
		struct rte_malloc_socket_stats *socket_stats)
{
	size_t idx;
	struct malloc_elem *elem;

	rte_spinlock_lock(&heap->lock);

	/* Initialise variables for heap */
	socket_stats->free_count = 0;
	socket_stats->heap_freesz_bytes = 0;
	socket_stats->greatest_free_size = 0;

	/* Iterate through free list */
	for (idx = 0; idx < RTE_HEAP_NUM_FREELISTS; idx++) {
		for (elem = LIST_FIRST(&heap->free_head[idx]);
			!!elem; elem = LIST_NEXT(elem, free_list))
		{
			socket_stats->free_count++;
			socket_stats->heap_freesz_bytes += elem->size;
			if (elem->size > socket_stats->greatest_free_size)
				socket_stats->greatest_free_size = elem->size;
		}
	}
	/* Get stats on overall heap and allocated memory on this heap */
	socket_stats->heap_totalsz_bytes = heap->total_size;
	socket_stats->heap_allocsz_bytes = (socket_stats->heap_totalsz_bytes -
			socket_stats->heap_freesz_bytes);
	socket_stats->alloc_count = heap->alloc_count;

	rte_spinlock_unlock(&heap->lock);
	return 0;
}

/*
 * Function to retrieve data for a given heap
 */
void
malloc_heap_dump(struct malloc_heap *heap, FILE *f)
{
	struct malloc_elem *elem;

	rte_spinlock_lock(&heap->lock);

	fprintf(f, "Heap size: 0x%zx\n", heap->total_size);
	fprintf(f, "Heap alloc count: %u\n", heap->alloc_count);

	elem = heap->first;
	while (elem) {
		malloc_elem_dump(elem, f);
		elem = elem->next;
	}

	rte_spinlock_unlock(&heap->lock);
}

static int
destroy_elem(struct malloc_elem *elem, size_t len)
{
	struct malloc_heap *heap = elem->heap;

	/* notify all subscribers that a memory area is going to be removed */
	eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE, elem, len);

	/* this element can be removed */
	malloc_elem_free_list_remove(elem);
	malloc_elem_hide_region(elem, elem, len);

	heap->total_size -= len;

	memset(elem, 0, sizeof(*elem));

	return 0;
}

struct rte_memseg_list *
malloc_heap_create_external_seg(void *va_addr, rte_iova_t iova_addrs[],
		unsigned int n_pages, size_t page_sz, const char *seg_name,
		unsigned int socket_id)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	char fbarray_name[RTE_FBARRAY_NAME_LEN];
	struct rte_memseg_list *msl = NULL;
	struct rte_fbarray *arr;
	size_t seg_len = n_pages * page_sz;
	unsigned int i;

	/* first, find a free memseg list */
	for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
		struct rte_memseg_list *tmp = &mcfg->memsegs[i];
		if (tmp->base_va == NULL) {
			msl = tmp;
			break;
		}
	}
	if (msl == NULL) {
		RTE_LOG(ERR, EAL, "Couldn't find empty memseg list\n");
		rte_errno = ENOSPC;
		return NULL;
	}

	snprintf(fbarray_name, sizeof(fbarray_name), "%s_%p",
			seg_name, va_addr);

	/* create the backing fbarray */
	if (rte_fbarray_init(&msl->memseg_arr, fbarray_name, n_pages,
			sizeof(struct rte_memseg)) < 0) {
		RTE_LOG(ERR, EAL, "Couldn't create fbarray backing the memseg list\n");
		return NULL;
	}
	arr = &msl->memseg_arr;

	/* fbarray created, fill it up */
	for (i = 0; i < n_pages; i++) {
		struct rte_memseg *ms;

		rte_fbarray_set_used(arr, i);
		ms = rte_fbarray_get(arr, i);
		ms->addr = RTE_PTR_ADD(va_addr, i * page_sz);
		ms->iova = iova_addrs == NULL ? RTE_BAD_IOVA : iova_addrs[i];
		ms->hugepage_sz = page_sz;
		ms->len = page_sz;
		ms->nchannel = rte_memory_get_nchannel();
		ms->nrank = rte_memory_get_nrank();
		ms->socket_id = socket_id;
	}

	/* set up the memseg list */
	msl->base_va = va_addr;
	msl->page_sz = page_sz;
	msl->socket_id = socket_id;
	msl->len = seg_len;
	msl->version = 0;
	msl->external = 1;

	return msl;
}

struct extseg_walk_arg {
	void *va_addr;
	size_t len;
	struct rte_memseg_list *msl;
};

static int
extseg_walk(const struct rte_memseg_list *msl, void *arg)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	struct extseg_walk_arg *wa = arg;

	if (msl->base_va == wa->va_addr && msl->len == wa->len) {
		unsigned int found_idx;

		/* msl is const */
		found_idx = msl - mcfg->memsegs;
		wa->msl = &mcfg->memsegs[found_idx];
		return 1;
	}
	return 0;
}

struct rte_memseg_list *
malloc_heap_find_external_seg(void *va_addr, size_t len)
{
	struct extseg_walk_arg wa;
	int res;

	wa.va_addr = va_addr;
	wa.len = len;

	res = rte_memseg_list_walk_thread_unsafe(extseg_walk, &wa);

	if (res != 1) {
		/* 0 means nothing was found, -1 shouldn't happen */
		if (res == 0)
			rte_errno = ENOENT;
		return NULL;
	}
	return wa.msl;
}

int
malloc_heap_destroy_external_seg(struct rte_memseg_list *msl)
{
	/* destroy the fbarray backing this memory */
	if (rte_fbarray_destroy(&msl->memseg_arr) < 0)
		return -1;

	/* reset the memseg list */
	memset(msl, 0, sizeof(*msl));

	return 0;
}

int
malloc_heap_add_external_memory(struct malloc_heap *heap,
		struct rte_memseg_list *msl)
{
	/* erase contents of new memory */
	memset(msl->base_va, 0, msl->len);

	/* now, add newly minted memory to the malloc heap */
	malloc_heap_add_memory(heap, msl, msl->base_va, msl->len);

	heap->total_size += msl->len;

	/* all done! */
	RTE_LOG(DEBUG, EAL, "Added segment for heap %s starting at %p\n",
			heap->name, msl->base_va);

	/* notify all subscribers that a new memory area has been added */
	eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC,
			msl->base_va, msl->len);

	return 0;
}

int
malloc_heap_remove_external_memory(struct malloc_heap *heap, void *va_addr,
		size_t len)
{
	struct malloc_elem *elem = heap->first;

	/* find element with specified va address */
	while (elem != NULL && elem != va_addr) {
		elem = elem->next;
		/* stop if we've blown past our VA */
		if (elem > (struct malloc_elem *)va_addr) {
			rte_errno = ENOENT;
			return -1;
		}
	}
	/* check if element was found */
	if (elem == NULL || elem->msl->len != len) {
		rte_errno = ENOENT;
		return -1;
	}
	/* if element's size is not equal to segment len, segment is busy */
	if (elem->state == ELEM_BUSY || elem->size != len) {
		rte_errno = EBUSY;
		return -1;
	}
	return destroy_elem(elem, len);
}

int
malloc_heap_create(struct malloc_heap *heap, const char *heap_name)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	uint32_t next_socket_id = mcfg->next_socket_id;

	/* prevent overflow. did you really create 2 billion heaps??? */
	if (next_socket_id > INT32_MAX) {
		RTE_LOG(ERR, EAL, "Cannot assign new socket ID's\n");
		rte_errno = ENOSPC;
		return -1;
	}

	/* initialize empty heap */
	heap->alloc_count = 0;
	heap->first = NULL;
	heap->last = NULL;
	LIST_INIT(heap->free_head);
	rte_spinlock_init(&heap->lock);
	heap->total_size = 0;
	heap->socket_id = next_socket_id;

	/* we hold a global mem hotplug writelock, so it's safe to increment */
	mcfg->next_socket_id++;

	/* set up name */
	strlcpy(heap->name, heap_name, RTE_HEAP_NAME_MAX_LEN);
	return 0;
}

int
malloc_heap_destroy(struct malloc_heap *heap)
{
	if (heap->alloc_count != 0) {
		RTE_LOG(ERR, EAL, "Heap is still in use\n");
		rte_errno = EBUSY;
		return -1;
	}
	if (heap->first != NULL || heap->last != NULL) {
		RTE_LOG(ERR, EAL, "Heap still contains memory segments\n");
		rte_errno = EBUSY;
		return -1;
	}
	if (heap->total_size != 0)
		RTE_LOG(ERR, EAL, "Total size not zero, heap is likely corrupt\n");

	/* after this, the lock will be dropped */
	memset(heap, 0, sizeof(*heap));

	return 0;
}

int
rte_eal_malloc_heap_init(void)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	unsigned int i;

	if (internal_config.match_allocations) {
		RTE_LOG(DEBUG, EAL, "Hugepages will be freed exactly as allocated.\n");
	}

	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
		/* assign min socket ID to external heaps */
		mcfg->next_socket_id = EXTERNAL_HEAP_MIN_SOCKET_ID;

		/* assign names to default DPDK heaps */
		for (i = 0; i < rte_socket_count(); i++) {
			struct malloc_heap *heap = &mcfg->malloc_heaps[i];
			char heap_name[RTE_HEAP_NAME_MAX_LEN];
			int socket_id = rte_socket_id_by_idx(i);

			snprintf(heap_name, sizeof(heap_name),
					"socket_%i", socket_id);
			strlcpy(heap->name, heap_name, RTE_HEAP_NAME_MAX_LEN);
			heap->socket_id = socket_id;
		}
	}


	if (register_mp_requests()) {
		RTE_LOG(ERR, EAL, "Couldn't register malloc multiprocess actions\n");
		rte_mcfg_mem_read_unlock();
		return -1;
	}

	/* unlock mem hotplug here. it's safe for primary as no requests can
	 * even come before primary itself is fully initialized, and secondaries
	 * do not need to initialize the heap.
	 */
	rte_mcfg_mem_read_unlock();

	/* secondary process does not need to initialize anything */
	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
		return 0;

	/* add all IOVA-contiguous areas to the heap */
	return rte_memseg_contig_walk(malloc_add_seg, NULL);
}