## Elixir Cross Referencer

 ``` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95``` ```/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #ifndef __INCLUDE_RTE_SCHED_COMMON_H__ #define __INCLUDE_RTE_SCHED_COMMON_H__ #ifdef __cplusplus extern "C" { #endif #include #include #define __rte_aligned_16 __rte_aligned(16) #if 0 static inline uint32_t rte_min_pos_4_u16(uint16_t *x) { uint32_t pos0, pos1; pos0 = (x[0] <= x[1])? 0 : 1; pos1 = (x[2] <= x[3])? 2 : 3; return (x[pos0] <= x[pos1])? pos0 : pos1; } #else /* simplified version to remove branches with CMOV instruction */ static inline uint32_t rte_min_pos_4_u16(uint16_t *x) { uint32_t pos0 = 0; uint32_t pos1 = 2; if (x[1] <= x[0]) pos0 = 1; if (x[3] <= x[2]) pos1 = 3; if (x[pos1] <= x[pos0]) pos0 = pos1; return pos0; } #endif /* * Compute the Greatest Common Divisor (GCD) of two numbers. * This implementation uses Euclid's algorithm: * gcd(a, 0) = a * gcd(a, b) = gcd(b, a mod b) * */ static inline uint32_t rte_get_gcd(uint32_t a, uint32_t b) { uint32_t c; if (a == 0) return b; if (b == 0) return a; if (a < b) { c = a; a = b; b = c; } while (b != 0) { c = a % b; a = b; b = c; } return a; } /* * Compute the Lowest Common Denominator (LCD) of two numbers. * This implementation computes GCD first: * LCD(a, b) = (a * b) / GCD(a, b) * */ static inline uint32_t rte_get_lcd(uint32_t a, uint32_t b) { return (a * b) / rte_get_gcd(a, b); } #ifdef __cplusplus } #endif #endif /* __INCLUDE_RTE_SCHED_COMMON_H__ */ ```