DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
/* SPDX-License-Identifier: BSD-3-Clause */
/* Copyright(c) 2019-2020 Broadcom All rights reserved. */

#include <inttypes.h>
#include <stdbool.h>

#include <rte_bitmap.h>
#include <rte_byteorder.h>
#include <rte_malloc.h>
#include <rte_memory.h>
#include <rte_vect.h>

#include "bnxt.h"
#include "bnxt_cpr.h"
#include "bnxt_ring.h"

#include "bnxt_txq.h"
#include "bnxt_txr.h"
#include "bnxt_rxtx_vec_common.h"

/*
 * RX Ring handling
 */

#define GET_OL_FLAGS(rss_flags, ol_idx, errors, pi, ol_flags)		       \
{									       \
	uint32_t tmp, of;						       \
									       \
	of = vgetq_lane_u32((rss_flags), (pi)) |			       \
		   bnxt_ol_flags_table[vgetq_lane_u32((ol_idx), (pi))];	       \
									       \
	tmp = vgetq_lane_u32((errors), (pi));				       \
	if (tmp)							       \
		of |= bnxt_ol_flags_err_table[tmp];			       \
	(ol_flags) = of;						       \
}

#define GET_DESC_FIELDS(rxcmp, rxcmp1, shuf_msk, ptype_idx, pkt_idx, ret)      \
{									       \
	uint32_t ptype;							       \
	uint16_t vlan_tci;						       \
	uint32x4_t r;							       \
									       \
	/* Set mbuf pkt_len, data_len, and rss_hash fields. */		       \
	r = vreinterpretq_u32_u8(vqtbl1q_u8(vreinterpretq_u8_u32(rxcmp),       \
					      (shuf_msk)));		       \
									       \
	/* Set packet type. */						       \
	ptype = bnxt_ptype_table[vgetq_lane_u32((ptype_idx), (pkt_idx))];      \
	r = vsetq_lane_u32(ptype, r, 0);				       \
									       \
	/* Set vlan_tci. */						       \
	vlan_tci = vgetq_lane_u32((rxcmp1), 1);				       \
	r = vreinterpretq_u32_u16(vsetq_lane_u16(vlan_tci,		       \
				vreinterpretq_u16_u32(r), 5));		       \
	(ret) = r;							       \
}

static void
descs_to_mbufs(uint32x4_t mm_rxcmp[4], uint32x4_t mm_rxcmp1[4],
	       uint64x2_t mb_init, struct rte_mbuf **mbuf)
{
	const uint8x16_t shuf_msk = {
		0xFF, 0xFF, 0xFF, 0xFF,    /* pkt_type (zeroes) */
		2, 3, 0xFF, 0xFF,          /* pkt_len */
		2, 3,                      /* data_len */
		0xFF, 0xFF,                /* vlan_tci (zeroes) */
		12, 13, 14, 15             /* rss hash */
	};
	const uint32x4_t flags_type_mask =
		vdupq_n_u32(RX_PKT_CMPL_FLAGS_ITYPE_MASK);
	const uint32x4_t flags2_mask1 =
		vdupq_n_u32(RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN |
			    RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC);
	const uint32x4_t flags2_mask2 =
		vdupq_n_u32(RX_PKT_CMPL_FLAGS2_IP_TYPE);
	const uint32x4_t rss_mask =
		vdupq_n_u32(RX_PKT_CMPL_FLAGS_RSS_VALID);
	const uint32x4_t flags2_index_mask = vdupq_n_u32(0x1F);
	const uint32x4_t flags2_error_mask = vdupq_n_u32(0x0F);
	uint32x4_t flags_type, flags2, index, errors, rss_flags;
	uint32x4_t tmp, ptype_idx;
	uint64x2_t t0, t1;
	uint32_t ol_flags;

	/* Compute packet type table indexes for four packets */
	t0 = vreinterpretq_u64_u32(vzip1q_u32(mm_rxcmp[0], mm_rxcmp[1]));
	t1 = vreinterpretq_u64_u32(vzip1q_u32(mm_rxcmp[2], mm_rxcmp[3]));

	flags_type = vreinterpretq_u32_u64(vcombine_u64(vget_low_u64(t0),
							vget_low_u64(t1)));
	ptype_idx =
		vshrq_n_u32(vandq_u32(flags_type, flags_type_mask), 9);

	t0 = vreinterpretq_u64_u32(vzip1q_u32(mm_rxcmp1[0], mm_rxcmp1[1]));
	t1 = vreinterpretq_u64_u32(vzip1q_u32(mm_rxcmp1[2], mm_rxcmp1[3]));

	flags2 = vreinterpretq_u32_u64(vcombine_u64(vget_low_u64(t0),
						    vget_low_u64(t1)));

	ptype_idx = vorrq_u32(ptype_idx,
			vshrq_n_u32(vandq_u32(flags2, flags2_mask1), 2));
	ptype_idx = vorrq_u32(ptype_idx,
			vshrq_n_u32(vandq_u32(flags2, flags2_mask2), 7));

	/* Extract RSS valid flags for four packets. */
	rss_flags = vshrq_n_u32(vandq_u32(flags_type, rss_mask), 9);

	flags2 = vandq_u32(flags2, flags2_index_mask);

	/* Extract errors_v2 fields for four packets. */
	t0 = vreinterpretq_u64_u32(vzip2q_u32(mm_rxcmp1[0], mm_rxcmp1[1]));
	t1 = vreinterpretq_u64_u32(vzip2q_u32(mm_rxcmp1[2], mm_rxcmp1[3]));

	errors = vreinterpretq_u32_u64(vcombine_u64(vget_low_u64(t0),
						    vget_low_u64(t1)));

	/* Compute ol_flags and checksum error indexes for four packets. */
	errors = vandq_u32(vshrq_n_u32(errors, 4), flags2_error_mask);
	errors = vandq_u32(errors, flags2);

	index = vbicq_u32(flags2, errors);

	/* Update mbuf rearm_data for four packets. */
	GET_OL_FLAGS(rss_flags, index, errors, 0, ol_flags);
	vst1q_u32((uint32_t *)&mbuf[0]->rearm_data,
		  vsetq_lane_u32(ol_flags, vreinterpretq_u32_u64(mb_init), 2));
	GET_OL_FLAGS(rss_flags, index, errors, 1, ol_flags);
	vst1q_u32((uint32_t *)&mbuf[1]->rearm_data,
		  vsetq_lane_u32(ol_flags, vreinterpretq_u32_u64(mb_init), 2));
	GET_OL_FLAGS(rss_flags, index, errors, 2, ol_flags);
	vst1q_u32((uint32_t *)&mbuf[2]->rearm_data,
		  vsetq_lane_u32(ol_flags, vreinterpretq_u32_u64(mb_init), 2));
	GET_OL_FLAGS(rss_flags, index, errors, 3, ol_flags);
	vst1q_u32((uint32_t *)&mbuf[3]->rearm_data,
		  vsetq_lane_u32(ol_flags, vreinterpretq_u32_u64(mb_init), 2));

	/* Update mbuf rx_descriptor_fields1 for four packets. */
	GET_DESC_FIELDS(mm_rxcmp[0], mm_rxcmp1[0], shuf_msk, ptype_idx, 0, tmp);
	vst1q_u32((uint32_t *)&mbuf[0]->rx_descriptor_fields1, tmp);
	GET_DESC_FIELDS(mm_rxcmp[1], mm_rxcmp1[1], shuf_msk, ptype_idx, 1, tmp);
	vst1q_u32((uint32_t *)&mbuf[1]->rx_descriptor_fields1, tmp);
	GET_DESC_FIELDS(mm_rxcmp[2], mm_rxcmp1[2], shuf_msk, ptype_idx, 2, tmp);
	vst1q_u32((uint32_t *)&mbuf[2]->rx_descriptor_fields1, tmp);
	GET_DESC_FIELDS(mm_rxcmp[3], mm_rxcmp1[3], shuf_msk, ptype_idx, 3, tmp);
	vst1q_u32((uint32_t *)&mbuf[3]->rx_descriptor_fields1, tmp);
}

uint16_t
bnxt_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
		   uint16_t nb_pkts)
{
	struct bnxt_rx_queue *rxq = rx_queue;
	struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
	struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
	uint16_t cp_ring_size = cpr->cp_ring_struct->ring_size;
	uint16_t rx_ring_size = rxr->rx_ring_struct->ring_size;
	struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring;
	uint64_t valid, desc_valid_mask = ~0UL;
	const uint32x4_t info3_v_mask = vdupq_n_u32(CMPL_BASE_V);
	uint32_t raw_cons = cpr->cp_raw_cons;
	uint32_t cons, mbcons;
	int nb_rx_pkts = 0;
	const uint64x2_t mb_init = {rxq->mbuf_initializer, 0};
	const uint32x4_t valid_target =
		vdupq_n_u32(!!(raw_cons & cp_ring_size));
	int i;

	/* If Rx Q was stopped return */
	if (unlikely(!rxq->rx_started))
		return 0;

	if (rxq->rxrearm_nb >= rxq->rx_free_thresh)
		bnxt_rxq_rearm(rxq, rxr);

	/* Return no more than RTE_BNXT_MAX_RX_BURST per call. */
	nb_pkts = RTE_MIN(nb_pkts, RTE_BNXT_MAX_RX_BURST);

	cons = raw_cons & (cp_ring_size - 1);
	mbcons = (raw_cons / 2) & (rx_ring_size - 1);

	/* Prefetch first four descriptor pairs. */
	rte_prefetch0(&cp_desc_ring[cons]);
	rte_prefetch0(&cp_desc_ring[cons + 4]);

	/* Ensure that we do not go past the ends of the rings. */
	nb_pkts = RTE_MIN(nb_pkts, RTE_MIN(rx_ring_size - mbcons,
					   (cp_ring_size - cons) / 2));
	/*
	 * If we are at the end of the ring, ensure that descriptors after the
	 * last valid entry are not treated as valid. Otherwise, force the
	 * maximum number of packets to receive to be a multiple of the per-
	 * loop count.
	 */
	if (nb_pkts < RTE_BNXT_DESCS_PER_LOOP)
		desc_valid_mask >>= 16 * (RTE_BNXT_DESCS_PER_LOOP - nb_pkts);
	else
		nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_BNXT_DESCS_PER_LOOP);

	/* Handle RX burst request */
	for (i = 0; i < nb_pkts; i += RTE_BNXT_DESCS_PER_LOOP,
				  cons += RTE_BNXT_DESCS_PER_LOOP * 2,
				  mbcons += RTE_BNXT_DESCS_PER_LOOP) {
		uint32x4_t rxcmp1[RTE_BNXT_DESCS_PER_LOOP];
		uint32x4_t rxcmp[RTE_BNXT_DESCS_PER_LOOP];
		uint32x4_t info3_v;
		uint64x2_t t0, t1;
		uint32_t num_valid;

		/* Copy four mbuf pointers to output array. */
		t0 = vld1q_u64((void *)&rxr->rx_buf_ring[mbcons]);
#ifdef RTE_ARCH_ARM64
		t1 = vld1q_u64((void *)&rxr->rx_buf_ring[mbcons + 2]);
#endif
		vst1q_u64((void *)&rx_pkts[i], t0);
#ifdef RTE_ARCH_ARM64
		vst1q_u64((void *)&rx_pkts[i + 2], t1);
#endif

		/* Prefetch four descriptor pairs for next iteration. */
		if (i + RTE_BNXT_DESCS_PER_LOOP < nb_pkts) {
			rte_prefetch0(&cp_desc_ring[cons + 8]);
			rte_prefetch0(&cp_desc_ring[cons + 12]);
		}

		/*
		 * Load the four current descriptors into SSE registers in
		 * reverse order to ensure consistent state.
		 */
		rxcmp1[3] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 7]);
		rte_io_rmb();
		rxcmp[3] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 6]);

		rxcmp1[2] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 5]);
		rte_io_rmb();
		rxcmp[2] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 4]);

		t1 = vreinterpretq_u64_u32(vzip2q_u32(rxcmp1[2], rxcmp1[3]));

		rxcmp1[1] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 3]);
		rte_io_rmb();
		rxcmp[1] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 2]);

		rxcmp1[0] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 1]);
		rte_io_rmb();
		rxcmp[0] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 0]);

		t0 = vreinterpretq_u64_u32(vzip2q_u32(rxcmp1[0], rxcmp1[1]));

		/* Isolate descriptor status flags. */
		info3_v = vreinterpretq_u32_u64(vcombine_u64(vget_low_u64(t0),
							     vget_low_u64(t1)));
		info3_v = vandq_u32(info3_v, info3_v_mask);
		info3_v = veorq_u32(info3_v, valid_target);

		/*
		 * Pack the 128-bit array of valid descriptor flags into 64
		 * bits and count the number of set bits in order to determine
		 * the number of valid descriptors.
		 */
		valid = vget_lane_u64(vreinterpret_u64_u16(vqmovn_u32(info3_v)),
				      0);
		/*
		 * At this point, 'valid' is a 64-bit value containing four
		 * 16-bit fields, each of which is either 0x0001 or 0x0000.
		 * Compute number of valid descriptors from the index of
		 * the highest non-zero field.
		 */
		num_valid = (sizeof(uint64_t) / sizeof(uint16_t)) -
				(__builtin_clzl(valid & desc_valid_mask) / 16);

		switch (num_valid) {
		case 4:
			rxr->rx_buf_ring[mbcons + 3] = NULL;
			/* FALLTHROUGH */
		case 3:
			rxr->rx_buf_ring[mbcons + 2] = NULL;
			/* FALLTHROUGH */
		case 2:
			rxr->rx_buf_ring[mbcons + 1] = NULL;
			/* FALLTHROUGH */
		case 1:
			rxr->rx_buf_ring[mbcons + 0] = NULL;
			break;
		case 0:
			goto out;
		}

		descs_to_mbufs(rxcmp, rxcmp1, mb_init, &rx_pkts[nb_rx_pkts]);
		nb_rx_pkts += num_valid;

		if (num_valid < RTE_BNXT_DESCS_PER_LOOP)
			break;
	}

out:
	if (nb_rx_pkts) {
		rxr->rx_prod =
			RING_ADV(rxr->rx_ring_struct, rxr->rx_prod, nb_rx_pkts);

		rxq->rxrearm_nb += nb_rx_pkts;
		cpr->cp_raw_cons += 2 * nb_rx_pkts;
		cpr->valid =
			!!(cpr->cp_raw_cons & cpr->cp_ring_struct->ring_size);
		bnxt_db_cq(cpr);
	}

	return nb_rx_pkts;
}

static void
bnxt_handle_tx_cp_vec(struct bnxt_tx_queue *txq)
{
	struct bnxt_cp_ring_info *cpr = txq->cp_ring;
	uint32_t raw_cons = cpr->cp_raw_cons;
	uint32_t cons;
	uint32_t nb_tx_pkts = 0;
	struct tx_cmpl *txcmp;
	struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring;
	struct bnxt_ring *cp_ring_struct = cpr->cp_ring_struct;
	uint32_t ring_mask = cp_ring_struct->ring_mask;

	do {
		cons = RING_CMPL(ring_mask, raw_cons);
		txcmp = (struct tx_cmpl *)&cp_desc_ring[cons];

		if (!CMP_VALID(txcmp, raw_cons, cp_ring_struct))
			break;

		if (likely(CMP_TYPE(txcmp) == TX_CMPL_TYPE_TX_L2))
			nb_tx_pkts += txcmp->opaque;
		else
			RTE_LOG_DP(ERR, PMD,
				   "Unhandled CMP type %02x\n",
				   CMP_TYPE(txcmp));
		raw_cons = NEXT_RAW_CMP(raw_cons);
	} while (nb_tx_pkts < ring_mask);

	cpr->valid = !!(raw_cons & cp_ring_struct->ring_size);
	if (nb_tx_pkts) {
		if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
			bnxt_tx_cmp_vec_fast(txq, nb_tx_pkts);
		else
			bnxt_tx_cmp_vec(txq, nb_tx_pkts);
		cpr->cp_raw_cons = raw_cons;
		bnxt_db_cq(cpr);
	}
}

static uint16_t
bnxt_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
			  uint16_t nb_pkts)
{
	struct bnxt_tx_queue *txq = tx_queue;
	struct bnxt_tx_ring_info *txr = txq->tx_ring;
	uint16_t prod = txr->tx_prod;
	struct rte_mbuf *tx_mbuf;
	struct tx_bd_long *txbd = NULL;
	struct bnxt_sw_tx_bd *tx_buf;
	uint16_t to_send;

	nb_pkts = RTE_MIN(nb_pkts, bnxt_tx_avail(txq));

	if (unlikely(nb_pkts == 0))
		return 0;

	/* Handle TX burst request */
	to_send = nb_pkts;
	while (to_send) {
		tx_mbuf = *tx_pkts++;
		rte_prefetch0(tx_mbuf);

		tx_buf = &txr->tx_buf_ring[prod];
		tx_buf->mbuf = tx_mbuf;
		tx_buf->nr_bds = 1;

		txbd = &txr->tx_desc_ring[prod];
		txbd->address = tx_mbuf->buf_iova + tx_mbuf->data_off;
		txbd->len = tx_mbuf->data_len;
		txbd->flags_type = bnxt_xmit_flags_len(tx_mbuf->data_len,
						       TX_BD_FLAGS_NOCMPL);
		prod = RING_NEXT(txr->tx_ring_struct, prod);
		to_send--;
	}

	/* Request a completion for last packet in burst */
	if (txbd) {
		txbd->opaque = nb_pkts;
		txbd->flags_type &= ~TX_BD_LONG_FLAGS_NO_CMPL;
	}

	rte_compiler_barrier();
	bnxt_db_write(&txr->tx_db, prod);

	txr->tx_prod = prod;

	return nb_pkts;
}

uint16_t
bnxt_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
		   uint16_t nb_pkts)
{
	int nb_sent = 0;
	struct bnxt_tx_queue *txq = tx_queue;

	/* Tx queue was stopped; wait for it to be restarted */
	if (unlikely(!txq->tx_started)) {
		PMD_DRV_LOG(DEBUG, "Tx q stopped;return\n");
		return 0;
	}

	/* Handle TX completions */
	if (bnxt_tx_bds_in_hw(txq) >= txq->tx_free_thresh)
		bnxt_handle_tx_cp_vec(txq);

	while (nb_pkts) {
		uint16_t ret, num;

		num = RTE_MIN(nb_pkts, RTE_BNXT_MAX_TX_BURST);
		ret = bnxt_xmit_fixed_burst_vec(tx_queue,
						&tx_pkts[nb_sent],
						num);
		nb_sent += ret;
		nb_pkts -= ret;
		if (ret < num)
			break;
	}

	return nb_sent;
}

int __rte_cold
bnxt_rxq_vec_setup(struct bnxt_rx_queue *rxq)
{
	return bnxt_rxq_vec_setup_common(rxq);
}