/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018-2019 Hisilicon Limited.
*/
#include <rte_alarm.h>
#include <rte_bus_pci.h>
#include <rte_ethdev_pci.h>
#include <rte_io.h>
#include <rte_pci.h>
#include "hns3_ethdev.h"
#include "hns3_logs.h"
#include "hns3_rxtx.h"
#include "hns3_intr.h"
#include "hns3_regs.h"
#include "hns3_dcb.h"
#include "hns3_mp.h"
#define HNS3_DEFAULT_PORT_CONF_BURST_SIZE 32
#define HNS3_DEFAULT_PORT_CONF_QUEUES_NUM 1
#define HNS3_SERVICE_INTERVAL 1000000 /* us */
#define HNS3_INVALID_PVID 0xFFFF
#define HNS3_FILTER_TYPE_VF 0
#define HNS3_FILTER_TYPE_PORT 1
#define HNS3_FILTER_FE_EGRESS_V1_B BIT(0)
#define HNS3_FILTER_FE_NIC_INGRESS_B BIT(0)
#define HNS3_FILTER_FE_NIC_EGRESS_B BIT(1)
#define HNS3_FILTER_FE_ROCE_INGRESS_B BIT(2)
#define HNS3_FILTER_FE_ROCE_EGRESS_B BIT(3)
#define HNS3_FILTER_FE_EGRESS (HNS3_FILTER_FE_NIC_EGRESS_B \
| HNS3_FILTER_FE_ROCE_EGRESS_B)
#define HNS3_FILTER_FE_INGRESS (HNS3_FILTER_FE_NIC_INGRESS_B \
| HNS3_FILTER_FE_ROCE_INGRESS_B)
/* Reset related Registers */
#define HNS3_GLOBAL_RESET_BIT 0
#define HNS3_CORE_RESET_BIT 1
#define HNS3_IMP_RESET_BIT 2
#define HNS3_FUN_RST_ING_B 0
#define HNS3_VECTOR0_IMP_RESET_INT_B 1
#define HNS3_VECTOR0_IMP_CMDQ_ERR_B 4U
#define HNS3_VECTOR0_IMP_RD_POISON_B 5U
#define HNS3_VECTOR0_ALL_MSIX_ERR_B 6U
#define HNS3_RESET_WAIT_MS 100
#define HNS3_RESET_WAIT_CNT 200
/* FEC mode order defined in HNS3 hardware */
#define HNS3_HW_FEC_MODE_NOFEC 0
#define HNS3_HW_FEC_MODE_BASER 1
#define HNS3_HW_FEC_MODE_RS 2
enum hns3_evt_cause {
HNS3_VECTOR0_EVENT_RST,
HNS3_VECTOR0_EVENT_MBX,
HNS3_VECTOR0_EVENT_ERR,
HNS3_VECTOR0_EVENT_OTHER,
};
static const struct rte_eth_fec_capa speed_fec_capa_tbl[] = {
{ ETH_SPEED_NUM_10G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
{ ETH_SPEED_NUM_25G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
{ ETH_SPEED_NUM_40G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
{ ETH_SPEED_NUM_50G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
{ ETH_SPEED_NUM_100G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
{ ETH_SPEED_NUM_200G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
RTE_ETH_FEC_MODE_CAPA_MASK(RS) }
};
static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
uint64_t *levels);
static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
int on);
static int hns3_update_speed_duplex(struct rte_eth_dev *eth_dev);
static int hns3_add_mc_addr(struct hns3_hw *hw,
struct rte_ether_addr *mac_addr);
static int hns3_remove_mc_addr(struct hns3_hw *hw,
struct rte_ether_addr *mac_addr);
static int hns3_restore_fec(struct hns3_hw *hw);
static int hns3_query_dev_fec_info(struct rte_eth_dev *dev);
static void
hns3_pf_disable_irq0(struct hns3_hw *hw)
{
hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
}
static void
hns3_pf_enable_irq0(struct hns3_hw *hw)
{
hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
}
static enum hns3_evt_cause
hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
{
struct hns3_hw *hw = &hns->hw;
uint32_t vector0_int_stats;
uint32_t cmdq_src_val;
uint32_t hw_err_src_reg;
uint32_t val;
enum hns3_evt_cause ret;
/* fetch the events from their corresponding regs */
vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
hw_err_src_reg = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
/*
* Assumption: If by any chance reset and mailbox events are reported
* together then we will only process reset event and defer the
* processing of the mailbox events. Since, we would have not cleared
* RX CMDQ event this time we would receive again another interrupt
* from H/W just for the mailbox.
*/
if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
rte_atomic16_set(&hw->reset.disable_cmd, 1);
hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
if (clearval) {
hw->reset.stats.imp_cnt++;
hns3_warn(hw, "IMP reset detected, clear reset status");
} else {
hns3_schedule_delayed_reset(hns);
hns3_warn(hw, "IMP reset detected, don't clear reset status");
}
ret = HNS3_VECTOR0_EVENT_RST;
goto out;
}
/* Global reset */
if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
rte_atomic16_set(&hw->reset.disable_cmd, 1);
hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
if (clearval) {
hw->reset.stats.global_cnt++;
hns3_warn(hw, "Global reset detected, clear reset status");
} else {
hns3_schedule_delayed_reset(hns);
hns3_warn(hw, "Global reset detected, don't clear reset status");
}
ret = HNS3_VECTOR0_EVENT_RST;
goto out;
}
/* check for vector0 msix event source */
if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK ||
hw_err_src_reg & HNS3_RAS_REG_NFE_MASK) {
val = vector0_int_stats | hw_err_src_reg;
ret = HNS3_VECTOR0_EVENT_ERR;
goto out;
}
/* check for vector0 mailbox(=CMDQ RX) event source */
if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
val = cmdq_src_val;
ret = HNS3_VECTOR0_EVENT_MBX;
goto out;
}
if (clearval && (vector0_int_stats || cmdq_src_val || hw_err_src_reg))
hns3_warn(hw, "vector0_int_stats:0x%x cmdq_src_val:0x%x hw_err_src_reg:0x%x",
vector0_int_stats, cmdq_src_val, hw_err_src_reg);
val = vector0_int_stats;
ret = HNS3_VECTOR0_EVENT_OTHER;
out:
if (clearval)
*clearval = val;
return ret;
}
static void
hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
{
if (event_type == HNS3_VECTOR0_EVENT_RST)
hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
else if (event_type == HNS3_VECTOR0_EVENT_MBX)
hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
}
static void
hns3_clear_all_event_cause(struct hns3_hw *hw)
{
uint32_t vector0_int_stats;
vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
hns3_warn(hw, "Probe during IMP reset interrupt");
if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
hns3_warn(hw, "Probe during Global reset interrupt");
hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
BIT(HNS3_VECTOR0_CORERESET_INT_B));
hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
}
static void
hns3_interrupt_handler(void *param)
{
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
enum hns3_evt_cause event_cause;
uint32_t clearval = 0;
/* Disable interrupt */
hns3_pf_disable_irq0(hw);
event_cause = hns3_check_event_cause(hns, &clearval);
/* vector 0 interrupt is shared with reset and mailbox source events. */
if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
hns3_warn(hw, "Received err interrupt");
hns3_handle_msix_error(hns, &hw->reset.request);
hns3_handle_ras_error(hns, &hw->reset.request);
hns3_schedule_reset(hns);
} else if (event_cause == HNS3_VECTOR0_EVENT_RST) {
hns3_warn(hw, "Received reset interrupt");
hns3_schedule_reset(hns);
} else if (event_cause == HNS3_VECTOR0_EVENT_MBX)
hns3_dev_handle_mbx_msg(hw);
else
hns3_err(hw, "Received unknown event");
hns3_clear_event_cause(hw, event_cause, clearval);
/* Enable interrupt if it is not cause by reset */
hns3_pf_enable_irq0(hw);
}
static int
hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
{
#define HNS3_VLAN_ID_OFFSET_STEP 160
#define HNS3_VLAN_BYTE_SIZE 8
struct hns3_vlan_filter_pf_cfg_cmd *req;
struct hns3_hw *hw = &hns->hw;
uint8_t vlan_offset_byte_val;
struct hns3_cmd_desc desc;
uint8_t vlan_offset_byte;
uint8_t vlan_offset_base;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
HNS3_VLAN_BYTE_SIZE;
vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
req->vlan_offset = vlan_offset_base;
req->vlan_cfg = on ? 0 : 1;
req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
vlan_id, ret);
return ret;
}
static void
hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
{
struct hns3_user_vlan_table *vlan_entry;
struct hns3_pf *pf = &hns->pf;
LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
if (vlan_entry->vlan_id == vlan_id) {
if (vlan_entry->hd_tbl_status)
hns3_set_port_vlan_filter(hns, vlan_id, 0);
LIST_REMOVE(vlan_entry, next);
rte_free(vlan_entry);
break;
}
}
}
static void
hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
bool writen_to_tbl)
{
struct hns3_user_vlan_table *vlan_entry;
struct hns3_hw *hw = &hns->hw;
struct hns3_pf *pf = &hns->pf;
LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
if (vlan_entry->vlan_id == vlan_id)
return;
}
vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
if (vlan_entry == NULL) {
hns3_err(hw, "Failed to malloc hns3 vlan table");
return;
}
vlan_entry->hd_tbl_status = writen_to_tbl;
vlan_entry->vlan_id = vlan_id;
LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
}
static int
hns3_restore_vlan_table(struct hns3_adapter *hns)
{
struct hns3_user_vlan_table *vlan_entry;
struct hns3_hw *hw = &hns->hw;
struct hns3_pf *pf = &hns->pf;
uint16_t vlan_id;
int ret = 0;
if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
return hns3_vlan_pvid_configure(hns,
hw->port_base_vlan_cfg.pvid, 1);
LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
if (vlan_entry->hd_tbl_status) {
vlan_id = vlan_entry->vlan_id;
ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
if (ret)
break;
}
}
return ret;
}
static int
hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
{
struct hns3_hw *hw = &hns->hw;
bool writen_to_tbl = false;
int ret = 0;
/*
* When vlan filter is enabled, hardware regards packets without vlan
* as packets with vlan 0. So, to receive packets without vlan, vlan id
* 0 is not allowed to be removed by rte_eth_dev_vlan_filter.
*/
if (on == 0 && vlan_id == 0)
return 0;
/*
* When port base vlan enabled, we use port base vlan as the vlan
* filter condition. In this case, we don't update vlan filter table
* when user add new vlan or remove exist vlan, just update the
* vlan list. The vlan id in vlan list will be writen in vlan filter
* table until port base vlan disabled
*/
if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
writen_to_tbl = true;
}
if (ret == 0) {
if (on)
hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
else
hns3_rm_dev_vlan_table(hns, vlan_id);
}
return ret;
}
static int
hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
int ret;
rte_spinlock_lock(&hw->lock);
ret = hns3_vlan_filter_configure(hns, vlan_id, on);
rte_spinlock_unlock(&hw->lock);
return ret;
}
static int
hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
uint16_t tpid)
{
struct hns3_rx_vlan_type_cfg_cmd *rx_req;
struct hns3_tx_vlan_type_cfg_cmd *tx_req;
struct hns3_hw *hw = &hns->hw;
struct hns3_cmd_desc desc;
int ret;
if ((vlan_type != ETH_VLAN_TYPE_INNER &&
vlan_type != ETH_VLAN_TYPE_OUTER)) {
hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
return -EINVAL;
}
if (tpid != RTE_ETHER_TYPE_VLAN) {
hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
return -EINVAL;
}
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
if (vlan_type == ETH_VLAN_TYPE_OUTER) {
rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
} else if (vlan_type == ETH_VLAN_TYPE_INNER) {
rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
}
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
ret);
return ret;
}
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
ret);
return ret;
}
static int
hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
uint16_t tpid)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
int ret;
rte_spinlock_lock(&hw->lock);
ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
rte_spinlock_unlock(&hw->lock);
return ret;
}
static int
hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
struct hns3_rx_vtag_cfg *vcfg)
{
struct hns3_vport_vtag_rx_cfg_cmd *req;
struct hns3_hw *hw = &hns->hw;
struct hns3_cmd_desc desc;
uint16_t vport_id;
uint8_t bitmap;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
vcfg->strip_tag1_en ? 1 : 0);
hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
vcfg->strip_tag2_en ? 1 : 0);
hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
vcfg->vlan1_vlan_prionly ? 1 : 0);
hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
vcfg->vlan2_vlan_prionly ? 1 : 0);
/* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG1_EN_B,
vcfg->strip_tag1_discard_en ? 1 : 0);
hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG2_EN_B,
vcfg->strip_tag2_discard_en ? 1 : 0);
/*
* In current version VF is not supported when PF is driven by DPDK
* driver, just need to configure parameters for PF vport.
*/
vport_id = HNS3_PF_FUNC_ID;
req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
req->vf_bitmap[req->vf_offset] = bitmap;
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
return ret;
}
static void
hns3_update_rx_offload_cfg(struct hns3_adapter *hns,
struct hns3_rx_vtag_cfg *vcfg)
{
struct hns3_pf *pf = &hns->pf;
memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg));
}
static void
hns3_update_tx_offload_cfg(struct hns3_adapter *hns,
struct hns3_tx_vtag_cfg *vcfg)
{
struct hns3_pf *pf = &hns->pf;
memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg));
}
static int
hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
{
struct hns3_rx_vtag_cfg rxvlan_cfg;
struct hns3_hw *hw = &hns->hw;
int ret;
if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
rxvlan_cfg.strip_tag1_en = false;
rxvlan_cfg.strip_tag2_en = enable;
rxvlan_cfg.strip_tag2_discard_en = false;
} else {
rxvlan_cfg.strip_tag1_en = enable;
rxvlan_cfg.strip_tag2_en = true;
rxvlan_cfg.strip_tag2_discard_en = true;
}
rxvlan_cfg.strip_tag1_discard_en = false;
rxvlan_cfg.vlan1_vlan_prionly = false;
rxvlan_cfg.vlan2_vlan_prionly = false;
rxvlan_cfg.rx_vlan_offload_en = enable;
ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
if (ret) {
hns3_err(hw, "enable strip rx vtag failed, ret =%d", ret);
return ret;
}
hns3_update_rx_offload_cfg(hns, &rxvlan_cfg);
return ret;
}
static int
hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
uint8_t fe_type, bool filter_en, uint8_t vf_id)
{
struct hns3_vlan_filter_ctrl_cmd *req;
struct hns3_cmd_desc desc;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
req->vlan_type = vlan_type;
req->vlan_fe = filter_en ? fe_type : 0;
req->vf_id = vf_id;
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "set vlan filter fail, ret =%d", ret);
return ret;
}
static int
hns3_vlan_filter_init(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
int ret;
ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
HNS3_FILTER_FE_EGRESS, false,
HNS3_PF_FUNC_ID);
if (ret) {
hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
return ret;
}
ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
HNS3_FILTER_FE_INGRESS, false,
HNS3_PF_FUNC_ID);
if (ret)
hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
return ret;
}
static int
hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
{
struct hns3_hw *hw = &hns->hw;
int ret;
ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
HNS3_FILTER_FE_INGRESS, enable,
HNS3_PF_FUNC_ID);
if (ret)
hns3_err(hw, "failed to %s port vlan filter, ret = %d",
enable ? "enable" : "disable", ret);
return ret;
}
static int
hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
struct rte_eth_rxmode *rxmode;
unsigned int tmp_mask;
bool enable;
int ret = 0;
rte_spinlock_lock(&hw->lock);
rxmode = &dev->data->dev_conf.rxmode;
tmp_mask = (unsigned int)mask;
if (tmp_mask & ETH_VLAN_FILTER_MASK) {
/* ignore vlan filter configuration during promiscuous mode */
if (!dev->data->promiscuous) {
/* Enable or disable VLAN filter */
enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER ?
true : false;
ret = hns3_enable_vlan_filter(hns, enable);
if (ret) {
rte_spinlock_unlock(&hw->lock);
hns3_err(hw, "failed to %s rx filter, ret = %d",
enable ? "enable" : "disable", ret);
return ret;
}
}
}
if (tmp_mask & ETH_VLAN_STRIP_MASK) {
/* Enable or disable VLAN stripping */
enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP ?
true : false;
ret = hns3_en_hw_strip_rxvtag(hns, enable);
if (ret) {
rte_spinlock_unlock(&hw->lock);
hns3_err(hw, "failed to %s rx strip, ret = %d",
enable ? "enable" : "disable", ret);
return ret;
}
}
rte_spinlock_unlock(&hw->lock);
return ret;
}
static int
hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
struct hns3_tx_vtag_cfg *vcfg)
{
struct hns3_vport_vtag_tx_cfg_cmd *req;
struct hns3_cmd_desc desc;
struct hns3_hw *hw = &hns->hw;
uint16_t vport_id;
uint8_t bitmap;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
req->def_vlan_tag1 = vcfg->default_tag1;
req->def_vlan_tag2 = vcfg->default_tag2;
hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
vcfg->accept_tag1 ? 1 : 0);
hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
vcfg->accept_untag1 ? 1 : 0);
hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
vcfg->accept_tag2 ? 1 : 0);
hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
vcfg->accept_untag2 ? 1 : 0);
hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
vcfg->insert_tag1_en ? 1 : 0);
hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
vcfg->insert_tag2_en ? 1 : 0);
hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
/* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
hns3_set_bit(req->vport_vlan_cfg, HNS3_TAG_SHIFT_MODE_EN_B,
vcfg->tag_shift_mode_en ? 1 : 0);
/*
* In current version VF is not supported when PF is driven by DPDK
* driver, just need to configure parameters for PF vport.
*/
vport_id = HNS3_PF_FUNC_ID;
req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
req->vf_bitmap[req->vf_offset] = bitmap;
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
return ret;
}
static int
hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
uint16_t pvid)
{
struct hns3_hw *hw = &hns->hw;
struct hns3_tx_vtag_cfg txvlan_cfg;
int ret;
if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
txvlan_cfg.accept_tag1 = true;
txvlan_cfg.insert_tag1_en = false;
txvlan_cfg.default_tag1 = 0;
} else {
txvlan_cfg.accept_tag1 =
hw->vlan_mode == HNS3_HW_SHIFT_AND_DISCARD_MODE;
txvlan_cfg.insert_tag1_en = true;
txvlan_cfg.default_tag1 = pvid;
}
txvlan_cfg.accept_untag1 = true;
txvlan_cfg.accept_tag2 = true;
txvlan_cfg.accept_untag2 = true;
txvlan_cfg.insert_tag2_en = false;
txvlan_cfg.default_tag2 = 0;
txvlan_cfg.tag_shift_mode_en = true;
ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
if (ret) {
hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
ret);
return ret;
}
hns3_update_tx_offload_cfg(hns, &txvlan_cfg);
return ret;
}
static void
hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
{
struct hns3_user_vlan_table *vlan_entry;
struct hns3_pf *pf = &hns->pf;
LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
if (vlan_entry->hd_tbl_status) {
hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
vlan_entry->hd_tbl_status = false;
}
}
if (is_del_list) {
vlan_entry = LIST_FIRST(&pf->vlan_list);
while (vlan_entry) {
LIST_REMOVE(vlan_entry, next);
rte_free(vlan_entry);
vlan_entry = LIST_FIRST(&pf->vlan_list);
}
}
}
static void
hns3_add_all_vlan_table(struct hns3_adapter *hns)
{
struct hns3_user_vlan_table *vlan_entry;
struct hns3_pf *pf = &hns->pf;
LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
if (!vlan_entry->hd_tbl_status) {
hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
vlan_entry->hd_tbl_status = true;
}
}
}
static void
hns3_remove_all_vlan_table(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
int ret;
hns3_rm_all_vlan_table(hns, true);
if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID) {
ret = hns3_set_port_vlan_filter(hns,
hw->port_base_vlan_cfg.pvid, 0);
if (ret) {
hns3_err(hw, "Failed to remove all vlan table, ret =%d",
ret);
return;
}
}
}
static int
hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
uint16_t port_base_vlan_state, uint16_t new_pvid)
{
struct hns3_hw *hw = &hns->hw;
uint16_t old_pvid;
int ret;
if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
old_pvid = hw->port_base_vlan_cfg.pvid;
if (old_pvid != HNS3_INVALID_PVID) {
ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
if (ret) {
hns3_err(hw, "failed to remove old pvid %u, "
"ret = %d", old_pvid, ret);
return ret;
}
}
hns3_rm_all_vlan_table(hns, false);
ret = hns3_set_port_vlan_filter(hns, new_pvid, 1);
if (ret) {
hns3_err(hw, "failed to add new pvid %u, ret = %d",
new_pvid, ret);
return ret;
}
} else {
ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
if (ret) {
hns3_err(hw, "failed to remove pvid %u, ret = %d",
new_pvid, ret);
return ret;
}
hns3_add_all_vlan_table(hns);
}
return 0;
}
static int
hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
{
struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
struct hns3_rx_vtag_cfg rx_vlan_cfg;
bool rx_strip_en;
int ret;
rx_strip_en = old_cfg->rx_vlan_offload_en;
if (on) {
rx_vlan_cfg.strip_tag1_en = rx_strip_en;
rx_vlan_cfg.strip_tag2_en = true;
rx_vlan_cfg.strip_tag2_discard_en = true;
} else {
rx_vlan_cfg.strip_tag1_en = false;
rx_vlan_cfg.strip_tag2_en = rx_strip_en;
rx_vlan_cfg.strip_tag2_discard_en = false;
}
rx_vlan_cfg.strip_tag1_discard_en = false;
rx_vlan_cfg.vlan1_vlan_prionly = false;
rx_vlan_cfg.vlan2_vlan_prionly = false;
rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
if (ret)
return ret;
hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg);
return ret;
}
static int
hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
{
struct hns3_hw *hw = &hns->hw;
uint16_t port_base_vlan_state;
int ret;
if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID)
hns3_warn(hw, "Invalid operation! As current pvid set "
"is %u, disable pvid %u is invalid",
hw->port_base_vlan_cfg.pvid, pvid);
return 0;
}
port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
HNS3_PORT_BASE_VLAN_DISABLE;
ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
if (ret) {
hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
ret);
return ret;
}
ret = hns3_en_pvid_strip(hns, on);
if (ret) {
hns3_err(hw, "failed to config rx vlan strip for pvid, "
"ret = %d", ret);
return ret;
}
if (pvid == HNS3_INVALID_PVID)
goto out;
ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid);
if (ret) {
hns3_err(hw, "failed to update vlan filter entries, ret = %d",
ret);
return ret;
}
out:
hw->port_base_vlan_cfg.state = port_base_vlan_state;
hw->port_base_vlan_cfg.pvid = on ? pvid : HNS3_INVALID_PVID;
return ret;
}
static int
hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
bool pvid_en_state_change;
uint16_t pvid_state;
int ret;
if (pvid > RTE_ETHER_MAX_VLAN_ID) {
hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
RTE_ETHER_MAX_VLAN_ID);
return -EINVAL;
}
/*
* If PVID configuration state change, should refresh the PVID
* configuration state in struct hns3_tx_queue/hns3_rx_queue.
*/
pvid_state = hw->port_base_vlan_cfg.state;
if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
(!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
pvid_en_state_change = false;
else
pvid_en_state_change = true;
rte_spinlock_lock(&hw->lock);
ret = hns3_vlan_pvid_configure(hns, pvid, on);
rte_spinlock_unlock(&hw->lock);
if (ret)
return ret;
/*
* Only in HNS3_SW_SHIFT_AND_MODE the PVID related operation in Tx/Rx
* need be processed by PMD driver.
*/
if (pvid_en_state_change &&
hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
hns3_update_all_queues_pvid_proc_en(hw);
return 0;
}
static int
hns3_default_vlan_config(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
int ret;
/*
* When vlan filter is enabled, hardware regards packets without vlan
* as packets with vlan 0. Therefore, if vlan 0 is not in the vlan
* table, packets without vlan won't be received. So, add vlan 0 as
* the default vlan.
*/
ret = hns3_vlan_filter_configure(hns, 0, 1);
if (ret)
hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
return ret;
}
static int
hns3_init_vlan_config(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
int ret;
/*
* This function can be called in the initialization and reset process,
* when in reset process, it means that hardware had been reseted
* successfully and we need to restore the hardware configuration to
* ensure that the hardware configuration remains unchanged before and
* after reset.
*/
if (rte_atomic16_read(&hw->reset.resetting) == 0) {
hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
hw->port_base_vlan_cfg.pvid = HNS3_INVALID_PVID;
}
ret = hns3_vlan_filter_init(hns);
if (ret) {
hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
return ret;
}
ret = hns3_vlan_tpid_configure(hns, ETH_VLAN_TYPE_INNER,
RTE_ETHER_TYPE_VLAN);
if (ret) {
hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
return ret;
}
/*
* When in the reinit dev stage of the reset process, the following
* vlan-related configurations may differ from those at initialization,
* we will restore configurations to hardware in hns3_restore_vlan_table
* and hns3_restore_vlan_conf later.
*/
if (rte_atomic16_read(&hw->reset.resetting) == 0) {
ret = hns3_vlan_pvid_configure(hns, HNS3_INVALID_PVID, 0);
if (ret) {
hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
return ret;
}
ret = hns3_en_hw_strip_rxvtag(hns, false);
if (ret) {
hns3_err(hw, "rx strip configure fail in pf, ret =%d",
ret);
return ret;
}
}
return hns3_default_vlan_config(hns);
}
static int
hns3_restore_vlan_conf(struct hns3_adapter *hns)
{
struct hns3_pf *pf = &hns->pf;
struct hns3_hw *hw = &hns->hw;
uint64_t offloads;
bool enable;
int ret;
if (!hw->data->promiscuous) {
/* restore vlan filter states */
offloads = hw->data->dev_conf.rxmode.offloads;
enable = offloads & DEV_RX_OFFLOAD_VLAN_FILTER ? true : false;
ret = hns3_enable_vlan_filter(hns, enable);
if (ret) {
hns3_err(hw, "failed to restore vlan rx filter conf, "
"ret = %d", ret);
return ret;
}
}
ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
if (ret) {
hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
return ret;
}
ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
if (ret)
hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
return ret;
}
static int
hns3_dev_configure_vlan(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct rte_eth_dev_data *data = dev->data;
struct rte_eth_txmode *txmode;
struct hns3_hw *hw = &hns->hw;
int mask;
int ret;
txmode = &data->dev_conf.txmode;
if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
hns3_warn(hw,
"hw_vlan_reject_tagged or hw_vlan_reject_untagged "
"configuration is not supported! Ignore these two "
"parameters: hw_vlan_reject_tagged(%u), "
"hw_vlan_reject_untagged(%u)",
txmode->hw_vlan_reject_tagged,
txmode->hw_vlan_reject_untagged);
/* Apply vlan offload setting */
mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK;
ret = hns3_vlan_offload_set(dev, mask);
if (ret) {
hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
ret);
return ret;
}
/*
* If pvid config is not set in rte_eth_conf, driver needn't to set
* VLAN pvid related configuration to hardware.
*/
if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
return 0;
/* Apply pvid setting */
ret = hns3_vlan_pvid_set(dev, txmode->pvid,
txmode->hw_vlan_insert_pvid);
if (ret)
hns3_err(hw, "dev config vlan pvid(%u) failed, ret = %d",
txmode->pvid, ret);
return ret;
}
static int
hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
unsigned int tso_mss_max)
{
struct hns3_cfg_tso_status_cmd *req;
struct hns3_cmd_desc desc;
uint16_t tso_mss;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
req = (struct hns3_cfg_tso_status_cmd *)desc.data;
tso_mss = 0;
hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
tso_mss_min);
req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
tso_mss = 0;
hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
tso_mss_max);
req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
return hns3_cmd_send(hw, &desc, 1);
}
static int
hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
uint16_t *allocated_size, bool is_alloc)
{
struct hns3_umv_spc_alc_cmd *req;
struct hns3_cmd_desc desc;
int ret;
req = (struct hns3_umv_spc_alc_cmd *)desc.data;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
req->space_size = rte_cpu_to_le_32(space_size);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
is_alloc ? "allocate" : "free", ret);
return ret;
}
if (is_alloc && allocated_size)
*allocated_size = rte_le_to_cpu_32(desc.data[1]);
return 0;
}
static int
hns3_init_umv_space(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
uint16_t allocated_size = 0;
int ret;
ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
true);
if (ret)
return ret;
if (allocated_size < pf->wanted_umv_size)
PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
pf->wanted_umv_size, allocated_size);
pf->max_umv_size = (!!allocated_size) ? allocated_size :
pf->wanted_umv_size;
pf->used_umv_size = 0;
return 0;
}
static int
hns3_uninit_umv_space(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
int ret;
if (pf->max_umv_size == 0)
return 0;
ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
if (ret)
return ret;
pf->max_umv_size = 0;
return 0;
}
static bool
hns3_is_umv_space_full(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
bool is_full;
is_full = (pf->used_umv_size >= pf->max_umv_size);
return is_full;
}
static void
hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
if (is_free) {
if (pf->used_umv_size > 0)
pf->used_umv_size--;
} else
pf->used_umv_size++;
}
static void
hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
const uint8_t *addr, bool is_mc)
{
const unsigned char *mac_addr = addr;
uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
((uint32_t)mac_addr[2] << 16) |
((uint32_t)mac_addr[1] << 8) |
(uint32_t)mac_addr[0];
uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
if (is_mc) {
hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
}
new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
}
static int
hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
uint8_t resp_code,
enum hns3_mac_vlan_tbl_opcode op)
{
if (cmdq_resp) {
hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
cmdq_resp);
return -EIO;
}
if (op == HNS3_MAC_VLAN_ADD) {
if (resp_code == 0 || resp_code == 1) {
return 0;
} else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
hns3_err(hw, "add mac addr failed for uc_overflow");
return -ENOSPC;
} else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
hns3_err(hw, "add mac addr failed for mc_overflow");
return -ENOSPC;
}
hns3_err(hw, "add mac addr failed for undefined, code=%u",
resp_code);
return -EIO;
} else if (op == HNS3_MAC_VLAN_REMOVE) {
if (resp_code == 0) {
return 0;
} else if (resp_code == 1) {
hns3_dbg(hw, "remove mac addr failed for miss");
return -ENOENT;
}
hns3_err(hw, "remove mac addr failed for undefined, code=%u",
resp_code);
return -EIO;
} else if (op == HNS3_MAC_VLAN_LKUP) {
if (resp_code == 0) {
return 0;
} else if (resp_code == 1) {
hns3_dbg(hw, "lookup mac addr failed for miss");
return -ENOENT;
}
hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
resp_code);
return -EIO;
}
hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
op);
return -EINVAL;
}
static int
hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
struct hns3_mac_vlan_tbl_entry_cmd *req,
struct hns3_cmd_desc *desc, bool is_mc)
{
uint8_t resp_code;
uint16_t retval;
int ret;
hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD, true);
if (is_mc) {
desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
memcpy(desc[0].data, req,
sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_MAC_VLAN_ADD,
true);
desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
hns3_cmd_setup_basic_desc(&desc[2], HNS3_OPC_MAC_VLAN_ADD,
true);
ret = hns3_cmd_send(hw, desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
} else {
memcpy(desc[0].data, req,
sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
ret = hns3_cmd_send(hw, desc, 1);
}
if (ret) {
hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
ret);
return ret;
}
resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
retval = rte_le_to_cpu_16(desc[0].retval);
return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
HNS3_MAC_VLAN_LKUP);
}
static int
hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
struct hns3_mac_vlan_tbl_entry_cmd *req,
struct hns3_cmd_desc *mc_desc)
{
uint8_t resp_code;
uint16_t retval;
int cfg_status;
int ret;
if (mc_desc == NULL) {
struct hns3_cmd_desc desc;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ADD, false);
memcpy(desc.data, req,
sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
ret = hns3_cmd_send(hw, &desc, 1);
resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
retval = rte_le_to_cpu_16(desc.retval);
cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
HNS3_MAC_VLAN_ADD);
} else {
hns3_cmd_reuse_desc(&mc_desc[0], false);
mc_desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
hns3_cmd_reuse_desc(&mc_desc[1], false);
mc_desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
hns3_cmd_reuse_desc(&mc_desc[2], false);
mc_desc[2].flag &= rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
memcpy(mc_desc[0].data, req,
sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
mc_desc[0].retval = 0;
ret = hns3_cmd_send(hw, mc_desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
resp_code = (rte_le_to_cpu_32(mc_desc[0].data[0]) >> 8) & 0xff;
retval = rte_le_to_cpu_16(mc_desc[0].retval);
cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
HNS3_MAC_VLAN_ADD);
}
if (ret) {
hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
return ret;
}
return cfg_status;
}
static int
hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
struct hns3_mac_vlan_tbl_entry_cmd *req)
{
struct hns3_cmd_desc desc;
uint8_t resp_code;
uint16_t retval;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
return ret;
}
resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
retval = rte_le_to_cpu_16(desc.retval);
return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
HNS3_MAC_VLAN_REMOVE);
}
static int
hns3_add_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_mac_vlan_tbl_entry_cmd req;
struct hns3_pf *pf = &hns->pf;
struct hns3_cmd_desc desc[3];
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
uint16_t egress_port = 0;
uint8_t vf_id;
int ret;
/* check if mac addr is valid */
if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
mac_str);
return -EINVAL;
}
memset(&req, 0, sizeof(req));
/*
* In current version VF is not supported when PF is driven by DPDK
* driver, just need to configure parameters for PF vport.
*/
vf_id = HNS3_PF_FUNC_ID;
hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
HNS3_MAC_EPORT_VFID_S, vf_id);
req.egress_port = rte_cpu_to_le_16(egress_port);
hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
/*
* Lookup the mac address in the mac_vlan table, and add
* it if the entry is inexistent. Repeated unicast entry
* is not allowed in the mac vlan table.
*/
ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, false);
if (ret == -ENOENT) {
if (!hns3_is_umv_space_full(hw)) {
ret = hns3_add_mac_vlan_tbl(hw, &req, NULL);
if (!ret)
hns3_update_umv_space(hw, false);
return ret;
}
hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
return -ENOSPC;
}
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
/* check if we just hit the duplicate */
if (ret == 0) {
hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
return 0;
}
hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
mac_str);
return ret;
}
static int
hns3_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
{
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
struct rte_ether_addr *addr;
int ret;
int i;
for (i = 0; i < hw->mc_addrs_num; i++) {
addr = &hw->mc_addrs[i];
/* Check if there are duplicate addresses */
if (rte_is_same_ether_addr(addr, mac_addr)) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_err(hw, "failed to add mc mac addr, same addrs"
"(%s) is added by the set_mc_mac_addr_list "
"API", mac_str);
return -EINVAL;
}
}
ret = hns3_add_mc_addr(hw, mac_addr);
if (ret) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
mac_str, ret);
}
return ret;
}
static int
hns3_remove_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
{
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
int ret;
ret = hns3_remove_mc_addr(hw, mac_addr);
if (ret) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "failed to remove mc mac addr(%s), ret = %d",
mac_str, ret);
}
return ret;
}
static int
hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
uint32_t idx, __rte_unused uint32_t pool)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
int ret;
rte_spinlock_lock(&hw->lock);
/*
* In hns3 network engine adding UC and MC mac address with different
* commands with firmware. We need to determine whether the input
* address is a UC or a MC address to call different commands.
* By the way, it is recommended calling the API function named
* rte_eth_dev_set_mc_addr_list to set the MC mac address, because
* using the rte_eth_dev_mac_addr_add API function to set MC mac address
* may affect the specifications of UC mac addresses.
*/
if (rte_is_multicast_ether_addr(mac_addr))
ret = hns3_add_mc_addr_common(hw, mac_addr);
else
ret = hns3_add_uc_addr_common(hw, mac_addr);
if (ret) {
rte_spinlock_unlock(&hw->lock);
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
ret);
return ret;
}
if (idx == 0)
hw->mac.default_addr_setted = true;
rte_spinlock_unlock(&hw->lock);
return ret;
}
static int
hns3_remove_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
{
struct hns3_mac_vlan_tbl_entry_cmd req;
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
int ret;
/* check if mac addr is valid */
if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
mac_str);
return -EINVAL;
}
memset(&req, 0, sizeof(req));
hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
ret = hns3_remove_mac_vlan_tbl(hw, &req);
if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
return 0;
else if (ret == 0)
hns3_update_umv_space(hw, true);
return ret;
}
static void
hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* index will be checked by upper level rte interface */
struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
int ret;
rte_spinlock_lock(&hw->lock);
if (rte_is_multicast_ether_addr(mac_addr))
ret = hns3_remove_mc_addr_common(hw, mac_addr);
else
ret = hns3_remove_uc_addr_common(hw, mac_addr);
rte_spinlock_unlock(&hw->lock);
if (ret) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "failed to remove mac addr(%s), ret = %d", mac_str,
ret);
}
}
static int
hns3_set_default_mac_addr(struct rte_eth_dev *dev,
struct rte_ether_addr *mac_addr)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_ether_addr *oaddr;
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
bool default_addr_setted;
bool rm_succes = false;
int ret, ret_val;
/*
* It has been guaranteed that input parameter named mac_addr is valid
* address in the rte layer of DPDK framework.
*/
oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
default_addr_setted = hw->mac.default_addr_setted;
if (default_addr_setted && !!rte_is_same_ether_addr(mac_addr, oaddr))
return 0;
rte_spinlock_lock(&hw->lock);
if (default_addr_setted) {
ret = hns3_remove_uc_addr_common(hw, oaddr);
if (ret) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
oaddr);
hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
mac_str, ret);
rm_succes = false;
} else
rm_succes = true;
}
ret = hns3_add_uc_addr_common(hw, mac_addr);
if (ret) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
goto err_add_uc_addr;
}
ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
if (ret) {
hns3_err(hw, "Failed to configure mac pause address: %d", ret);
goto err_pause_addr_cfg;
}
rte_ether_addr_copy(mac_addr,
(struct rte_ether_addr *)hw->mac.mac_addr);
hw->mac.default_addr_setted = true;
rte_spinlock_unlock(&hw->lock);
return 0;
err_pause_addr_cfg:
ret_val = hns3_remove_uc_addr_common(hw, mac_addr);
if (ret_val) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_warn(hw,
"Failed to roll back to del setted mac addr(%s): %d",
mac_str, ret_val);
}
err_add_uc_addr:
if (rm_succes) {
ret_val = hns3_add_uc_addr_common(hw, oaddr);
if (ret_val) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
oaddr);
hns3_warn(hw,
"Failed to restore old uc mac addr(%s): %d",
mac_str, ret_val);
hw->mac.default_addr_setted = false;
}
}
rte_spinlock_unlock(&hw->lock);
return ret;
}
static int
hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del)
{
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
struct hns3_hw *hw = &hns->hw;
struct rte_ether_addr *addr;
int err = 0;
int ret;
int i;
for (i = 0; i < HNS3_UC_MACADDR_NUM; i++) {
addr = &hw->data->mac_addrs[i];
if (rte_is_zero_ether_addr(addr))
continue;
if (rte_is_multicast_ether_addr(addr))
ret = del ? hns3_remove_mc_addr(hw, addr) :
hns3_add_mc_addr(hw, addr);
else
ret = del ? hns3_remove_uc_addr_common(hw, addr) :
hns3_add_uc_addr_common(hw, addr);
if (ret) {
err = ret;
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_err(hw, "failed to %s mac addr(%s) index:%d "
"ret = %d.", del ? "remove" : "restore",
mac_str, i, ret);
}
}
return err;
}
static void
hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
{
#define HNS3_VF_NUM_IN_FIRST_DESC 192
uint8_t word_num;
uint8_t bit_num;
if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
word_num = vfid / 32;
bit_num = vfid % 32;
if (clr)
desc[1].data[word_num] &=
rte_cpu_to_le_32(~(1UL << bit_num));
else
desc[1].data[word_num] |=
rte_cpu_to_le_32(1UL << bit_num);
} else {
word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
bit_num = vfid % 32;
if (clr)
desc[2].data[word_num] &=
rte_cpu_to_le_32(~(1UL << bit_num));
else
desc[2].data[word_num] |=
rte_cpu_to_le_32(1UL << bit_num);
}
}
static int
hns3_add_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
{
struct hns3_mac_vlan_tbl_entry_cmd req;
struct hns3_cmd_desc desc[3];
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
uint8_t vf_id;
int ret;
/* Check if mac addr is valid */
if (!rte_is_multicast_ether_addr(mac_addr)) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
mac_str);
return -EINVAL;
}
memset(&req, 0, sizeof(req));
hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
if (ret) {
/* This mac addr do not exist, add new entry for it */
memset(desc[0].data, 0, sizeof(desc[0].data));
memset(desc[1].data, 0, sizeof(desc[0].data));
memset(desc[2].data, 0, sizeof(desc[0].data));
}
/*
* In current version VF is not supported when PF is driven by DPDK
* driver, just need to configure parameters for PF vport.
*/
vf_id = HNS3_PF_FUNC_ID;
hns3_update_desc_vfid(desc, vf_id, false);
ret = hns3_add_mac_vlan_tbl(hw, &req, desc);
if (ret) {
if (ret == -ENOSPC)
hns3_err(hw, "mc mac vlan table is full");
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
}
return ret;
}
static int
hns3_remove_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
{
struct hns3_mac_vlan_tbl_entry_cmd req;
struct hns3_cmd_desc desc[3];
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
uint8_t vf_id;
int ret;
/* Check if mac addr is valid */
if (!rte_is_multicast_ether_addr(mac_addr)) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
mac_str);
return -EINVAL;
}
memset(&req, 0, sizeof(req));
hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
if (ret == 0) {
/*
* This mac addr exist, remove this handle's VFID for it.
* In current version VF is not supported when PF is driven by
* DPDK driver, just need to configure parameters for PF vport.
*/
vf_id = HNS3_PF_FUNC_ID;
hns3_update_desc_vfid(desc, vf_id, true);
/* All the vfid is zero, so need to delete this entry */
ret = hns3_remove_mac_vlan_tbl(hw, &req);
} else if (ret == -ENOENT) {
/* This mac addr doesn't exist. */
return 0;
}
if (ret) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
}
return ret;
}
static int
hns3_set_mc_addr_chk_param(struct hns3_hw *hw,
struct rte_ether_addr *mc_addr_set,
uint32_t nb_mc_addr)
{
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
struct rte_ether_addr *addr;
uint32_t i;
uint32_t j;
if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
"invalid. valid range: 0~%d",
nb_mc_addr, HNS3_MC_MACADDR_NUM);
return -EINVAL;
}
/* Check if input mac addresses are valid */
for (i = 0; i < nb_mc_addr; i++) {
addr = &mc_addr_set[i];
if (!rte_is_multicast_ether_addr(addr)) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_err(hw,
"failed to set mc mac addr, addr(%s) invalid.",
mac_str);
return -EINVAL;
}
/* Check if there are duplicate addresses */
for (j = i + 1; j < nb_mc_addr; j++) {
if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
rte_ether_format_addr(mac_str,
RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_err(hw, "failed to set mc mac addr, "
"addrs invalid. two same addrs(%s).",
mac_str);
return -EINVAL;
}
}
/*
* Check if there are duplicate addresses between mac_addrs
* and mc_addr_set
*/
for (j = 0; j < HNS3_UC_MACADDR_NUM; j++) {
if (rte_is_same_ether_addr(addr,
&hw->data->mac_addrs[j])) {
rte_ether_format_addr(mac_str,
RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_err(hw, "failed to set mc mac addr, "
"addrs invalid. addrs(%s) has already "
"configured in mac_addr add API",
mac_str);
return -EINVAL;
}
}
}
return 0;
}
static void
hns3_set_mc_addr_calc_addr(struct hns3_hw *hw,
struct rte_ether_addr *mc_addr_set,
int mc_addr_num,
struct rte_ether_addr *reserved_addr_list,
int *reserved_addr_num,
struct rte_ether_addr *add_addr_list,
int *add_addr_num,
struct rte_ether_addr *rm_addr_list,
int *rm_addr_num)
{
struct rte_ether_addr *addr;
int current_addr_num;
int reserved_num = 0;
int add_num = 0;
int rm_num = 0;
int num;
int i;
int j;
bool same_addr;
/* Calculate the mc mac address list that should be removed */
current_addr_num = hw->mc_addrs_num;
for (i = 0; i < current_addr_num; i++) {
addr = &hw->mc_addrs[i];
same_addr = false;
for (j = 0; j < mc_addr_num; j++) {
if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
same_addr = true;
break;
}
}
if (!same_addr) {
rte_ether_addr_copy(addr, &rm_addr_list[rm_num]);
rm_num++;
} else {
rte_ether_addr_copy(addr,
&reserved_addr_list[reserved_num]);
reserved_num++;
}
}
/* Calculate the mc mac address list that should be added */
for (i = 0; i < mc_addr_num; i++) {
addr = &mc_addr_set[i];
same_addr = false;
for (j = 0; j < current_addr_num; j++) {
if (rte_is_same_ether_addr(addr, &hw->mc_addrs[j])) {
same_addr = true;
break;
}
}
if (!same_addr) {
rte_ether_addr_copy(addr, &add_addr_list[add_num]);
add_num++;
}
}
/* Reorder the mc mac address list maintained by driver */
for (i = 0; i < reserved_num; i++)
rte_ether_addr_copy(&reserved_addr_list[i], &hw->mc_addrs[i]);
for (i = 0; i < rm_num; i++) {
num = reserved_num + i;
rte_ether_addr_copy(&rm_addr_list[i], &hw->mc_addrs[num]);
}
*reserved_addr_num = reserved_num;
*add_addr_num = add_num;
*rm_addr_num = rm_num;
}
static int
hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev,
struct rte_ether_addr *mc_addr_set,
uint32_t nb_mc_addr)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_ether_addr reserved_addr_list[HNS3_MC_MACADDR_NUM];
struct rte_ether_addr add_addr_list[HNS3_MC_MACADDR_NUM];
struct rte_ether_addr rm_addr_list[HNS3_MC_MACADDR_NUM];
struct rte_ether_addr *addr;
int reserved_addr_num;
int add_addr_num;
int rm_addr_num;
int mc_addr_num;
int num;
int ret;
int i;
/* Check if input parameters are valid */
ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
if (ret)
return ret;
rte_spinlock_lock(&hw->lock);
/*
* Calculate the mc mac address lists those should be removed and be
* added, Reorder the mc mac address list maintained by driver.
*/
mc_addr_num = (int)nb_mc_addr;
hns3_set_mc_addr_calc_addr(hw, mc_addr_set, mc_addr_num,
reserved_addr_list, &reserved_addr_num,
add_addr_list, &add_addr_num,
rm_addr_list, &rm_addr_num);
/* Remove mc mac addresses */
for (i = 0; i < rm_addr_num; i++) {
num = rm_addr_num - i - 1;
addr = &rm_addr_list[num];
ret = hns3_remove_mc_addr(hw, addr);
if (ret) {
rte_spinlock_unlock(&hw->lock);
return ret;
}
hw->mc_addrs_num--;
}
/* Add mc mac addresses */
for (i = 0; i < add_addr_num; i++) {
addr = &add_addr_list[i];
ret = hns3_add_mc_addr(hw, addr);
if (ret) {
rte_spinlock_unlock(&hw->lock);
return ret;
}
num = reserved_addr_num + i;
rte_ether_addr_copy(addr, &hw->mc_addrs[num]);
hw->mc_addrs_num++;
}
rte_spinlock_unlock(&hw->lock);
return 0;
}
static int
hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
{
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
struct hns3_hw *hw = &hns->hw;
struct rte_ether_addr *addr;
int err = 0;
int ret;
int i;
for (i = 0; i < hw->mc_addrs_num; i++) {
addr = &hw->mc_addrs[i];
if (!rte_is_multicast_ether_addr(addr))
continue;
if (del)
ret = hns3_remove_mc_addr(hw, addr);
else
ret = hns3_add_mc_addr(hw, addr);
if (ret) {
err = ret;
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_dbg(hw, "%s mc mac addr: %s failed for pf: ret = %d",
del ? "Remove" : "Restore", mac_str, ret);
}
}
return err;
}
static int
hns3_check_mq_mode(struct rte_eth_dev *dev)
{
enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct rte_eth_dcb_rx_conf *dcb_rx_conf;
struct rte_eth_dcb_tx_conf *dcb_tx_conf;
uint8_t num_tc;
int max_tc = 0;
int i;
dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB_RSS) {
hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB_RSS is not supported. "
"rx_mq_mode = %d", rx_mq_mode);
return -EINVAL;
}
if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB ||
tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB and ETH_MQ_TX_VMDQ_DCB "
"is not supported. rx_mq_mode = %d, tx_mq_mode = %d",
rx_mq_mode, tx_mq_mode);
return -EINVAL;
}
if (rx_mq_mode == ETH_MQ_RX_DCB_RSS) {
if (dcb_rx_conf->nb_tcs > pf->tc_max) {
hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
dcb_rx_conf->nb_tcs, pf->tc_max);
return -EINVAL;
}
if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
hns3_err(hw, "on ETH_MQ_RX_DCB_RSS mode, "
"nb_tcs(%d) != %d or %d in rx direction.",
dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
return -EINVAL;
}
if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
return -EINVAL;
}
for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
hns3_err(hw, "dcb_tc[%d] = %u in rx direction, "
"is not equal to one in tx direction.",
i, dcb_rx_conf->dcb_tc[i]);
return -EINVAL;
}
if (dcb_rx_conf->dcb_tc[i] > max_tc)
max_tc = dcb_rx_conf->dcb_tc[i];
}
num_tc = max_tc + 1;
if (num_tc > dcb_rx_conf->nb_tcs) {
hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
num_tc, dcb_rx_conf->nb_tcs);
return -EINVAL;
}
}
return 0;
}
static int
hns3_check_dcb_cfg(struct rte_eth_dev *dev)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (!hns3_dev_dcb_supported(hw)) {
hns3_err(hw, "this port does not support dcb configurations.");
return -EOPNOTSUPP;
}
if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
return -EOPNOTSUPP;
}
/* Check multiple queue mode */
return hns3_check_mq_mode(dev);
}
static int
hns3_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id, bool mmap,
enum hns3_ring_type queue_type, uint16_t queue_id)
{
struct hns3_cmd_desc desc;
struct hns3_ctrl_vector_chain_cmd *req =
(struct hns3_ctrl_vector_chain_cmd *)desc.data;
enum hns3_cmd_status status;
enum hns3_opcode_type op;
uint16_t tqp_type_and_id = 0;
const char *op_str;
uint16_t type;
uint16_t gl;
op = mmap ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
hns3_cmd_setup_basic_desc(&desc, op, false);
req->int_vector_id = vector_id;
if (queue_type == HNS3_RING_TYPE_RX)
gl = HNS3_RING_GL_RX;
else
gl = HNS3_RING_GL_TX;
type = queue_type;
hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
type);
hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
gl);
req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
req->int_cause_num = 1;
op_str = mmap ? "Map" : "Unmap";
status = hns3_cmd_send(hw, &desc, 1);
if (status) {
hns3_err(hw, "%s TQP %u fail, vector_id is %u, status is %d.",
op_str, queue_id, req->int_vector_id, status);
return status;
}
return 0;
}
static int
hns3_init_ring_with_vector(struct hns3_hw *hw)
{
uint16_t vec;
int ret;
int i;
/*
* In hns3 network engine, vector 0 is always the misc interrupt of this
* function, vector 1~N can be used respectively for the queues of the
* function. Tx and Rx queues with the same number share the interrupt
* vector. In the initialization clearing the all hardware mapping
* relationship configurations between queues and interrupt vectors is
* needed, so some error caused by the residual configurations, such as
* the unexpected Tx interrupt, can be avoid.
*/
vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
vec = vec - 1; /* the last interrupt is reserved */
hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
for (i = 0; i < hw->intr_tqps_num; i++) {
/*
* Set gap limiter/rate limiter/quanity limiter algorithm
* configuration for interrupt coalesce of queue's interrupt.
*/
hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
HNS3_TQP_INTR_GL_DEFAULT);
hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
HNS3_TQP_INTR_GL_DEFAULT);
hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
/*
* QL(quantity limiter) is not used currently, just set 0 to
* close it.
*/
hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
ret = hns3_bind_ring_with_vector(hw, vec, false,
HNS3_RING_TYPE_TX, i);
if (ret) {
PMD_INIT_LOG(ERR, "PF fail to unbind TX ring(%d) with "
"vector: %u, ret=%d", i, vec, ret);
return ret;
}
ret = hns3_bind_ring_with_vector(hw, vec, false,
HNS3_RING_TYPE_RX, i);
if (ret) {
PMD_INIT_LOG(ERR, "PF fail to unbind RX ring(%d) with "
"vector: %u, ret=%d", i, vec, ret);
return ret;
}
}
return 0;
}
static int
hns3_dev_configure(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct rte_eth_conf *conf = &dev->data->dev_conf;
enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
struct hns3_hw *hw = &hns->hw;
struct hns3_rss_conf *rss_cfg = &hw->rss_info;
uint16_t nb_rx_q = dev->data->nb_rx_queues;
uint16_t nb_tx_q = dev->data->nb_tx_queues;
struct rte_eth_rss_conf rss_conf;
uint16_t mtu;
bool gro_en;
int ret;
hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
/*
* Some versions of hardware network engine does not support
* individually enable/disable/reset the Tx or Rx queue. These devices
* must enable/disable/reset Tx and Rx queues at the same time. When the
* numbers of Tx queues allocated by upper applications are not equal to
* the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
* to adjust numbers of Tx/Rx queues. otherwise, network engine can not
* work as usual. But these fake queues are imperceptible, and can not
* be used by upper applications.
*/
if (!hns3_dev_indep_txrx_supported(hw)) {
ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
if (ret) {
hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.",
ret);
return ret;
}
}
hw->adapter_state = HNS3_NIC_CONFIGURING;
if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
hns3_err(hw, "setting link speed/duplex not supported");
ret = -EINVAL;
goto cfg_err;
}
if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG) {
ret = hns3_check_dcb_cfg(dev);
if (ret)
goto cfg_err;
}
/* When RSS is not configured, redirect the packet queue 0 */
if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
rss_conf = conf->rx_adv_conf.rss_conf;
hw->rss_dis_flag = false;
if (rss_conf.rss_key == NULL) {
rss_conf.rss_key = rss_cfg->key;
rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
}
ret = hns3_dev_rss_hash_update(dev, &rss_conf);
if (ret)
goto cfg_err;
}
/*
* If jumbo frames are enabled, MTU needs to be refreshed
* according to the maximum RX packet length.
*/
if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
/*
* Security of max_rx_pkt_len is guaranteed in dpdk frame.
* Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
* can safely assign to "uint16_t" type variable.
*/
mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
ret = hns3_dev_mtu_set(dev, mtu);
if (ret)
goto cfg_err;
dev->data->mtu = mtu;
}
ret = hns3_dev_configure_vlan(dev);
if (ret)
goto cfg_err;
/* config hardware GRO */
gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
ret = hns3_config_gro(hw, gro_en);
if (ret)
goto cfg_err;
hns->rx_simple_allowed = true;
hns->rx_vec_allowed = true;
hns->tx_simple_allowed = true;
hns->tx_vec_allowed = true;
hns3_init_rx_ptype_tble(dev);
hw->adapter_state = HNS3_NIC_CONFIGURED;
return 0;
cfg_err:
(void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
hw->adapter_state = HNS3_NIC_INITIALIZED;
return ret;
}
static int
hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
{
struct hns3_config_max_frm_size_cmd *req;
struct hns3_cmd_desc desc;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
req = (struct hns3_config_max_frm_size_cmd *)desc.data;
req->max_frm_size = rte_cpu_to_le_16(new_mps);
req->min_frm_size = RTE_ETHER_MIN_LEN;
return hns3_cmd_send(hw, &desc, 1);
}
static int
hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
{
int ret;
ret = hns3_set_mac_mtu(hw, mps);
if (ret) {
hns3_err(hw, "Failed to set mtu, ret = %d", ret);
return ret;
}
ret = hns3_buffer_alloc(hw);
if (ret)
hns3_err(hw, "Failed to allocate buffer, ret = %d", ret);
return ret;
}
static int
hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
{
struct hns3_adapter *hns = dev->data->dev_private;
uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
struct hns3_hw *hw = &hns->hw;
bool is_jumbo_frame;
int ret;
if (dev->data->dev_started) {
hns3_err(hw, "Failed to set mtu, port %u must be stopped "
"before configuration", dev->data->port_id);
return -EBUSY;
}
rte_spinlock_lock(&hw->lock);
is_jumbo_frame = frame_size > RTE_ETHER_MAX_LEN ? true : false;
frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
/*
* Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
* assign to "uint16_t" type variable.
*/
ret = hns3_config_mtu(hw, (uint16_t)frame_size);
if (ret) {
rte_spinlock_unlock(&hw->lock);
hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
dev->data->port_id, mtu, ret);
return ret;
}
hns->pf.mps = (uint16_t)frame_size;
if (is_jumbo_frame)
dev->data->dev_conf.rxmode.offloads |=
DEV_RX_OFFLOAD_JUMBO_FRAME;
else
dev->data->dev_conf.rxmode.offloads &=
~DEV_RX_OFFLOAD_JUMBO_FRAME;
dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
rte_spinlock_unlock(&hw->lock);
return 0;
}
static int
hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
uint16_t queue_num = hw->tqps_num;
/*
* In interrupt mode, 'max_rx_queues' is set based on the number of
* MSI-X interrupt resources of the hardware.
*/
if (hw->data->dev_conf.intr_conf.rxq == 1)
queue_num = hw->intr_tqps_num;
info->max_rx_queues = queue_num;
info->max_tx_queues = hw->tqps_num;
info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
info->max_mac_addrs = HNS3_UC_MACADDR_NUM;
info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_SCTP_CKSUM |
DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
DEV_RX_OFFLOAD_KEEP_CRC |
DEV_RX_OFFLOAD_SCATTER |
DEV_RX_OFFLOAD_VLAN_STRIP |
DEV_RX_OFFLOAD_VLAN_FILTER |
DEV_RX_OFFLOAD_JUMBO_FRAME |
DEV_RX_OFFLOAD_RSS_HASH |
DEV_RX_OFFLOAD_TCP_LRO);
info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_SCTP_CKSUM |
DEV_TX_OFFLOAD_MULTI_SEGS |
DEV_TX_OFFLOAD_TCP_TSO |
DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
DEV_TX_OFFLOAD_GRE_TNL_TSO |
DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
DEV_TX_OFFLOAD_MBUF_FAST_FREE |
hns3_txvlan_cap_get(hw));
if (hns3_dev_indep_txrx_supported(hw))
info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
info->rx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = HNS3_MAX_RING_DESC,
.nb_min = HNS3_MIN_RING_DESC,
.nb_align = HNS3_ALIGN_RING_DESC,
};
info->tx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = HNS3_MAX_RING_DESC,
.nb_min = HNS3_MIN_RING_DESC,
.nb_align = HNS3_ALIGN_RING_DESC,
.nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
.nb_mtu_seg_max = hw->max_non_tso_bd_num,
};
info->default_rxconf = (struct rte_eth_rxconf) {
.rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
/*
* If there are no available Rx buffer descriptors, incoming
* packets are always dropped by hardware based on hns3 network
* engine.
*/
.rx_drop_en = 1,
.offloads = 0,
};
info->default_txconf = (struct rte_eth_txconf) {
.tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
.offloads = 0,
};
info->vmdq_queue_num = 0;
info->reta_size = HNS3_RSS_IND_TBL_SIZE;
info->hash_key_size = HNS3_RSS_KEY_SIZE;
info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
return 0;
}
static int
hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
size_t fw_size)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
uint32_t version = hw->fw_version;
int ret;
ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
HNS3_FW_VERSION_BYTE3_S),
hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
HNS3_FW_VERSION_BYTE2_S),
hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
HNS3_FW_VERSION_BYTE1_S),
hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
HNS3_FW_VERSION_BYTE0_S));
ret += 1; /* add the size of '\0' */
if (fw_size < (uint32_t)ret)
return ret;
else
return 0;
}
static int
hns3_dev_link_update(struct rte_eth_dev *eth_dev,
__rte_unused int wait_to_complete)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
struct hns3_mac *mac = &hw->mac;
struct rte_eth_link new_link;
if (!hns3_is_reset_pending(hns)) {
hns3_update_speed_duplex(eth_dev);
hns3_update_link_status(hw);
}
memset(&new_link, 0, sizeof(new_link));
switch (mac->link_speed) {
case ETH_SPEED_NUM_10M:
case ETH_SPEED_NUM_100M:
case ETH_SPEED_NUM_1G:
case ETH_SPEED_NUM_10G:
case ETH_SPEED_NUM_25G:
case ETH_SPEED_NUM_40G:
case ETH_SPEED_NUM_50G:
case ETH_SPEED_NUM_100G:
case ETH_SPEED_NUM_200G:
new_link.link_speed = mac->link_speed;
break;
default:
new_link.link_speed = ETH_SPEED_NUM_100M;
break;
}
new_link.link_duplex = mac->link_duplex;
new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
new_link.link_autoneg =
!(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
return rte_eth_linkstatus_set(eth_dev, &new_link);
}
static int
hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
if (!(status->pf_state & HNS3_PF_STATE_DONE))
return -EINVAL;
pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
return 0;
}
static int
hns3_query_function_status(struct hns3_hw *hw)
{
#define HNS3_QUERY_MAX_CNT 10
#define HNS3_QUERY_SLEEP_MSCOEND 1
struct hns3_func_status_cmd *req;
struct hns3_cmd_desc desc;
int timeout = 0;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
req = (struct hns3_func_status_cmd *)desc.data;
do {
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
PMD_INIT_LOG(ERR, "query function status failed %d",
ret);
return ret;
}
/* Check pf reset is done */
if (req->pf_state)
break;
rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
} while (timeout++ < HNS3_QUERY_MAX_CNT);
return hns3_parse_func_status(hw, req);
}
static int
hns3_get_pf_max_tqp_num(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
if (pf->tqp_config_mode == HNS3_FLEX_MAX_TQP_NUM_MODE) {
/*
* The total_tqps_num obtained from firmware is maximum tqp
* numbers of this port, which should be used for PF and VFs.
* There is no need for pf to have so many tqp numbers in
* most cases. RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
* coming from config file, is assigned to maximum queue number
* for the PF of this port by user. So users can modify the
* maximum queue number of PF according to their own application
* scenarios, which is more flexible to use. In addition, many
* memories can be saved due to allocating queue statistics
* room according to the actual number of queues required. The
* maximum queue number of PF for network engine with
* revision_id greater than 0x30 is assigned by config file.
*/
if (RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF <= 0) {
hns3_err(hw, "RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF(%d) "
"must be greater than 0.",
RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF);
return -EINVAL;
}
hw->tqps_num = RTE_MIN(RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
hw->total_tqps_num);
} else {
/*
* Due to the limitation on the number of PF interrupts
* available, the maximum queue number assigned to PF on
* the network engine with revision_id 0x21 is 64.
*/
hw->tqps_num = RTE_MIN(hw->total_tqps_num,
HNS3_MAX_TQP_NUM_HIP08_PF);
}
return 0;
}
static int
hns3_query_pf_resource(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct hns3_pf *pf = &hns->pf;
struct hns3_pf_res_cmd *req;
struct hns3_cmd_desc desc;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
return ret;
}
req = (struct hns3_pf_res_cmd *)desc.data;
hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num) +
rte_le_to_cpu_16(req->ext_tqp_num);
ret = hns3_get_pf_max_tqp_num(hw);
if (ret)
return ret;
pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
if (req->tx_buf_size)
pf->tx_buf_size =
rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
else
pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
if (req->dv_buf_size)
pf->dv_buf_size =
rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
else
pf->dv_buf_size = HNS3_DEFAULT_DV;
pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
hw->num_msi =
hns3_get_field(rte_le_to_cpu_16(req->nic_pf_intr_vector_number),
HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
return 0;
}
static void
hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
{
struct hns3_cfg_param_cmd *req;
uint64_t mac_addr_tmp_high;
uint8_t ext_rss_size_max;
uint64_t mac_addr_tmp;
uint32_t i;
req = (struct hns3_cfg_param_cmd *)desc[0].data;
/* get the configuration */
cfg->vmdq_vport_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
HNS3_CFG_VMDQ_M, HNS3_CFG_VMDQ_S);
cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
HNS3_CFG_TQP_DESC_N_M,
HNS3_CFG_TQP_DESC_N_S);
cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
HNS3_CFG_PHY_ADDR_M,
HNS3_CFG_PHY_ADDR_S);
cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
HNS3_CFG_MEDIA_TP_M,
HNS3_CFG_MEDIA_TP_S);
cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
HNS3_CFG_RX_BUF_LEN_M,
HNS3_CFG_RX_BUF_LEN_S);
/* get mac address */
mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
HNS3_CFG_MAC_ADDR_H_M,
HNS3_CFG_MAC_ADDR_H_S);
mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
HNS3_CFG_DEFAULT_SPEED_M,
HNS3_CFG_DEFAULT_SPEED_S);
cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
HNS3_CFG_RSS_SIZE_M,
HNS3_CFG_RSS_SIZE_S);
for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
req = (struct hns3_cfg_param_cmd *)desc[1].data;
cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
HNS3_CFG_SPEED_ABILITY_M,
HNS3_CFG_SPEED_ABILITY_S);
cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
HNS3_CFG_UMV_TBL_SPACE_M,
HNS3_CFG_UMV_TBL_SPACE_S);
if (!cfg->umv_space)
cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
ext_rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[2]),
HNS3_CFG_EXT_RSS_SIZE_M,
HNS3_CFG_EXT_RSS_SIZE_S);
/*
* Field ext_rss_size_max obtained from firmware will be more flexible
* for future changes and expansions, which is an exponent of 2, instead
* of reading out directly. If this field is not zero, hns3 PF PMD
* driver uses it as rss_size_max under one TC. Device, whose revision
* id is greater than or equal to PCI_REVISION_ID_HIP09_A, obtains the
* maximum number of queues supported under a TC through this field.
*/
if (ext_rss_size_max)
cfg->rss_size_max = 1U << ext_rss_size_max;
}
/* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
* @hw: pointer to struct hns3_hw
* @hcfg: the config structure to be getted
*/
static int
hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
{
struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
struct hns3_cfg_param_cmd *req;
uint32_t offset;
uint32_t i;
int ret;
for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
offset = 0;
req = (struct hns3_cfg_param_cmd *)desc[i].data;
hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
true);
hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
i * HNS3_CFG_RD_LEN_BYTES);
/* Len should be divided by 4 when send to hardware */
hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
req->offset = rte_cpu_to_le_32(offset);
}
ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
if (ret) {
PMD_INIT_LOG(ERR, "get config failed %d.", ret);
return ret;
}
hns3_parse_cfg(hcfg, desc);
return 0;
}
static int
hns3_parse_speed(int speed_cmd, uint32_t *speed)
{
switch (speed_cmd) {
case HNS3_CFG_SPEED_10M:
*speed = ETH_SPEED_NUM_10M;
break;
case HNS3_CFG_SPEED_100M:
*speed = ETH_SPEED_NUM_100M;
break;
case HNS3_CFG_SPEED_1G:
*speed = ETH_SPEED_NUM_1G;
break;
case HNS3_CFG_SPEED_10G:
*speed = ETH_SPEED_NUM_10G;
break;
case HNS3_CFG_SPEED_25G:
*speed = ETH_SPEED_NUM_25G;
break;
case HNS3_CFG_SPEED_40G:
*speed = ETH_SPEED_NUM_40G;
break;
case HNS3_CFG_SPEED_50G:
*speed = ETH_SPEED_NUM_50G;
break;
case HNS3_CFG_SPEED_100G:
*speed = ETH_SPEED_NUM_100G;
break;
case HNS3_CFG_SPEED_200G:
*speed = ETH_SPEED_NUM_200G;
break;
default:
return -EINVAL;
}
return 0;
}
static void
hns3_set_default_dev_specifications(struct hns3_hw *hw)
{
hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
hw->rss_key_size = HNS3_RSS_KEY_SIZE;
hw->max_tm_rate = HNS3_ETHER_MAX_RATE;
hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
}
static void
hns3_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
{
struct hns3_dev_specs_0_cmd *req0;
req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
hw->max_tm_rate = rte_le_to_cpu_32(req0->max_tm_rate);
hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
}
static int
hns3_query_dev_specifications(struct hns3_hw *hw)
{
struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
int ret;
int i;
for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
true);
desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
}
hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
if (ret)
return ret;
hns3_parse_dev_specifications(hw, desc);
return 0;
}
static int
hns3_get_capability(struct hns3_hw *hw)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
struct rte_pci_device *pci_dev;
struct hns3_pf *pf = &hns->pf;
struct rte_eth_dev *eth_dev;
uint16_t device_id;
uint8_t revision;
int ret;
eth_dev = &rte_eth_devices[hw->data->port_id];
pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
device_id = pci_dev->id.device_id;
if (device_id == HNS3_DEV_ID_25GE_RDMA ||
device_id == HNS3_DEV_ID_50GE_RDMA ||
device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
device_id == HNS3_DEV_ID_200G_RDMA)
hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
ret = hns3_query_dev_fec_info(eth_dev);
if (ret) <