DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
/* SPDX-License-Identifier: BSD-3-Clause
 *
 * Copyright(c) 2019-2020 Xilinx, Inc.
 * Copyright(c) 2018-2019 Solarflare Communications Inc.
 *
 * This software was jointly developed between OKTET Labs (under contract
 * for Solarflare) and Solarflare Communications, Inc.
 */

/* EF100 native datapath implementation */

#include <stdbool.h>

#include <rte_byteorder.h>
#include <rte_mbuf_ptype.h>
#include <rte_mbuf.h>
#include <rte_io.h>

#include "efx_types.h"
#include "efx_regs_ef100.h"
#include "efx.h"

#include "sfc_debug.h"
#include "sfc_tweak.h"
#include "sfc_dp_rx.h"
#include "sfc_kvargs.h"
#include "sfc_ef100.h"


#define sfc_ef100_rx_err(_rxq, ...) \
	SFC_DP_LOG(SFC_KVARG_DATAPATH_EF100, ERR, &(_rxq)->dp.dpq, __VA_ARGS__)

#define sfc_ef100_rx_debug(_rxq, ...) \
	SFC_DP_LOG(SFC_KVARG_DATAPATH_EF100, DEBUG, &(_rxq)->dp.dpq, \
		   __VA_ARGS__)

/**
 * Maximum number of descriptors/buffers in the Rx ring.
 * It should guarantee that corresponding event queue never overfill.
 * EF10 native datapath uses event queue of the same size as Rx queue.
 * Maximum number of events on datapath can be estimated as number of
 * Rx queue entries (one event per Rx buffer in the worst case) plus
 * Rx error and flush events.
 */
#define SFC_EF100_RXQ_LIMIT(_ndesc) \
	((_ndesc) - 1 /* head must not step on tail */ - \
	 1 /* Rx error */ - 1 /* flush */)

struct sfc_ef100_rx_sw_desc {
	struct rte_mbuf			*mbuf;
};

struct sfc_ef100_rxq {
	/* Used on data path */
	unsigned int			flags;
#define SFC_EF100_RXQ_STARTED		0x1
#define SFC_EF100_RXQ_NOT_RUNNING	0x2
#define SFC_EF100_RXQ_EXCEPTION		0x4
#define SFC_EF100_RXQ_RSS_HASH		0x10
#define SFC_EF100_RXQ_USER_MARK		0x20
#define SFC_EF100_RXQ_FLAG_INTR_EN	0x40
	unsigned int			ptr_mask;
	unsigned int			evq_phase_bit_shift;
	unsigned int			ready_pkts;
	unsigned int			completed;
	unsigned int			evq_read_ptr;
	unsigned int			evq_read_ptr_primed;
	volatile efx_qword_t		*evq_hw_ring;
	struct sfc_ef100_rx_sw_desc	*sw_ring;
	uint64_t			rearm_data;
	uint16_t			buf_size;
	uint16_t			prefix_size;

	unsigned int			evq_hw_index;
	volatile void			*evq_prime;

	/* Used on refill */
	unsigned int			added;
	unsigned int			max_fill_level;
	unsigned int			refill_threshold;
	struct rte_mempool		*refill_mb_pool;
	efx_qword_t			*rxq_hw_ring;
	volatile void			*doorbell;

	/* Datapath receive queue anchor */
	struct sfc_dp_rxq		dp;
};

static inline struct sfc_ef100_rxq *
sfc_ef100_rxq_by_dp_rxq(struct sfc_dp_rxq *dp_rxq)
{
	return container_of(dp_rxq, struct sfc_ef100_rxq, dp);
}

static void
sfc_ef100_rx_qprime(struct sfc_ef100_rxq *rxq)
{
	sfc_ef100_evq_prime(rxq->evq_prime, rxq->evq_hw_index,
			    rxq->evq_read_ptr & rxq->ptr_mask);
	rxq->evq_read_ptr_primed = rxq->evq_read_ptr;
}

static inline void
sfc_ef100_rx_qpush(struct sfc_ef100_rxq *rxq, unsigned int added)
{
	efx_dword_t dword;

	EFX_POPULATE_DWORD_1(dword, ERF_GZ_RX_RING_PIDX, added & rxq->ptr_mask);

	/* DMA sync to device is not required */

	/*
	 * rte_write32() has rte_io_wmb() which guarantees that the STORE
	 * operations (i.e. Rx and event descriptor updates) that precede
	 * the rte_io_wmb() call are visible to NIC before the STORE
	 * operations that follow it (i.e. doorbell write).
	 */
	rte_write32(dword.ed_u32[0], rxq->doorbell);

	sfc_ef100_rx_debug(rxq, "RxQ pushed doorbell at pidx %u (added=%u)",
			   EFX_DWORD_FIELD(dword, ERF_GZ_RX_RING_PIDX),
			   added);
}

static void
sfc_ef100_rx_qrefill(struct sfc_ef100_rxq *rxq)
{
	const unsigned int ptr_mask = rxq->ptr_mask;
	unsigned int free_space;
	unsigned int bulks;
	void *objs[SFC_RX_REFILL_BULK];
	unsigned int added = rxq->added;

	free_space = rxq->max_fill_level - (added - rxq->completed);

	if (free_space < rxq->refill_threshold)
		return;

	bulks = free_space / RTE_DIM(objs);
	/* refill_threshold guarantees that bulks is positive */
	SFC_ASSERT(bulks > 0);

	do {
		unsigned int id;
		unsigned int i;

		if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
						  RTE_DIM(objs)) < 0)) {
			struct rte_eth_dev_data *dev_data =
				rte_eth_devices[rxq->dp.dpq.port_id].data;

			/*
			 * It is hardly a safe way to increment counter
			 * from different contexts, but all PMDs do it.
			 */
			dev_data->rx_mbuf_alloc_failed += RTE_DIM(objs);
			/* Return if we have posted nothing yet */
			if (added == rxq->added)
				return;
			/* Push posted */
			break;
		}

		for (i = 0, id = added & ptr_mask;
		     i < RTE_DIM(objs);
		     ++i, ++id) {
			struct rte_mbuf *m = objs[i];
			struct sfc_ef100_rx_sw_desc *rxd;
			rte_iova_t phys_addr;

			__rte_mbuf_raw_sanity_check(m);

			SFC_ASSERT((id & ~ptr_mask) == 0);
			rxd = &rxq->sw_ring[id];
			rxd->mbuf = m;

			/*
			 * Avoid writing to mbuf. It is cheaper to do it
			 * when we receive packet and fill in nearby
			 * structure members.
			 */

			phys_addr = rte_mbuf_data_iova_default(m);
			EFX_POPULATE_QWORD_1(rxq->rxq_hw_ring[id],
			    ESF_GZ_RX_BUF_ADDR, phys_addr);
		}

		added += RTE_DIM(objs);
	} while (--bulks > 0);

	SFC_ASSERT(rxq->added != added);
	rxq->added = added;
	sfc_ef100_rx_qpush(rxq, added);
}

static inline uint64_t
sfc_ef100_rx_nt_or_inner_l4_csum(const efx_word_t class)
{
	return EFX_WORD_FIELD(class,
			      ESF_GZ_RX_PREFIX_HCLASS_NT_OR_INNER_L4_CSUM) ==
		ESE_GZ_RH_HCLASS_L4_CSUM_GOOD ?
		PKT_RX_L4_CKSUM_GOOD : PKT_RX_L4_CKSUM_BAD;
}

static inline uint64_t
sfc_ef100_rx_tun_outer_l4_csum(const efx_word_t class)
{
	return EFX_WORD_FIELD(class,
			      ESF_GZ_RX_PREFIX_HCLASS_TUN_OUTER_L4_CSUM) ==
		ESE_GZ_RH_HCLASS_L4_CSUM_GOOD ?
		PKT_RX_OUTER_L4_CKSUM_GOOD : PKT_RX_OUTER_L4_CKSUM_GOOD;
}

static uint32_t
sfc_ef100_rx_class_decode(const efx_word_t class, uint64_t *ol_flags)
{
	uint32_t ptype;
	bool no_tunnel = false;

	if (unlikely(EFX_WORD_FIELD(class, ESF_GZ_RX_PREFIX_HCLASS_L2_CLASS) !=
		     ESE_GZ_RH_HCLASS_L2_CLASS_E2_0123VLAN))
		return 0;

	switch (EFX_WORD_FIELD(class, ESF_GZ_RX_PREFIX_HCLASS_L2_N_VLAN)) {
	case 0:
		ptype = RTE_PTYPE_L2_ETHER;
		break;
	case 1:
		ptype = RTE_PTYPE_L2_ETHER_VLAN;
		break;
	default:
		ptype = RTE_PTYPE_L2_ETHER_QINQ;
		break;
	}

	switch (EFX_WORD_FIELD(class, ESF_GZ_RX_PREFIX_HCLASS_TUNNEL_CLASS)) {
	case ESE_GZ_RH_HCLASS_TUNNEL_CLASS_NONE:
		no_tunnel = true;
		break;
	case ESE_GZ_RH_HCLASS_TUNNEL_CLASS_VXLAN:
		ptype |= RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP;
		*ol_flags |= sfc_ef100_rx_tun_outer_l4_csum(class);
		break;
	case ESE_GZ_RH_HCLASS_TUNNEL_CLASS_NVGRE:
		ptype |= RTE_PTYPE_TUNNEL_NVGRE;
		break;
	case ESE_GZ_RH_HCLASS_TUNNEL_CLASS_GENEVE:
		ptype |= RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L4_UDP;
		*ol_flags |= sfc_ef100_rx_tun_outer_l4_csum(class);
		break;
	default:
		/*
		 * Driver does not know the tunnel, but it is
		 * still a tunnel and NT_OR_INNER refer to inner
		 * frame.
		 */
		no_tunnel = false;
	}

	if (no_tunnel) {
		bool l4_valid = true;

		switch (EFX_WORD_FIELD(class,
			ESF_GZ_RX_PREFIX_HCLASS_NT_OR_INNER_L3_CLASS)) {
		case ESE_GZ_RH_HCLASS_L3_CLASS_IP4GOOD:
			ptype |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
			*ol_flags |= PKT_RX_IP_CKSUM_GOOD;
			break;
		case ESE_GZ_RH_HCLASS_L3_CLASS_IP4BAD:
			ptype |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
			*ol_flags |= PKT_RX_IP_CKSUM_BAD;
			break;
		case ESE_GZ_RH_HCLASS_L3_CLASS_IP6:
			ptype |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
			break;
		default:
			l4_valid = false;
		}

		if (l4_valid) {
			switch (EFX_WORD_FIELD(class,
				ESF_GZ_RX_PREFIX_HCLASS_NT_OR_INNER_L4_CLASS)) {
			case ESE_GZ_RH_HCLASS_L4_CLASS_TCP:
				ptype |= RTE_PTYPE_L4_TCP;
				*ol_flags |=
					sfc_ef100_rx_nt_or_inner_l4_csum(class);
				break;
			case ESE_GZ_RH_HCLASS_L4_CLASS_UDP:
				ptype |= RTE_PTYPE_L4_UDP;
				*ol_flags |=
					sfc_ef100_rx_nt_or_inner_l4_csum(class);
				break;
			case ESE_GZ_RH_HCLASS_L4_CLASS_FRAG:
				ptype |= RTE_PTYPE_L4_FRAG;
				break;
			}
		}
	} else {
		bool l4_valid = true;

		switch (EFX_WORD_FIELD(class,
			ESF_GZ_RX_PREFIX_HCLASS_TUN_OUTER_L3_CLASS)) {
		case ESE_GZ_RH_HCLASS_L3_CLASS_IP4GOOD:
			ptype |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
			break;
		case ESE_GZ_RH_HCLASS_L3_CLASS_IP4BAD:
			ptype |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
			*ol_flags |= PKT_RX_EIP_CKSUM_BAD;
			break;
		case ESE_GZ_RH_HCLASS_L3_CLASS_IP6:
			ptype |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
			break;
		}

		switch (EFX_WORD_FIELD(class,
			ESF_GZ_RX_PREFIX_HCLASS_NT_OR_INNER_L3_CLASS)) {
		case ESE_GZ_RH_HCLASS_L3_CLASS_IP4GOOD:
			ptype |= RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
			*ol_flags |= PKT_RX_IP_CKSUM_GOOD;
			break;
		case ESE_GZ_RH_HCLASS_L3_CLASS_IP4BAD:
			ptype |= RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
			*ol_flags |= PKT_RX_IP_CKSUM_BAD;
			break;
		case ESE_GZ_RH_HCLASS_L3_CLASS_IP6:
			ptype |= RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
			break;
		default:
			l4_valid = false;
			break;
		}

		if (l4_valid) {
			switch (EFX_WORD_FIELD(class,
				ESF_GZ_RX_PREFIX_HCLASS_NT_OR_INNER_L4_CLASS)) {
			case ESE_GZ_RH_HCLASS_L4_CLASS_TCP:
				ptype |= RTE_PTYPE_INNER_L4_TCP;
				*ol_flags |=
					sfc_ef100_rx_nt_or_inner_l4_csum(class);
				break;
			case ESE_GZ_RH_HCLASS_L4_CLASS_UDP:
				ptype |= RTE_PTYPE_INNER_L4_UDP;
				*ol_flags |=
					sfc_ef100_rx_nt_or_inner_l4_csum(class);
				break;
			case ESE_GZ_RH_HCLASS_L4_CLASS_FRAG:
				ptype |= RTE_PTYPE_INNER_L4_FRAG;
				break;
			}
		}
	}

	return ptype;
}

/*
 * Below function relies on the following fields in Rx prefix.
 * Some fields are mandatory, some fields are optional.
 * See sfc_ef100_rx_qstart() below.
 */
static const efx_rx_prefix_layout_t sfc_ef100_rx_prefix_layout = {
	.erpl_fields	= {
#define	SFC_EF100_RX_PREFIX_FIELD(_name, _big_endian) \
	EFX_RX_PREFIX_FIELD(_name, ESF_GZ_RX_PREFIX_ ## _name, _big_endian)

		SFC_EF100_RX_PREFIX_FIELD(LENGTH, B_FALSE),
		SFC_EF100_RX_PREFIX_FIELD(RSS_HASH_VALID, B_FALSE),
		SFC_EF100_RX_PREFIX_FIELD(USER_FLAG, B_FALSE),
		SFC_EF100_RX_PREFIX_FIELD(CLASS, B_FALSE),
		SFC_EF100_RX_PREFIX_FIELD(RSS_HASH, B_FALSE),
		SFC_EF100_RX_PREFIX_FIELD(USER_MARK, B_FALSE),

#undef	SFC_EF100_RX_PREFIX_FIELD
	}
};

static bool
sfc_ef100_rx_prefix_to_offloads(const struct sfc_ef100_rxq *rxq,
				const efx_oword_t *rx_prefix,
				struct rte_mbuf *m)
{
	const efx_word_t *class;
	uint64_t ol_flags = 0;

	RTE_BUILD_BUG_ON(EFX_LOW_BIT(ESF_GZ_RX_PREFIX_CLASS) % CHAR_BIT != 0);
	RTE_BUILD_BUG_ON(EFX_WIDTH(ESF_GZ_RX_PREFIX_CLASS) % CHAR_BIT != 0);
	RTE_BUILD_BUG_ON(EFX_WIDTH(ESF_GZ_RX_PREFIX_CLASS) / CHAR_BIT !=
			 sizeof(*class));
	class = (const efx_word_t *)((const uint8_t *)rx_prefix +
		EFX_LOW_BIT(ESF_GZ_RX_PREFIX_CLASS) / CHAR_BIT);
	if (unlikely(EFX_WORD_FIELD(*class,
				    ESF_GZ_RX_PREFIX_HCLASS_L2_STATUS) !=
		     ESE_GZ_RH_HCLASS_L2_STATUS_OK))
		return false;

	m->packet_type = sfc_ef100_rx_class_decode(*class, &ol_flags);

	if ((rxq->flags & SFC_EF100_RXQ_RSS_HASH) &&
	    EFX_TEST_OWORD_BIT(rx_prefix[0],
			       ESF_GZ_RX_PREFIX_RSS_HASH_VALID_LBN)) {
		ol_flags |= PKT_RX_RSS_HASH;
		/* EFX_OWORD_FIELD converts little-endian to CPU */
		m->hash.rss = EFX_OWORD_FIELD(rx_prefix[0],
					      ESF_GZ_RX_PREFIX_RSS_HASH);
	}

	if ((rxq->flags & SFC_EF100_RXQ_USER_MARK) &&
	    EFX_TEST_OWORD_BIT(rx_prefix[0], ESF_GZ_RX_PREFIX_USER_FLAG_LBN)) {
		ol_flags |= PKT_RX_FDIR_ID;
		/* EFX_OWORD_FIELD converts little-endian to CPU */
		m->hash.fdir.hi = EFX_OWORD_FIELD(rx_prefix[0],
						  ESF_GZ_RX_PREFIX_USER_MARK);
	}

	m->ol_flags = ol_flags;
	return true;
}

static const uint8_t *
sfc_ef100_rx_pkt_prefix(const struct rte_mbuf *m)
{
	return (const uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
}

static struct rte_mbuf *
sfc_ef100_rx_next_mbuf(struct sfc_ef100_rxq *rxq)
{
	struct rte_mbuf *m;
	unsigned int id;

	/* mbuf associated with current Rx descriptor */
	m = rxq->sw_ring[rxq->completed++ & rxq->ptr_mask].mbuf;

	/* completed is already moved to the next one */
	if (unlikely(rxq->completed == rxq->added))
		goto done;

	/*
	 * Prefetch Rx prefix of the next packet.
	 * Current packet is scattered and the next mbuf is its fragment
	 * it simply prefetches some data - no harm since packet rate
	 * should not be high if scatter is used.
	 */
	id = rxq->completed & rxq->ptr_mask;
	rte_prefetch0(sfc_ef100_rx_pkt_prefix(rxq->sw_ring[id].mbuf));

	if (unlikely(rxq->completed + 1 == rxq->added))
		goto done;

	/*
	 * Prefetch mbuf control structure of the next after next Rx
	 * descriptor.
	 */
	id = (id == rxq->ptr_mask) ? 0 : (id + 1);
	rte_mbuf_prefetch_part1(rxq->sw_ring[id].mbuf);

	/*
	 * If the next time we'll need SW Rx descriptor from the next
	 * cache line, try to make sure that we have it in cache.
	 */
	if ((id & 0x7) == 0x7)
		rte_prefetch0(&rxq->sw_ring[(id + 1) & rxq->ptr_mask]);

done:
	return m;
}

static struct rte_mbuf **
sfc_ef100_rx_process_ready_pkts(struct sfc_ef100_rxq *rxq,
				struct rte_mbuf **rx_pkts,
				struct rte_mbuf ** const rx_pkts_end)
{
	while (rxq->ready_pkts > 0 && rx_pkts != rx_pkts_end) {
		struct rte_mbuf *pkt;
		struct rte_mbuf *lastseg;
		const efx_oword_t *rx_prefix;
		uint16_t pkt_len;
		uint16_t seg_len;
		bool deliver;

		rxq->ready_pkts--;

		pkt = sfc_ef100_rx_next_mbuf(rxq);
		__rte_mbuf_raw_sanity_check(pkt);

		RTE_BUILD_BUG_ON(sizeof(pkt->rearm_data[0]) !=
				 sizeof(rxq->rearm_data));
		pkt->rearm_data[0] = rxq->rearm_data;

		/* data_off already moved past Rx prefix */
		rx_prefix = (const efx_oword_t *)sfc_ef100_rx_pkt_prefix(pkt);

		pkt_len = EFX_OWORD_FIELD(rx_prefix[0],
					  ESF_GZ_RX_PREFIX_LENGTH);
		SFC_ASSERT(pkt_len > 0);
		rte_pktmbuf_pkt_len(pkt) = pkt_len;

		seg_len = RTE_MIN(pkt_len, rxq->buf_size - rxq->prefix_size);
		rte_pktmbuf_data_len(pkt) = seg_len;

		deliver = sfc_ef100_rx_prefix_to_offloads(rxq, rx_prefix, pkt);

		lastseg = pkt;
		while ((pkt_len -= seg_len) > 0) {
			struct rte_mbuf *seg;

			seg = sfc_ef100_rx_next_mbuf(rxq);
			__rte_mbuf_raw_sanity_check(seg);

			seg->data_off = RTE_PKTMBUF_HEADROOM;

			seg_len = RTE_MIN(pkt_len, rxq->buf_size);
			rte_pktmbuf_data_len(seg) = seg_len;
			rte_pktmbuf_pkt_len(seg) = seg_len;

			pkt->nb_segs++;
			lastseg->next = seg;
			lastseg = seg;
		}

		if (likely(deliver))
			*rx_pkts++ = pkt;
		else
			rte_pktmbuf_free(pkt);
	}

	return rx_pkts;
}

static bool
sfc_ef100_rx_get_event(struct sfc_ef100_rxq *rxq, efx_qword_t *ev)
{
	*ev = rxq->evq_hw_ring[rxq->evq_read_ptr & rxq->ptr_mask];

	if (!sfc_ef100_ev_present(ev,
			(rxq->evq_read_ptr >> rxq->evq_phase_bit_shift) & 1))
		return false;

	if (unlikely(!sfc_ef100_ev_type_is(ev, ESE_GZ_EF100_EV_RX_PKTS))) {
		/*
		 * Do not move read_ptr to keep the event for exception
		 * handling by the control path.
		 */
		rxq->flags |= SFC_EF100_RXQ_EXCEPTION;
		sfc_ef100_rx_err(rxq,
			"RxQ exception at EvQ ptr %u(%#x), event %08x:%08x",
			rxq->evq_read_ptr, rxq->evq_read_ptr & rxq->ptr_mask,
			EFX_QWORD_FIELD(*ev, EFX_DWORD_1),
			EFX_QWORD_FIELD(*ev, EFX_DWORD_0));
		return false;
	}

	sfc_ef100_rx_debug(rxq, "RxQ got event %08x:%08x at %u (%#x)",
			   EFX_QWORD_FIELD(*ev, EFX_DWORD_1),
			   EFX_QWORD_FIELD(*ev, EFX_DWORD_0),
			   rxq->evq_read_ptr,
			   rxq->evq_read_ptr & rxq->ptr_mask);

	rxq->evq_read_ptr++;
	return true;
}

static uint16_t
sfc_ef100_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
	struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(rx_queue);
	struct rte_mbuf ** const rx_pkts_end = &rx_pkts[nb_pkts];
	efx_qword_t rx_ev;

	rx_pkts = sfc_ef100_rx_process_ready_pkts(rxq, rx_pkts, rx_pkts_end);

	if (unlikely(rxq->flags &
		     (SFC_EF100_RXQ_NOT_RUNNING | SFC_EF100_RXQ_EXCEPTION)))
		goto done;

	while (rx_pkts != rx_pkts_end && sfc_ef100_rx_get_event(rxq, &rx_ev)) {
		rxq->ready_pkts =
			EFX_QWORD_FIELD(rx_ev, ESF_GZ_EV_RXPKTS_NUM_PKT);
		rx_pkts = sfc_ef100_rx_process_ready_pkts(rxq, rx_pkts,
							  rx_pkts_end);
	}

	/* It is not a problem if we refill in the case of exception */
	sfc_ef100_rx_qrefill(rxq);

	if ((rxq->flags & SFC_EF100_RXQ_FLAG_INTR_EN) &&
	    rxq->evq_read_ptr_primed != rxq->evq_read_ptr)
		sfc_ef100_rx_qprime(rxq);

done:
	return nb_pkts - (rx_pkts_end - rx_pkts);
}

static const uint32_t *
sfc_ef100_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
{
	static const uint32_t ef100_native_ptypes[] = {
		RTE_PTYPE_L2_ETHER,
		RTE_PTYPE_L2_ETHER_VLAN,
		RTE_PTYPE_L2_ETHER_QINQ,
		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
		RTE_PTYPE_L4_TCP,
		RTE_PTYPE_L4_UDP,
		RTE_PTYPE_L4_FRAG,
		RTE_PTYPE_TUNNEL_VXLAN,
		RTE_PTYPE_TUNNEL_NVGRE,
		RTE_PTYPE_TUNNEL_GENEVE,
		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
		RTE_PTYPE_INNER_L4_TCP,
		RTE_PTYPE_INNER_L4_UDP,
		RTE_PTYPE_INNER_L4_FRAG,
		RTE_PTYPE_UNKNOWN
	};

	return ef100_native_ptypes;
}

static sfc_dp_rx_qdesc_npending_t sfc_ef100_rx_qdesc_npending;
static unsigned int
sfc_ef100_rx_qdesc_npending(__rte_unused struct sfc_dp_rxq *dp_rxq)
{
	return 0;
}

static sfc_dp_rx_qdesc_status_t sfc_ef100_rx_qdesc_status;
static int
sfc_ef100_rx_qdesc_status(__rte_unused struct sfc_dp_rxq *dp_rxq,
			  __rte_unused uint16_t offset)
{
	return -ENOTSUP;
}


static sfc_dp_rx_get_dev_info_t sfc_ef100_rx_get_dev_info;
static void
sfc_ef100_rx_get_dev_info(struct rte_eth_dev_info *dev_info)
{
	/*
	 * Number of descriptors just defines maximum number of pushed
	 * descriptors (fill level).
	 */
	dev_info->rx_desc_lim.nb_min = SFC_RX_REFILL_BULK;
	dev_info->rx_desc_lim.nb_align = SFC_RX_REFILL_BULK;
}


static sfc_dp_rx_qsize_up_rings_t sfc_ef100_rx_qsize_up_rings;
static int
sfc_ef100_rx_qsize_up_rings(uint16_t nb_rx_desc,
			   struct sfc_dp_rx_hw_limits *limits,
			   __rte_unused struct rte_mempool *mb_pool,
			   unsigned int *rxq_entries,
			   unsigned int *evq_entries,
			   unsigned int *rxq_max_fill_level)
{
	/*
	 * rte_ethdev API guarantees that the number meets min, max and
	 * alignment requirements.
	 */
	if (nb_rx_desc <= limits->rxq_min_entries)
		*rxq_entries = limits->rxq_min_entries;
	else
		*rxq_entries = rte_align32pow2(nb_rx_desc);

	*evq_entries = *rxq_entries;

	*rxq_max_fill_level = RTE_MIN(nb_rx_desc,
				      SFC_EF100_RXQ_LIMIT(*evq_entries));
	return 0;
}


static uint64_t
sfc_ef100_mk_mbuf_rearm_data(uint16_t port_id, uint16_t prefix_size)
{
	struct rte_mbuf m;

	memset(&m, 0, sizeof(m));

	rte_mbuf_refcnt_set(&m, 1);
	m.data_off = RTE_PKTMBUF_HEADROOM + prefix_size;
	m.nb_segs = 1;
	m.port = port_id;

	/* rearm_data covers structure members filled in above */
	rte_compiler_barrier();
	RTE_BUILD_BUG_ON(sizeof(m.rearm_data[0]) != sizeof(uint64_t));
	return m.rearm_data[0];
}

static sfc_dp_rx_qcreate_t sfc_ef100_rx_qcreate;
static int
sfc_ef100_rx_qcreate(uint16_t port_id, uint16_t queue_id,
		    const struct rte_pci_addr *pci_addr, int socket_id,
		    const struct sfc_dp_rx_qcreate_info *info,
		    struct sfc_dp_rxq **dp_rxqp)
{
	struct sfc_ef100_rxq *rxq;
	int rc;

	rc = EINVAL;
	if (info->rxq_entries != info->evq_entries)
		goto fail_rxq_args;

	rc = ENOMEM;
	rxq = rte_zmalloc_socket("sfc-ef100-rxq", sizeof(*rxq),
				 RTE_CACHE_LINE_SIZE, socket_id);
	if (rxq == NULL)
		goto fail_rxq_alloc;

	sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);

	rc = ENOMEM;
	rxq->sw_ring = rte_calloc_socket("sfc-ef100-rxq-sw_ring",
					 info->rxq_entries,
					 sizeof(*rxq->sw_ring),
					 RTE_CACHE_LINE_SIZE, socket_id);
	if (rxq->sw_ring == NULL)
		goto fail_desc_alloc;

	rxq->flags |= SFC_EF100_RXQ_NOT_RUNNING;
	rxq->ptr_mask = info->rxq_entries - 1;
	rxq->evq_phase_bit_shift = rte_bsf32(info->evq_entries);
	rxq->evq_hw_ring = info->evq_hw_ring;
	rxq->max_fill_level = info->max_fill_level;
	rxq->refill_threshold = info->refill_threshold;
	rxq->prefix_size = info->prefix_size;
	rxq->buf_size = info->buf_size;
	rxq->refill_mb_pool = info->refill_mb_pool;
	rxq->rxq_hw_ring = info->rxq_hw_ring;
	rxq->doorbell = (volatile uint8_t *)info->mem_bar +
			ER_GZ_RX_RING_DOORBELL_OFST +
			(info->hw_index << info->vi_window_shift);

	rxq->evq_hw_index = info->evq_hw_index;
	rxq->evq_prime = (volatile uint8_t *)info->mem_bar +
			 info->fcw_offset +
			 ER_GZ_EVQ_INT_PRIME_OFST;

	sfc_ef100_rx_debug(rxq, "RxQ doorbell is %p", rxq->doorbell);

	*dp_rxqp = &rxq->dp;
	return 0;

fail_desc_alloc:
	rte_free(rxq);

fail_rxq_alloc:
fail_rxq_args:
	return rc;
}

static sfc_dp_rx_qdestroy_t sfc_ef100_rx_qdestroy;
static void
sfc_ef100_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
{
	struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);

	rte_free(rxq->sw_ring);
	rte_free(rxq);
}

static sfc_dp_rx_qstart_t sfc_ef100_rx_qstart;
static int
sfc_ef100_rx_qstart(struct sfc_dp_rxq *dp_rxq, unsigned int evq_read_ptr,
		    const efx_rx_prefix_layout_t *pinfo)
{
	struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);
	uint32_t unsup_rx_prefix_fields;

	SFC_ASSERT(rxq->completed == 0);
	SFC_ASSERT(rxq->added == 0);

	/* Prefix must fit into reserved Rx buffer space */
	if (pinfo->erpl_length > rxq->prefix_size)
		return ENOTSUP;

	unsup_rx_prefix_fields =
		efx_rx_prefix_layout_check(pinfo, &sfc_ef100_rx_prefix_layout);

	/* LENGTH and CLASS filds must always be present */
	if ((unsup_rx_prefix_fields &
	     ((1U << EFX_RX_PREFIX_FIELD_LENGTH) |
	      (1U << EFX_RX_PREFIX_FIELD_CLASS))) != 0)
		return ENOTSUP;

	if ((unsup_rx_prefix_fields &
	     ((1U << EFX_RX_PREFIX_FIELD_RSS_HASH_VALID) |
	      (1U << EFX_RX_PREFIX_FIELD_RSS_HASH))) == 0)
		rxq->flags |= SFC_EF100_RXQ_RSS_HASH;
	else
		rxq->flags &= ~SFC_EF100_RXQ_RSS_HASH;

	if ((unsup_rx_prefix_fields &
	     ((1U << EFX_RX_PREFIX_FIELD_USER_FLAG) |
	      (1U << EFX_RX_PREFIX_FIELD_USER_MARK))) == 0)
		rxq->flags |= SFC_EF100_RXQ_USER_MARK;
	else
		rxq->flags &= ~SFC_EF100_RXQ_USER_MARK;

	rxq->prefix_size = pinfo->erpl_length;
	rxq->rearm_data = sfc_ef100_mk_mbuf_rearm_data(rxq->dp.dpq.port_id,
						       rxq->prefix_size);

	sfc_ef100_rx_qrefill(rxq);

	rxq->evq_read_ptr = evq_read_ptr;

	rxq->flags |= SFC_EF100_RXQ_STARTED;
	rxq->flags &= ~(SFC_EF100_RXQ_NOT_RUNNING | SFC_EF100_RXQ_EXCEPTION);

	if (rxq->flags & SFC_EF100_RXQ_FLAG_INTR_EN)
		sfc_ef100_rx_qprime(rxq);

	return 0;
}

static sfc_dp_rx_qstop_t sfc_ef100_rx_qstop;
static void
sfc_ef100_rx_qstop(struct sfc_dp_rxq *dp_rxq, unsigned int *evq_read_ptr)
{
	struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);

	rxq->flags |= SFC_EF100_RXQ_NOT_RUNNING;

	*evq_read_ptr = rxq->evq_read_ptr;
}

static sfc_dp_rx_qrx_ev_t sfc_ef100_rx_qrx_ev;
static bool
sfc_ef100_rx_qrx_ev(struct sfc_dp_rxq *dp_rxq, __rte_unused unsigned int id)
{
	__rte_unused struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);

	SFC_ASSERT(rxq->flags & SFC_EF100_RXQ_NOT_RUNNING);

	/*
	 * It is safe to ignore Rx event since we free all mbufs on
	 * queue purge anyway.
	 */

	return false;
}

static sfc_dp_rx_qpurge_t sfc_ef100_rx_qpurge;
static void
sfc_ef100_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
{
	struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);
	unsigned int i;
	struct sfc_ef100_rx_sw_desc *rxd;

	for (i = rxq->completed; i != rxq->added; ++i) {
		rxd = &rxq->sw_ring[i & rxq->ptr_mask];
		rte_mbuf_raw_free(rxd->mbuf);
		rxd->mbuf = NULL;
	}

	rxq->completed = rxq->added = 0;
	rxq->ready_pkts = 0;

	rxq->flags &= ~SFC_EF100_RXQ_STARTED;
}

static sfc_dp_rx_intr_enable_t sfc_ef100_rx_intr_enable;
static int
sfc_ef100_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
{
	struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);

	rxq->flags |= SFC_EF100_RXQ_FLAG_INTR_EN;
	if (rxq->flags & SFC_EF100_RXQ_STARTED)
		sfc_ef100_rx_qprime(rxq);
	return 0;
}

static sfc_dp_rx_intr_disable_t sfc_ef100_rx_intr_disable;
static int
sfc_ef100_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
{
	struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);

	/* Cannot disarm, just disable rearm */
	rxq->flags &= ~SFC_EF100_RXQ_FLAG_INTR_EN;
	return 0;
}

struct sfc_dp_rx sfc_ef100_rx = {
	.dp = {
		.name		= SFC_KVARG_DATAPATH_EF100,
		.type		= SFC_DP_RX,
		.hw_fw_caps	= SFC_DP_HW_FW_CAP_EF100,
	},
	.features		= SFC_DP_RX_FEAT_MULTI_PROCESS |
				  SFC_DP_RX_FEAT_INTR,
	.dev_offload_capa	= 0,
	.queue_offload_capa	= DEV_RX_OFFLOAD_CHECKSUM |
				  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
				  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
				  DEV_RX_OFFLOAD_SCATTER |
				  DEV_RX_OFFLOAD_RSS_HASH,
	.get_dev_info		= sfc_ef100_rx_get_dev_info,
	.qsize_up_rings		= sfc_ef100_rx_qsize_up_rings,
	.qcreate		= sfc_ef100_rx_qcreate,
	.qdestroy		= sfc_ef100_rx_qdestroy,
	.qstart			= sfc_ef100_rx_qstart,
	.qstop			= sfc_ef100_rx_qstop,
	.qrx_ev			= sfc_ef100_rx_qrx_ev,
	.qpurge			= sfc_ef100_rx_qpurge,
	.supported_ptypes_get	= sfc_ef100_supported_ptypes_get,
	.qdesc_npending		= sfc_ef100_rx_qdesc_npending,
	.qdesc_status		= sfc_ef100_rx_qdesc_status,
	.intr_enable		= sfc_ef100_rx_intr_enable,
	.intr_disable		= sfc_ef100_rx_intr_disable,
	.pkt_burst		= sfc_ef100_recv_pkts,
};