DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
/*-
 *   BSD LICENSE
 *
 *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
 *   All rights reserved.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of Intel Corporation nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifdef RTE_LIBRTE_IVSHMEM /* hide it from coverage */

#include <stdint.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/mman.h>
#include <sys/file.h>
#include <string.h>
#include <sys/queue.h>

#include <rte_log.h>
#include <rte_pci.h>
#include <rte_memory.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_string_fns.h>
#include <rte_errno.h>
#include <rte_ring.h>
#include <rte_mempool.h>
#include <rte_malloc.h>
#include <rte_common.h>
#include <rte_ivshmem.h>

#include "eal_internal_cfg.h"
#include "eal_private.h"

#define PCI_VENDOR_ID_IVSHMEM 0x1Af4
#define PCI_DEVICE_ID_IVSHMEM 0x1110

#define IVSHMEM_MAGIC 0x0BADC0DE

#define IVSHMEM_RESOURCE_PATH "/sys/bus/pci/devices/%04x:%02x:%02x.%x/resource2"
#define IVSHMEM_CONFIG_PATH "/var/run/.%s_ivshmem_config"

#define PHYS 0x1
#define VIRT 0x2
#define IOREMAP 0x4
#define FULL (PHYS|VIRT|IOREMAP)

#define METADATA_SIZE_ALIGNED \
	(RTE_ALIGN_CEIL(sizeof(struct rte_ivshmem_metadata),pagesz))

#define CONTAINS(x,y)\
	(((y).addr_64 >= (x).addr_64) && ((y).addr_64 < (x).addr_64 + (x).len))

#define DIM(x) (sizeof(x)/sizeof(x[0]))

struct ivshmem_pci_device {
	char path[PATH_MAX];
	phys_addr_t ioremap_addr;
};

/* data type to store in config */
struct ivshmem_segment {
	struct rte_ivshmem_metadata_entry entry;
	uint64_t align;
	char path[PATH_MAX];
};
struct ivshmem_shared_config {
	struct ivshmem_segment segment[RTE_MAX_MEMSEG];
	uint32_t segment_idx;
	struct ivshmem_pci_device pci_devs[RTE_LIBRTE_IVSHMEM_MAX_PCI_DEVS];
	uint32_t pci_devs_idx;
};
static struct ivshmem_shared_config * ivshmem_config;
static int memseg_idx;
static int pagesz;

/* Tailq heads to add rings to */
TAILQ_HEAD(rte_ring_list, rte_tailq_entry);

/*
 * Utility functions
 */

static int
is_ivshmem_device(struct rte_pci_device * dev)
{
	return dev->id.vendor_id == PCI_VENDOR_ID_IVSHMEM
			&& dev->id.device_id == PCI_DEVICE_ID_IVSHMEM;
}

static void *
map_metadata(int fd, uint64_t len)
{
	size_t metadata_len = sizeof(struct rte_ivshmem_metadata);
	size_t aligned_len = METADATA_SIZE_ALIGNED;

	return mmap(NULL, metadata_len, PROT_READ | PROT_WRITE,
			MAP_SHARED, fd, len - aligned_len);
}

static void
unmap_metadata(void * ptr)
{
	munmap(ptr, sizeof(struct rte_ivshmem_metadata));
}

static int
has_ivshmem_metadata(int fd, uint64_t len)
{
	struct rte_ivshmem_metadata metadata;
	void * ptr;

	ptr = map_metadata(fd, len);

	if (ptr == MAP_FAILED)
		return -1;

	metadata = *(struct rte_ivshmem_metadata*) (ptr);

	unmap_metadata(ptr);

	return metadata.magic_number == IVSHMEM_MAGIC;
}

static void
remove_segment(struct ivshmem_segment * ms, int len, int idx)
{
	int i;

	for (i = idx; i < len - 1; i++)
		memcpy(&ms[i], &ms[i+1], sizeof(struct ivshmem_segment));
	memset(&ms[len-1], 0, sizeof(struct ivshmem_segment));
}

static int
overlap(const struct rte_memzone * mz1, const struct rte_memzone * mz2)
{
	uint64_t start1, end1, start2, end2;
	uint64_t p_start1, p_end1, p_start2, p_end2;
	uint64_t i_start1, i_end1, i_start2, i_end2;
	int result = 0;

	/* gather virtual addresses */
	start1 = mz1->addr_64;
	end1 = mz1->addr_64 + mz1->len;
	start2 = mz2->addr_64;
	end2 = mz2->addr_64 + mz2->len;

	/* gather physical addresses */
	p_start1 = mz1->phys_addr;
	p_end1 = mz1->phys_addr + mz1->len;
	p_start2 = mz2->phys_addr;
	p_end2 = mz2->phys_addr + mz2->len;

	/* gather ioremap addresses */
	i_start1 = mz1->ioremap_addr;
	i_end1 = mz1->ioremap_addr + mz1->len;
	i_start2 = mz2->ioremap_addr;
	i_end2 = mz2->ioremap_addr + mz2->len;

	/* check for overlap in virtual addresses */
	if (start1 > start2 && start1 < end2)
		result |= VIRT;
	if (start2 >= start1 && start2 < end1)
		result |= VIRT;

	/* check for overlap in physical addresses */
	if (p_start1 > p_start2 && p_start1 < p_end2)
		result |= PHYS;
	if (p_start2 > p_start1 && p_start2 < p_end1)
		result |= PHYS;

	/* check for overlap in ioremap addresses */
	if (i_start1 > i_start2 && i_start1 < i_end2)
		result |= IOREMAP;
	if (i_start2 > i_start1 && i_start2 < i_end1)
		result |= IOREMAP;

	return result;
}

static int
adjacent(const struct rte_memzone * mz1, const struct rte_memzone * mz2)
{
	uint64_t start1, end1, start2, end2;
	uint64_t p_start1, p_end1, p_start2, p_end2;
	uint64_t i_start1, i_end1, i_start2, i_end2;
	int result = 0;

	/* gather virtual addresses */
	start1 = mz1->addr_64;
	end1 = mz1->addr_64 + mz1->len;
	start2 = mz2->addr_64;
	end2 = mz2->addr_64 + mz2->len;

	/* gather physical addresses */
	p_start1 = mz1->phys_addr;
	p_end1 = mz1->phys_addr + mz1->len;
	p_start2 = mz2->phys_addr;
	p_end2 = mz2->phys_addr + mz2->len;

	/* gather ioremap addresses */
	i_start1 = mz1->ioremap_addr;
	i_end1 = mz1->ioremap_addr + mz1->len;
	i_start2 = mz2->ioremap_addr;
	i_end2 = mz2->ioremap_addr + mz2->len;

	/* check if segments are virtually adjacent */
	if (start1 == end2)
		result |= VIRT;
	if (start2 == end1)
		result |= VIRT;

	/* check if segments are physically adjacent */
	if (p_start1 == p_end2)
		result |= PHYS;
	if (p_start2 == p_end1)
		result |= PHYS;

	/* check if segments are ioremap-adjacent */
	if (i_start1 == i_end2)
		result |= IOREMAP;
	if (i_start2 == i_end1)
		result |= IOREMAP;

	return result;
}

static int
has_adjacent_segments(struct ivshmem_segment * ms, int len)
{
	int i, j;

	for (i = 0; i < len; i++)
		for (j = i + 1; j < len; j++) {
			/* we're only interested in fully adjacent segments; partially
			 * adjacent segments can coexist.
			 */
			if (adjacent(&ms[i].entry.mz, &ms[j].entry.mz) == FULL)
				return 1;
		}
	return 0;
}

static int
has_overlapping_segments(struct ivshmem_segment * ms, int len)
{
	int i, j;

	for (i = 0; i < len; i++)
		for (j = i + 1; j < len; j++)
			if (overlap(&ms[i].entry.mz, &ms[j].entry.mz))
				return 1;
	return 0;
}

static int
seg_compare(const void * a, const void * b)
{
	const struct ivshmem_segment * s1 = (const struct ivshmem_segment*) a;
	const struct ivshmem_segment * s2 = (const struct ivshmem_segment*) b;

	/* move unallocated zones to the end */
	if (s1->entry.mz.addr == NULL && s2->entry.mz.addr == NULL)
		return 0;
	if (s1->entry.mz.addr == 0)
		return 1;
	if (s2->entry.mz.addr == 0)
		return -1;

	return s1->entry.mz.phys_addr > s2->entry.mz.phys_addr;
}

#ifdef RTE_LIBRTE_IVSHMEM_DEBUG
static void
entry_dump(struct rte_ivshmem_metadata_entry *e)
{
	RTE_LOG(DEBUG, EAL, "\tvirt: %p-%p\n", e->mz.addr,
			RTE_PTR_ADD(e->mz.addr, e->mz.len));
	RTE_LOG(DEBUG, EAL, "\tphys: 0x%" PRIx64 "-0x%" PRIx64 "\n",
			e->mz.phys_addr,
			e->mz.phys_addr + e->mz.len);
	RTE_LOG(DEBUG, EAL, "\tio: 0x%" PRIx64 "-0x%" PRIx64 "\n",
			e->mz.ioremap_addr,
			e->mz.ioremap_addr + e->mz.len);
	RTE_LOG(DEBUG, EAL, "\tlen: 0x%" PRIx64 "\n", e->mz.len);
	RTE_LOG(DEBUG, EAL, "\toff: 0x%" PRIx64 "\n", e->offset);
}
#endif



/*
 * Actual useful code
 */

/* read through metadata mapped from the IVSHMEM device */
static int
read_metadata(char * path, int path_len, int fd, uint64_t flen)
{
	struct rte_ivshmem_metadata metadata;
	struct rte_ivshmem_metadata_entry * entry;
	int idx, i;
	void * ptr;

	ptr = map_metadata(fd, flen);

	if (ptr == MAP_FAILED)
		return -1;

	metadata = *(struct rte_ivshmem_metadata*) (ptr);

	unmap_metadata(ptr);

	RTE_LOG(DEBUG, EAL, "Parsing metadata for \"%s\"\n", metadata.name);

	idx = ivshmem_config->segment_idx;

	for (i = 0; i < RTE_LIBRTE_IVSHMEM_MAX_ENTRIES &&
		idx <= RTE_MAX_MEMSEG; i++) {

		if (idx == RTE_MAX_MEMSEG) {
			RTE_LOG(ERR, EAL, "Not enough memory segments!\n");
			return -1;
		}

		entry = &metadata.entry[i];

		/* stop on uninitialized memzone */
		if (entry->mz.len == 0)
			break;

		/* copy metadata entry */
		memcpy(&ivshmem_config->segment[idx].entry, entry,
				sizeof(struct rte_ivshmem_metadata_entry));

		/* copy path */
		snprintf(ivshmem_config->segment[idx].path, path_len, "%s", path);

		idx++;
	}
	ivshmem_config->segment_idx = idx;

	return 0;
}

/* check through each segment and look for adjacent or overlapping ones. */
static int
cleanup_segments(struct ivshmem_segment * ms, int tbl_len)
{
	struct ivshmem_segment * s, * tmp;
	int i, j, concat, seg_adjacent, seg_overlapping;
	uint64_t start1, start2, end1, end2, p_start1, p_start2, i_start1, i_start2;

	qsort(ms, tbl_len, sizeof(struct ivshmem_segment),
				seg_compare);

	while (has_overlapping_segments(ms, tbl_len) ||
			has_adjacent_segments(ms, tbl_len)) {

		for (i = 0; i < tbl_len; i++) {
			s = &ms[i];

			concat = 0;

			for (j = i + 1; j < tbl_len; j++) {
				tmp = &ms[j];

				/* check if this segment is overlapping with existing segment,
				 * or is adjacent to existing segment */
				seg_overlapping = overlap(&s->entry.mz, &tmp->entry.mz);
				seg_adjacent = adjacent(&s->entry.mz, &tmp->entry.mz);

				/* check if segments fully overlap or are fully adjacent */
				if ((seg_adjacent == FULL) || (seg_overlapping == FULL)) {

#ifdef RTE_LIBRTE_IVSHMEM_DEBUG
					RTE_LOG(DEBUG, EAL, "Concatenating segments\n");
					RTE_LOG(DEBUG, EAL, "Segment %i:\n", i);
					entry_dump(&s->entry);
					RTE_LOG(DEBUG, EAL, "Segment %i:\n", j);
					entry_dump(&tmp->entry);
#endif

					start1 = s->entry.mz.addr_64;
					start2 = tmp->entry.mz.addr_64;
					p_start1 = s->entry.mz.phys_addr;
					p_start2 = tmp->entry.mz.phys_addr;
					i_start1 = s->entry.mz.ioremap_addr;
					i_start2 = tmp->entry.mz.ioremap_addr;
					end1 = s->entry.mz.addr_64 + s->entry.mz.len;
					end2 = tmp->entry.mz.addr_64 + tmp->entry.mz.len;

					/* settle for minimum start address and maximum length */
					s->entry.mz.addr_64 = RTE_MIN(start1, start2);
					s->entry.mz.phys_addr = RTE_MIN(p_start1, p_start2);
					s->entry.mz.ioremap_addr = RTE_MIN(i_start1, i_start2);
					s->entry.offset = RTE_MIN(s->entry.offset, tmp->entry.offset);
					s->entry.mz.len = RTE_MAX(end1, end2) - s->entry.mz.addr_64;
					concat = 1;

#ifdef RTE_LIBRTE_IVSHMEM_DEBUG
					RTE_LOG(DEBUG, EAL, "Resulting segment:\n");
					entry_dump(&s->entry);

#endif
				}
				/* if segments not fully overlap, we have an error condition.
				 * adjacent segments can coexist.
				 */
				else if (seg_overlapping > 0) {
					RTE_LOG(ERR, EAL, "Segments %i and %i overlap!\n", i, j);
#ifdef RTE_LIBRTE_IVSHMEM_DEBUG
					RTE_LOG(DEBUG, EAL, "Segment %i:\n", i);
					entry_dump(&s->entry);
					RTE_LOG(DEBUG, EAL, "Segment %i:\n", j);
					entry_dump(&tmp->entry);
#endif
					return -1;
				}
				if (concat)
					break;
			}
			/* if we concatenated, remove segment at j */
			if (concat) {
				remove_segment(ms, tbl_len, j);
				tbl_len--;
				break;
			}
		}
	}

	return tbl_len;
}

static int
create_shared_config(void)
{
	char path[PATH_MAX];
	int fd;

	/* build ivshmem config file path */
	snprintf(path, sizeof(path), IVSHMEM_CONFIG_PATH,
			internal_config.hugefile_prefix);

	fd = open(path, O_CREAT | O_RDWR, 0600);

	if (fd < 0) {
		RTE_LOG(ERR, EAL, "Could not open %s: %s\n", path, strerror(errno));
		return -1;
	}

	/* try ex-locking first - if the file is locked, we have a problem */
	if (flock(fd, LOCK_EX | LOCK_NB) == -1) {
		RTE_LOG(ERR, EAL, "Locking %s failed: %s\n", path, strerror(errno));
		close(fd);
		return -1;
	}

	if (ftruncate(fd, sizeof(struct ivshmem_shared_config)) < 0) {
		RTE_LOG(ERR, EAL, "ftruncate failed: %s\n", strerror(errno));
		return -1;
	}

	ivshmem_config = mmap(NULL, sizeof(struct ivshmem_shared_config),
			PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

	if (ivshmem_config == MAP_FAILED)
		return -1;

	memset(ivshmem_config, 0, sizeof(struct ivshmem_shared_config));

	/* change the exclusive lock we got earlier to a shared lock */
	if (flock(fd, LOCK_SH | LOCK_NB) == -1) {
		RTE_LOG(ERR, EAL, "Locking %s failed: %s \n", path, strerror(errno));
		return -1;
	}

	close(fd);

	return 0;
}

/* open shared config file and, if present, map the config.
 * having no config file is not an error condition, as we later check if
 * ivshmem_config is NULL (if it is, that means nothing was mapped). */
static int
open_shared_config(void)
{
	char path[PATH_MAX];
	int fd;

	/* build ivshmem config file path */
	snprintf(path, sizeof(path), IVSHMEM_CONFIG_PATH,
			internal_config.hugefile_prefix);

	fd = open(path, O_RDONLY);

	/* if the file doesn't exist, just return success */
	if (fd < 0 && errno == ENOENT)
		return 0;
	/* else we have an error condition */
	else if (fd < 0) {
		RTE_LOG(ERR, EAL, "Could not open %s: %s\n",
				path, strerror(errno));
		return -1;
	}

	/* try ex-locking first - if the lock *does* succeed, this means it's a
	 * stray config file, so it should be deleted.
	 */
	if (flock(fd, LOCK_EX | LOCK_NB) != -1) {

		/* if we can't remove the file, something is wrong */
		if (unlink(path) < 0) {
			RTE_LOG(ERR, EAL, "Could not remove %s: %s\n", path,
					strerror(errno));
			return -1;
		}

		/* release the lock */
		flock(fd, LOCK_UN);
		close(fd);

		/* return success as having a stray config file is equivalent to not
		 * having config file at all.
		 */
		return 0;
	}

	ivshmem_config = mmap(NULL, sizeof(struct ivshmem_shared_config),
			PROT_READ, MAP_SHARED, fd, 0);

	if (ivshmem_config == MAP_FAILED)
		return -1;

	/* place a shared lock on config file */
	if (flock(fd, LOCK_SH | LOCK_NB) == -1) {
		RTE_LOG(ERR, EAL, "Locking %s failed: %s \n", path, strerror(errno));
		return -1;
	}

	close(fd);

	return 0;
}

/*
 * This function does the following:
 *
 * 1) Builds a table of ivshmem_segments with proper offset alignment
 * 2) Cleans up that table so that we don't have any overlapping or adjacent
 *    memory segments
 * 3) Creates memsegs from this table and maps them into memory.
 */
static inline int
map_all_segments(void)
{
	struct ivshmem_segment ms_tbl[RTE_MAX_MEMSEG];
	struct ivshmem_pci_device * pci_dev;
	struct rte_mem_config * mcfg;
	struct ivshmem_segment * seg;
	int fd, fd_zero;
	unsigned i, j;
	struct rte_memzone mz;
	struct rte_memseg ms;
	void * base_addr;
	uint64_t align, len;
	phys_addr_t ioremap_addr;

	ioremap_addr = 0;

	memset(ms_tbl, 0, sizeof(ms_tbl));
	memset(&mz, 0, sizeof(struct rte_memzone));
	memset(&ms, 0, sizeof(struct rte_memseg));

	/* first, build a table of memsegs to map, to avoid failed mmaps due to
	 * overlaps
	 */
	for (i = 0; i < ivshmem_config->segment_idx && i <= RTE_MAX_MEMSEG; i++) {
		if (i == RTE_MAX_MEMSEG) {
			RTE_LOG(ERR, EAL, "Too many segments requested!\n");
			return -1;
		}

		seg = &ivshmem_config->segment[i];

		/* copy segment to table */
		memcpy(&ms_tbl[i], seg, sizeof(struct ivshmem_segment));

		/* find ioremap addr */
		for (j = 0; j < DIM(ivshmem_config->pci_devs); j++) {
			pci_dev = &ivshmem_config->pci_devs[j];
			if (!strncmp(pci_dev->path, seg->path, sizeof(pci_dev->path))) {
				ioremap_addr = pci_dev->ioremap_addr;
				break;
			}
		}
		if (ioremap_addr == 0) {
			RTE_LOG(ERR, EAL, "Cannot find ioremap addr!\n");
			return -1;
		}

		/* work out alignments */
		align = seg->entry.mz.addr_64 -
				RTE_ALIGN_FLOOR(seg->entry.mz.addr_64, 0x1000);
		len = RTE_ALIGN_CEIL(seg->entry.mz.len + align, 0x1000);

		/* save original alignments */
		ms_tbl[i].align = align;

		/* create a memory zone */
		mz.addr_64 = seg->entry.mz.addr_64 - align;
		mz.len = len;
		mz.hugepage_sz = seg->entry.mz.hugepage_sz;
		mz.phys_addr = seg->entry.mz.phys_addr - align;

		/* find true physical address */
		mz.ioremap_addr = ioremap_addr + seg->entry.offset - align;

		ms_tbl[i].entry.offset = seg->entry.offset - align;

		memcpy(&ms_tbl[i].entry.mz, &mz, sizeof(struct rte_memzone));
	}

	/* clean up the segments */
	memseg_idx = cleanup_segments(ms_tbl, ivshmem_config->segment_idx);

	if (memseg_idx < 0)
		return -1;

	mcfg = rte_eal_get_configuration()->mem_config;

	fd_zero = open("/dev/zero", O_RDWR);

	if (fd_zero < 0) {
		RTE_LOG(ERR, EAL, "Cannot open /dev/zero: %s\n", strerror(errno));
		return -1;
	}

	/* create memsegs and put them into DPDK memory */
	for (i = 0; i < (unsigned) memseg_idx; i++) {

		seg = &ms_tbl[i];

		ms.addr_64 = seg->entry.mz.addr_64;
		ms.hugepage_sz = seg->entry.mz.hugepage_sz;
		ms.len = seg->entry.mz.len;
		ms.nchannel = rte_memory_get_nchannel();
		ms.nrank = rte_memory_get_nrank();
		ms.phys_addr = seg->entry.mz.phys_addr;
		ms.ioremap_addr = seg->entry.mz.ioremap_addr;
		ms.socket_id = seg->entry.mz.socket_id;

		base_addr = mmap(ms.addr, ms.len,
				PROT_READ | PROT_WRITE, MAP_PRIVATE, fd_zero, 0);

		if (base_addr == MAP_FAILED || base_addr != ms.addr) {
			RTE_LOG(ERR, EAL, "Cannot map /dev/zero!\n");
			return -1;
		}

		fd = open(seg->path, O_RDWR);

		if (fd < 0) {
			RTE_LOG(ERR, EAL, "Cannot open %s: %s\n", seg->path,
					strerror(errno));
			return -1;
		}

		munmap(ms.addr, ms.len);

		base_addr = mmap(ms.addr, ms.len,
				PROT_READ | PROT_WRITE, MAP_SHARED, fd,
				seg->entry.offset);


		if (base_addr == MAP_FAILED || base_addr != ms.addr) {
			RTE_LOG(ERR, EAL, "Cannot map segment into memory: "
					"expected %p got %p (%s)\n", ms.addr, base_addr,
					strerror(errno));
			return -1;
		}

		RTE_LOG(DEBUG, EAL, "Memory segment mapped: %p (len %" PRIx64 ") at "
				"offset 0x%" PRIx64 "\n",
				ms.addr, ms.len, seg->entry.offset);

		/* put the pointers back into their real positions using original
		 * alignment */
		ms.addr_64 += seg->align;
		ms.phys_addr += seg->align;
		ms.ioremap_addr += seg->align;
		ms.len -= seg->align;

		/* at this point, the rest of DPDK memory is not initialized, so we
		 * expect memsegs to be empty */
		memcpy(&mcfg->memseg[i], &ms,
				sizeof(struct rte_memseg));

		close(fd);

		RTE_LOG(DEBUG, EAL, "IVSHMEM segment found, size: 0x%lx\n",
				ms.len);
	}

	return 0;
}

/* this happens at a later stage, after general EAL memory initialization */
int
rte_eal_ivshmem_obj_init(void)
{
	struct rte_ring_list* ring_list = NULL;
	struct rte_mem_config * mcfg;
	struct ivshmem_segment * seg;
	struct rte_memzone * mz;
	struct rte_ring * r;
	struct rte_tailq_entry *te;
	unsigned i, ms, idx;
	uint64_t offset;

	/* secondary process would not need any object discovery - it'll all
	 * already be in shared config */
	if (rte_eal_process_type() != RTE_PROC_PRIMARY || ivshmem_config == NULL)
		return 0;

	/* check that we have an initialised ring tail queue */
	ring_list = RTE_TAILQ_LOOKUP(RTE_TAILQ_RING_NAME, rte_ring_list);
	if (ring_list == NULL) {
		RTE_LOG(ERR, EAL, "No rte_ring tailq found!\n");
		return -1;
	}

	mcfg = rte_eal_get_configuration()->mem_config;

	/* create memzones */
	for (i = 0; i < ivshmem_config->segment_idx && i <= RTE_MAX_MEMZONE; i++) {

		seg = &ivshmem_config->segment[i];

		/* add memzone */
		if (mcfg->memzone_cnt == RTE_MAX_MEMZONE) {
			RTE_LOG(ERR, EAL, "No more memory zones available!\n");
			return -1;
		}

		idx = mcfg->memzone_cnt;

		RTE_LOG(DEBUG, EAL, "Found memzone: '%s' at %p (len 0x%" PRIx64 ")\n",
				seg->entry.mz.name, seg->entry.mz.addr, seg->entry.mz.len);

		memcpy(&mcfg->memzone[idx], &seg->entry.mz,
				sizeof(struct rte_memzone));

		/* find ioremap address */
		for (ms = 0; ms <= RTE_MAX_MEMSEG; ms++) {
			if (ms == RTE_MAX_MEMSEG) {
				RTE_LOG(ERR, EAL, "Physical address of segment not found!\n");
				return -1;
			}
			if (CONTAINS(mcfg->memseg[ms], mcfg->memzone[idx])) {
				offset = mcfg->memzone[idx].addr_64 -
								mcfg->memseg[ms].addr_64;
				mcfg->memzone[idx].ioremap_addr = mcfg->memseg[ms].ioremap_addr +
						offset;
				break;
			}
		}

		mcfg->memzone_cnt++;
	}

	rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);

	/* find rings */
	for (i = 0; i < mcfg->memzone_cnt; i++) {
		mz = &mcfg->memzone[i];

		/* check if memzone has a ring prefix */
		if (strncmp(mz->name, RTE_RING_MZ_PREFIX,
				sizeof(RTE_RING_MZ_PREFIX) - 1) != 0)
			continue;

		r = (struct rte_ring*) (mz->addr_64);

		te = rte_zmalloc("RING_TAILQ_ENTRY", sizeof(*te), 0);
		if (te == NULL) {
			RTE_LOG(ERR, EAL, "Cannot allocate ring tailq entry!\n");
			return -1;
		}

		te->data = (void *) r;

		TAILQ_INSERT_TAIL(ring_list, te, next);

		RTE_LOG(DEBUG, EAL, "Found ring: '%s' at %p\n", r->name, mz->addr);
	}
	rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);

#ifdef RTE_LIBRTE_IVSHMEM_DEBUG
	rte_memzone_dump(stdout);
	rte_ring_list_dump(stdout);
#endif

	return 0;
}

/* initialize ivshmem structures */
int rte_eal_ivshmem_init(void)
{
	struct rte_pci_device * dev;
	struct rte_pci_resource * res;
	int fd, ret;
	char path[PATH_MAX];

	/* initialize everything to 0 */
	memset(path, 0, sizeof(path));
	ivshmem_config = NULL;

	pagesz = getpagesize();

	RTE_LOG(DEBUG, EAL, "Searching for IVSHMEM devices...\n");

	if (rte_eal_process_type() == RTE_PROC_SECONDARY) {

		if (open_shared_config() < 0) {
			RTE_LOG(ERR, EAL, "Could not open IVSHMEM config!\n");
			return -1;
		}
	}
	else {

		TAILQ_FOREACH(dev, &pci_device_list, next) {

			if (is_ivshmem_device(dev)) {

				/* IVSHMEM memory is always on BAR2 */
				res = &dev->mem_resource[2];

				/* if we don't have a BAR2 */
				if (res->len == 0)
					continue;

				/* construct pci device path */
				snprintf(path, sizeof(path), IVSHMEM_RESOURCE_PATH,
						dev->addr.domain, dev->addr.bus, dev->addr.devid,
						dev->addr.function);

				/* try to find memseg */
				fd = open(path, O_RDWR);
				if (fd < 0) {
					RTE_LOG(ERR, EAL, "Could not open %s\n", path);
					return -1;
				}

				/* check if it's a DPDK IVSHMEM device */
				ret = has_ivshmem_metadata(fd, res->len);

				/* is DPDK device */
				if (ret == 1) {

					/* config file creation is deferred until the first
					 * DPDK device is found. then, it has to be created
					 * only once. */
					if (ivshmem_config == NULL &&
							create_shared_config() < 0) {
						RTE_LOG(ERR, EAL, "Could not create IVSHMEM config!\n");
						close(fd);
						return -1;
					}

					if (read_metadata(path, sizeof(path), fd, res->len) < 0) {
						RTE_LOG(ERR, EAL, "Could not read metadata from"
								" device %02x:%02x.%x!\n", dev->addr.bus,
								dev->addr.devid, dev->addr.function);
						close(fd);
						return -1;
					}

					if (ivshmem_config->pci_devs_idx == RTE_LIBRTE_IVSHMEM_MAX_PCI_DEVS) {
						RTE_LOG(WARNING, EAL,
								"IVSHMEM PCI device limit exceeded. Increase "
								"CONFIG_RTE_LIBRTE_IVSHMEM_MAX_PCI_DEVS  in "
								"your config file.\n");
						break;
					}

					RTE_LOG(INFO, EAL, "Found IVSHMEM device %02x:%02x.%x\n",
							dev->addr.bus, dev->addr.devid, dev->addr.function);

					ivshmem_config->pci_devs[ivshmem_config->pci_devs_idx].ioremap_addr = res->phys_addr;
					snprintf(ivshmem_config->pci_devs[ivshmem_config->pci_devs_idx].path,
							sizeof(ivshmem_config->pci_devs[ivshmem_config->pci_devs_idx].path),
							"%s", path);

					ivshmem_config->pci_devs_idx++;
				}
				/* failed to read */
				else if (ret < 0) {
					RTE_LOG(ERR, EAL, "Could not read IVSHMEM device: %s\n",
							strerror(errno));
					close(fd);
					return -1;
				}
				/* not a DPDK device */
				else
					RTE_LOG(DEBUG, EAL, "Skipping non-DPDK IVSHMEM device\n");

				/* close the BAR fd */
				close(fd);
			}
		}
	}

	/* ivshmem_config is not NULL only if config was created and/or mapped */
	if (ivshmem_config) {
		if (map_all_segments() < 0) {
			RTE_LOG(ERR, EAL, "Mapping IVSHMEM segments failed!\n");
			return -1;
		}
	}
	else {
		RTE_LOG(DEBUG, EAL, "No IVSHMEM configuration found! \n");
	}

	return 0;
}

#endif