DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
/*
 *   BSD LICENSE
 *
 *   Copyright (C) Cavium, Inc 2017.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of Cavium, Inc nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "test_perf_common.h"

int
perf_test_result(struct evt_test *test, struct evt_options *opt)
{
	RTE_SET_USED(opt);
	struct test_perf *t = evt_test_priv(test);

	return t->result;
}

static inline int
perf_producer(void *arg)
{
	struct prod_data *p  = arg;
	struct test_perf *t = p->t;
	struct evt_options *opt = t->opt;
	const uint8_t dev_id = p->dev_id;
	const uint8_t port = p->port_id;
	struct rte_mempool *pool = t->pool;
	const uint64_t nb_pkts = t->nb_pkts;
	const uint32_t nb_flows = t->nb_flows;
	uint32_t flow_counter = 0;
	uint64_t count = 0;
	struct perf_elt *m;
	struct rte_event ev;

	if (opt->verbose_level > 1)
		printf("%s(): lcore %d dev_id %d port=%d queue %d\n", __func__,
				rte_lcore_id(), dev_id, port, p->queue_id);

	ev.event = 0;
	ev.op = RTE_EVENT_OP_NEW;
	ev.queue_id = p->queue_id;
	ev.sched_type = t->opt->sched_type_list[0];
	ev.priority = RTE_EVENT_DEV_PRIORITY_NORMAL;
	ev.event_type =  RTE_EVENT_TYPE_CPU;
	ev.sub_event_type = 0; /* stage 0 */

	while (count < nb_pkts && t->done == false) {
		if (rte_mempool_get(pool, (void **)&m) < 0)
			continue;

		ev.flow_id = flow_counter++ % nb_flows;
		ev.event_ptr = m;
		m->timestamp = rte_get_timer_cycles();
		while (rte_event_enqueue_burst(dev_id, port, &ev, 1) != 1) {
			if (t->done)
				break;
			rte_pause();
			m->timestamp = rte_get_timer_cycles();
		}
		count++;
	}

	return 0;
}

static inline int
scheduler(void *arg)
{
	struct test_perf *t = arg;
	const uint8_t dev_id = t->opt->dev_id;

	while (t->done == false)
		rte_event_schedule(dev_id);

	return 0;
}

static inline uint64_t
processed_pkts(struct test_perf *t)
{
	uint8_t i;
	uint64_t total = 0;

	rte_smp_rmb();
	for (i = 0; i < t->nb_workers; i++)
		total += t->worker[i].processed_pkts;

	return total;
}

static inline uint64_t
total_latency(struct test_perf *t)
{
	uint8_t i;
	uint64_t total = 0;

	rte_smp_rmb();
	for (i = 0; i < t->nb_workers; i++)
		total += t->worker[i].latency;

	return total;
}


int
perf_launch_lcores(struct evt_test *test, struct evt_options *opt,
		int (*worker)(void *))
{
	int ret, lcore_id;
	struct test_perf *t = evt_test_priv(test);

	int port_idx = 0;
	/* launch workers */
	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
		if (!(opt->wlcores[lcore_id]))
			continue;

		ret = rte_eal_remote_launch(worker,
				 &t->worker[port_idx], lcore_id);
		if (ret) {
			evt_err("failed to launch worker %d", lcore_id);
			return ret;
		}
		port_idx++;
	}

	/* launch producers */
	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
		if (!(opt->plcores[lcore_id]))
			continue;

		ret = rte_eal_remote_launch(perf_producer, &t->prod[port_idx],
					 lcore_id);
		if (ret) {
			evt_err("failed to launch perf_producer %d", lcore_id);
			return ret;
		}
		port_idx++;
	}

	/* launch scheduler */
	if (!evt_has_distributed_sched(opt->dev_id)) {
		ret = rte_eal_remote_launch(scheduler, t, opt->slcore);
		if (ret) {
			evt_err("failed to launch sched %d", opt->slcore);
			return ret;
		}
	}

	const uint64_t total_pkts = opt->nb_pkts *
			evt_nr_active_lcores(opt->plcores);

	uint64_t dead_lock_cycles = rte_get_timer_cycles();
	int64_t dead_lock_remaining  =  total_pkts;
	const uint64_t dead_lock_sample = rte_get_timer_hz() * 5;

	uint64_t perf_cycles = rte_get_timer_cycles();
	int64_t perf_remaining  = total_pkts;
	const uint64_t perf_sample = rte_get_timer_hz();

	static float total_mpps;
	static uint64_t samples;

	const uint64_t freq_mhz = rte_get_timer_hz() / 1000000;
	int64_t remaining = t->outstand_pkts - processed_pkts(t);

	while (t->done == false) {
		const uint64_t new_cycles = rte_get_timer_cycles();

		if ((new_cycles - perf_cycles) > perf_sample) {
			const uint64_t latency = total_latency(t);
			const uint64_t pkts = processed_pkts(t);

			remaining = t->outstand_pkts - pkts;
			float mpps = (float)(perf_remaining-remaining)/1000000;

			perf_remaining = remaining;
			perf_cycles = new_cycles;
			total_mpps += mpps;
			++samples;
			if (opt->fwd_latency && pkts > 0) {
				printf(CLGRN"\r%.3f mpps avg %.3f mpps [avg fwd latency %.3f us] "CLNRM,
					mpps, total_mpps/samples,
					(float)(latency/pkts)/freq_mhz);
			} else {
				printf(CLGRN"\r%.3f mpps avg %.3f mpps"CLNRM,
					mpps, total_mpps/samples);
			}
			fflush(stdout);

			if (remaining <= 0) {
				t->done = true;
				t->result = EVT_TEST_SUCCESS;
				rte_smp_wmb();
				break;
			}
		}

		if (new_cycles - dead_lock_cycles > dead_lock_sample) {
			remaining = t->outstand_pkts - processed_pkts(t);
			if (dead_lock_remaining == remaining) {
				rte_event_dev_dump(opt->dev_id, stdout);
				evt_err("No schedules for seconds, deadlock");
				t->done = true;
				rte_smp_wmb();
				break;
			}
			dead_lock_remaining = remaining;
			dead_lock_cycles = new_cycles;
		}
	}
	printf("\n");
	return 0;
}

int
perf_event_dev_port_setup(struct evt_test *test, struct evt_options *opt,
				uint8_t stride, uint8_t nb_queues)
{
	struct test_perf *t = evt_test_priv(test);
	uint8_t port, prod;
	int ret = -1;

	/* port configuration */
	const struct rte_event_port_conf wkr_p_conf = {
			.dequeue_depth = opt->wkr_deq_dep,
			.enqueue_depth = 64,
			.new_event_threshold = 4096,
	};

	/* setup one port per worker, linking to all queues */
	for (port = 0; port < evt_nr_active_lcores(opt->wlcores);
				port++) {
		struct worker_data *w = &t->worker[port];

		w->dev_id = opt->dev_id;
		w->port_id = port;
		w->t = t;
		w->processed_pkts = 0;
		w->latency = 0;

		ret = rte_event_port_setup(opt->dev_id, port, &wkr_p_conf);
		if (ret) {
			evt_err("failed to setup port %d", port);
			return ret;
		}

		ret = rte_event_port_link(opt->dev_id, port, NULL, NULL, 0);
		if (ret != nb_queues) {
			evt_err("failed to link all queues to port %d", port);
			return -EINVAL;
		}
	}

	/* port for producers, no links */
	const struct rte_event_port_conf prod_conf = {
			.dequeue_depth = 8,
			.enqueue_depth = 32,
			.new_event_threshold = 1200,
	};
	prod = 0;
	for ( ; port < perf_nb_event_ports(opt); port++) {
		struct prod_data *p = &t->prod[port];

		p->dev_id = opt->dev_id;
		p->port_id = port;
		p->queue_id = prod * stride;
		p->t = t;

		ret = rte_event_port_setup(opt->dev_id, port, &prod_conf);
		if (ret) {
			evt_err("failed to setup port %d", port);
			return ret;
		}
		prod++;
	}

	return ret;
}

int
perf_opt_check(struct evt_options *opt, uint64_t nb_queues)
{
	unsigned int lcores;
	bool need_slcore = !evt_has_distributed_sched(opt->dev_id);

	/* N producer + N worker + 1 scheduler(based on dev capa) + 1 master */
	lcores = need_slcore ? 4 : 3;

	if (rte_lcore_count() < lcores) {
		evt_err("test need minimum %d lcores", lcores);
		return -1;
	}

	/* Validate worker lcores */
	if (evt_lcores_has_overlap(opt->wlcores, rte_get_master_lcore())) {
		evt_err("worker lcores overlaps with master lcore");
		return -1;
	}
	if (need_slcore && evt_lcores_has_overlap(opt->wlcores, opt->slcore)) {
		evt_err("worker lcores overlaps with scheduler lcore");
		return -1;
	}
	if (evt_lcores_has_overlap_multi(opt->wlcores, opt->plcores)) {
		evt_err("worker lcores overlaps producer lcores");
		return -1;
	}
	if (evt_has_disabled_lcore(opt->wlcores)) {
		evt_err("one or more workers lcores are not enabled");
		return -1;
	}
	if (!evt_has_active_lcore(opt->wlcores)) {
		evt_err("minimum one worker is required");
		return -1;
	}

	/* Validate producer lcores */
	if (evt_lcores_has_overlap(opt->plcores, rte_get_master_lcore())) {
		evt_err("producer lcores overlaps with master lcore");
		return -1;
	}
	if (need_slcore && evt_lcores_has_overlap(opt->plcores, opt->slcore)) {
		evt_err("producer lcores overlaps with scheduler lcore");
		return -1;
	}
	if (evt_has_disabled_lcore(opt->plcores)) {
		evt_err("one or more producer lcores are not enabled");
		return -1;
	}
	if (!evt_has_active_lcore(opt->plcores)) {
		evt_err("minimum one producer is required");
		return -1;
	}

	/* Validate scheduler lcore */
	if (!evt_has_distributed_sched(opt->dev_id) &&
			opt->slcore == (int)rte_get_master_lcore()) {
		evt_err("scheduler lcore and master lcore should be different");
		return -1;
	}
	if (need_slcore && !rte_lcore_is_enabled(opt->slcore)) {
		evt_err("scheduler lcore is not enabled");
		return -1;
	}

	if (evt_has_invalid_stage(opt))
		return -1;

	if (evt_has_invalid_sched_type(opt))
		return -1;

	if (nb_queues > EVT_MAX_QUEUES) {
		evt_err("number of queues exceeds %d", EVT_MAX_QUEUES);
		return -1;
	}
	if (perf_nb_event_ports(opt) > EVT_MAX_PORTS) {
		evt_err("number of ports exceeds %d", EVT_MAX_PORTS);
		return -1;
	}

	/* Fixups */
	if (opt->nb_stages == 1 && opt->fwd_latency) {
		evt_info("fwd_latency is valid when nb_stages > 1, disabling");
		opt->fwd_latency = 0;
	}
	if (opt->fwd_latency && !opt->q_priority) {
		evt_info("enabled queue priority for latency measurement");
		opt->q_priority = 1;
	}
	if (opt->nb_pkts == 0)
		opt->nb_pkts = INT64_MAX/evt_nr_active_lcores(opt->plcores);

	return 0;
}

void
perf_opt_dump(struct evt_options *opt, uint8_t nb_queues)
{
	evt_dump("nb_prod_lcores", "%d", evt_nr_active_lcores(opt->plcores));
	evt_dump_producer_lcores(opt);
	evt_dump("nb_worker_lcores", "%d", evt_nr_active_lcores(opt->wlcores));
	evt_dump_worker_lcores(opt);
	if (!evt_has_distributed_sched(opt->dev_id))
		evt_dump_scheduler_lcore(opt);
	evt_dump_nb_stages(opt);
	evt_dump("nb_evdev_ports", "%d", perf_nb_event_ports(opt));
	evt_dump("nb_evdev_queues", "%d", nb_queues);
	evt_dump_queue_priority(opt);
	evt_dump_sched_type_list(opt);
}

void
perf_eventdev_destroy(struct evt_test *test, struct evt_options *opt)
{
	RTE_SET_USED(test);

	rte_event_dev_stop(opt->dev_id);
	rte_event_dev_close(opt->dev_id);
}

static inline void
perf_elt_init(struct rte_mempool *mp, void *arg __rte_unused,
	    void *obj, unsigned i __rte_unused)
{
	memset(obj, 0, mp->elt_size);
}

int
perf_mempool_setup(struct evt_test *test, struct evt_options *opt)
{
	struct test_perf *t = evt_test_priv(test);

	t->pool = rte_mempool_create(test->name, /* mempool name */
				opt->pool_sz, /* number of elements*/
				sizeof(struct perf_elt), /* element size*/
				512, /* cache size*/
				0, NULL, NULL,
				perf_elt_init, /* obj constructor */
				NULL, opt->socket_id, 0); /* flags */
	if (t->pool == NULL) {
		evt_err("failed to create mempool");
		return -ENOMEM;
	}

	return 0;
}

void
perf_mempool_destroy(struct evt_test *test, struct evt_options *opt)
{
	RTE_SET_USED(opt);
	struct test_perf *t = evt_test_priv(test);

	rte_mempool_free(t->pool);
}

int
perf_test_setup(struct evt_test *test, struct evt_options *opt)
{
	void *test_perf;

	test_perf = rte_zmalloc_socket(test->name, sizeof(struct test_perf),
				RTE_CACHE_LINE_SIZE, opt->socket_id);
	if (test_perf  == NULL) {
		evt_err("failed to allocate test_perf memory");
		goto nomem;
	}
	test->test_priv = test_perf;

	struct test_perf *t = evt_test_priv(test);

	t->outstand_pkts = opt->nb_pkts * evt_nr_active_lcores(opt->plcores);
	t->nb_workers = evt_nr_active_lcores(opt->wlcores);
	t->done = false;
	t->nb_pkts = opt->nb_pkts;
	t->nb_flows = opt->nb_flows;
	t->result = EVT_TEST_FAILED;
	t->opt = opt;
	memcpy(t->sched_type_list, opt->sched_type_list,
			sizeof(opt->sched_type_list));
	return 0;
nomem:
	return -ENOMEM;
}

void
perf_test_destroy(struct evt_test *test, struct evt_options *opt)
{
	RTE_SET_USED(opt);

	rte_free(test->test_priv);
}