DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
/*-
 *   BSD LICENSE
 *
 *   Copyright(c) 2017 Intel Corporation. All rights reserved.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of Intel Corporation nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
#include <unistd.h>

#include <rte_cryptodev.h>
#include <rte_malloc.h>

#include "rte_cryptodev_scheduler_operations.h"
#include "scheduler_pmd_private.h"

#define MC_SCHED_ENQ_RING_NAME_PREFIX	"MCS_ENQR_"
#define MC_SCHED_DEQ_RING_NAME_PREFIX	"MCS_DEQR_"

#define MC_SCHED_BUFFER_SIZE 32

#define CRYPTO_OP_STATUS_BIT_COMPLETE	0x80

/** multi-core scheduler context */
struct mc_scheduler_ctx {
	uint32_t num_workers;             /**< Number of workers polling */
	uint32_t stop_signal;

	struct rte_ring *sched_enq_ring[RTE_CRYPTODEV_SCHEDULER_MAX_NB_WORKER_CORES];
	struct rte_ring *sched_deq_ring[RTE_CRYPTODEV_SCHEDULER_MAX_NB_WORKER_CORES];
};

struct mc_scheduler_qp_ctx {
	struct scheduler_slave slaves[RTE_CRYPTODEV_SCHEDULER_MAX_NB_SLAVES];
	uint32_t nb_slaves;

	uint32_t last_enq_worker_idx;
	uint32_t last_deq_worker_idx;

	struct mc_scheduler_ctx *mc_private_ctx;
};

static uint16_t
schedule_enqueue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
{
	struct mc_scheduler_qp_ctx *mc_qp_ctx =
			((struct scheduler_qp_ctx *)qp)->private_qp_ctx;
	struct mc_scheduler_ctx *mc_ctx = mc_qp_ctx->mc_private_ctx;
	uint32_t worker_idx = mc_qp_ctx->last_enq_worker_idx;
	uint16_t i, processed_ops = 0;

	if (unlikely(nb_ops == 0))
		return 0;

	for (i = 0; i <  mc_ctx->num_workers && nb_ops != 0; i++) {
		struct rte_ring *enq_ring = mc_ctx->sched_enq_ring[worker_idx];
		uint16_t nb_queue_ops = rte_ring_enqueue_burst(enq_ring,
			(void *)(&ops[processed_ops]), nb_ops, NULL);

		nb_ops -= nb_queue_ops;
		processed_ops += nb_queue_ops;

		if (++worker_idx == mc_ctx->num_workers)
			worker_idx = 0;
	}
	mc_qp_ctx->last_enq_worker_idx = worker_idx;

	return processed_ops;
}

static uint16_t
schedule_enqueue_ordering(void *qp, struct rte_crypto_op **ops,
		uint16_t nb_ops)
{
	struct rte_ring *order_ring =
			((struct scheduler_qp_ctx *)qp)->order_ring;
	uint16_t nb_ops_to_enq = get_max_enqueue_order_count(order_ring,
			nb_ops);
	uint16_t nb_ops_enqd = schedule_enqueue(qp, ops,
			nb_ops_to_enq);

	scheduler_order_insert(order_ring, ops, nb_ops_enqd);

	return nb_ops_enqd;
}


static uint16_t
schedule_dequeue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
{
	struct mc_scheduler_qp_ctx *mc_qp_ctx =
			((struct scheduler_qp_ctx *)qp)->private_qp_ctx;
	struct mc_scheduler_ctx *mc_ctx = mc_qp_ctx->mc_private_ctx;
	uint32_t worker_idx = mc_qp_ctx->last_deq_worker_idx;
	uint16_t i, processed_ops = 0;

	for (i = 0; i < mc_ctx->num_workers && nb_ops != 0; i++) {
		struct rte_ring *deq_ring = mc_ctx->sched_deq_ring[worker_idx];
		uint16_t nb_deq_ops = rte_ring_dequeue_burst(deq_ring,
			(void *)(&ops[processed_ops]), nb_ops, NULL);

		nb_ops -= nb_deq_ops;
		processed_ops += nb_deq_ops;
		if (++worker_idx == mc_ctx->num_workers)
			worker_idx = 0;
	}

	mc_qp_ctx->last_deq_worker_idx = worker_idx;

	return processed_ops;

}

static uint16_t
schedule_dequeue_ordering(void *qp, struct rte_crypto_op **ops,
		uint16_t nb_ops)
{
	struct rte_ring *order_ring = ((struct scheduler_qp_ctx *)qp)->order_ring;
	struct rte_crypto_op *op;
	uint32_t nb_objs = rte_ring_count(order_ring);
	uint32_t nb_ops_to_deq = 0;
	uint32_t nb_ops_deqd = 0;

	if (nb_objs > nb_ops)
		nb_objs = nb_ops;

	while (nb_ops_to_deq < nb_objs) {
		SCHEDULER_GET_RING_OBJ(order_ring, nb_ops_to_deq, op);

		if (!(op->status & CRYPTO_OP_STATUS_BIT_COMPLETE))
			break;

		op->status &= ~CRYPTO_OP_STATUS_BIT_COMPLETE;
		nb_ops_to_deq++;
	}

	if (nb_ops_to_deq) {
		nb_ops_deqd = rte_ring_sc_dequeue_bulk(order_ring,
				(void **)ops, nb_ops_to_deq, NULL);
	}

	return nb_ops_deqd;
}

static int
slave_attach(__rte_unused struct rte_cryptodev *dev,
		__rte_unused uint8_t slave_id)
{
	return 0;
}

static int
slave_detach(__rte_unused struct rte_cryptodev *dev,
		__rte_unused uint8_t slave_id)
{
	return 0;
}

static int
mc_scheduler_worker(struct rte_cryptodev *dev)
{
	struct scheduler_ctx *sched_ctx = dev->data->dev_private;
	struct mc_scheduler_ctx *mc_ctx = sched_ctx->private_ctx;
	struct rte_ring *enq_ring;
	struct rte_ring *deq_ring;
	uint32_t core_id = rte_lcore_id();
	int i, worker_idx = -1;
	struct scheduler_slave *slave;
	struct rte_crypto_op *enq_ops[MC_SCHED_BUFFER_SIZE];
	struct rte_crypto_op *deq_ops[MC_SCHED_BUFFER_SIZE];
	uint16_t processed_ops;
	uint16_t pending_enq_ops = 0;
	uint16_t pending_enq_ops_idx = 0;
	uint16_t pending_deq_ops = 0;
	uint16_t pending_deq_ops_idx = 0;
	uint16_t inflight_ops = 0;
	const uint8_t reordering_enabled = sched_ctx->reordering_enabled;

	for (i = 0; i < (int)sched_ctx->nb_wc; i++) {
		if (sched_ctx->wc_pool[i] == core_id) {
			worker_idx = i;
			break;
		}
	}
	if (worker_idx == -1) {
		CS_LOG_ERR("worker on core %u:cannot find worker index!\n", core_id);
		return -1;
	}

	slave = &sched_ctx->slaves[worker_idx];
	enq_ring = mc_ctx->sched_enq_ring[worker_idx];
	deq_ring = mc_ctx->sched_deq_ring[worker_idx];

	while (!mc_ctx->stop_signal) {
		if (pending_enq_ops) {
			processed_ops =
				rte_cryptodev_enqueue_burst(slave->dev_id,
					slave->qp_id, &enq_ops[pending_enq_ops_idx],
					pending_enq_ops);
			pending_enq_ops -= processed_ops;
			pending_enq_ops_idx += processed_ops;
			inflight_ops += processed_ops;
		} else {
			processed_ops = rte_ring_dequeue_burst(enq_ring, (void *)enq_ops,
							MC_SCHED_BUFFER_SIZE, NULL);
			if (processed_ops) {
				pending_enq_ops_idx = rte_cryptodev_enqueue_burst(
							slave->dev_id, slave->qp_id,
							enq_ops, processed_ops);
				pending_enq_ops = processed_ops - pending_enq_ops_idx;
				inflight_ops += pending_enq_ops_idx;
			}
		}

		if (pending_deq_ops) {
			processed_ops = rte_ring_enqueue_burst(
					deq_ring, (void *)&deq_ops[pending_deq_ops_idx],
							pending_deq_ops, NULL);
			pending_deq_ops -= processed_ops;
			pending_deq_ops_idx += processed_ops;
		} else if (inflight_ops) {
			processed_ops = rte_cryptodev_dequeue_burst(slave->dev_id,
					slave->qp_id, deq_ops, MC_SCHED_BUFFER_SIZE);
			if (processed_ops) {
				inflight_ops -= processed_ops;
				if (reordering_enabled) {
					uint16_t j;

					for (j = 0; j < processed_ops; j++) {
						deq_ops[j]->status |=
							CRYPTO_OP_STATUS_BIT_COMPLETE;
					}
				} else {
					pending_deq_ops_idx = rte_ring_enqueue_burst(
						deq_ring, (void *)deq_ops, processed_ops,
						NULL);
					pending_deq_ops = processed_ops -
								pending_deq_ops_idx;
				}
			}
		}

		rte_pause();
	}

	return 0;
}

static int
scheduler_start(struct rte_cryptodev *dev)
{
	struct scheduler_ctx *sched_ctx = dev->data->dev_private;
	struct mc_scheduler_ctx *mc_ctx = sched_ctx->private_ctx;
	uint16_t i;

	mc_ctx->stop_signal = 0;

	for (i = 0; i < sched_ctx->nb_wc; i++)
		rte_eal_remote_launch(
			(lcore_function_t *)mc_scheduler_worker, dev,
					sched_ctx->wc_pool[i]);

	if (sched_ctx->reordering_enabled) {
		dev->enqueue_burst = &schedule_enqueue_ordering;
		dev->dequeue_burst = &schedule_dequeue_ordering;
	} else {
		dev->enqueue_burst = &schedule_enqueue;
		dev->dequeue_burst = &schedule_dequeue;
	}

	for (i = 0; i < dev->data->nb_queue_pairs; i++) {
		struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[i];
		struct mc_scheduler_qp_ctx *mc_qp_ctx =
				qp_ctx->private_qp_ctx;
		uint32_t j;

		memset(mc_qp_ctx->slaves, 0,
				RTE_CRYPTODEV_SCHEDULER_MAX_NB_SLAVES *
				sizeof(struct scheduler_slave));
		for (j = 0; j < sched_ctx->nb_slaves; j++) {
			mc_qp_ctx->slaves[j].dev_id =
					sched_ctx->slaves[j].dev_id;
			mc_qp_ctx->slaves[j].qp_id = i;
		}

		mc_qp_ctx->nb_slaves = sched_ctx->nb_slaves;

		mc_qp_ctx->last_enq_worker_idx = 0;
		mc_qp_ctx->last_deq_worker_idx = 0;
	}

	return 0;
}

static int
scheduler_stop(struct rte_cryptodev *dev)
{
	struct scheduler_ctx *sched_ctx = dev->data->dev_private;
	struct mc_scheduler_ctx *mc_ctx = sched_ctx->private_ctx;
	uint16_t i;

	mc_ctx->stop_signal = 1;

	for (i = 0; i < sched_ctx->nb_wc; i++)
		rte_eal_wait_lcore(sched_ctx->wc_pool[i]);

	return 0;
}

static int
scheduler_config_qp(struct rte_cryptodev *dev, uint16_t qp_id)
{
	struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[qp_id];
	struct mc_scheduler_qp_ctx *mc_qp_ctx;
	struct scheduler_ctx *sched_ctx = dev->data->dev_private;
	struct mc_scheduler_ctx *mc_ctx = sched_ctx->private_ctx;

	mc_qp_ctx = rte_zmalloc_socket(NULL, sizeof(*mc_qp_ctx), 0,
			rte_socket_id());
	if (!mc_qp_ctx) {
		CS_LOG_ERR("failed allocate memory for private queue pair");
		return -ENOMEM;
	}

	mc_qp_ctx->mc_private_ctx = mc_ctx;
	qp_ctx->private_qp_ctx = (void *)mc_qp_ctx;


	return 0;
}

static int
scheduler_create_private_ctx(struct rte_cryptodev *dev)
{
	struct scheduler_ctx *sched_ctx = dev->data->dev_private;
	struct mc_scheduler_ctx *mc_ctx;
	uint16_t i;

	if (sched_ctx->private_ctx)
		rte_free(sched_ctx->private_ctx);

	mc_ctx = rte_zmalloc_socket(NULL, sizeof(struct mc_scheduler_ctx), 0,
			rte_socket_id());
	if (!mc_ctx) {
		CS_LOG_ERR("failed allocate memory");
		return -ENOMEM;
	}

	mc_ctx->num_workers = sched_ctx->nb_wc;
	for (i = 0; i < sched_ctx->nb_wc; i++) {
		char r_name[16];

		snprintf(r_name, sizeof(r_name), MC_SCHED_ENQ_RING_NAME_PREFIX "%u", i);
		mc_ctx->sched_enq_ring[i] = rte_ring_create(r_name, PER_SLAVE_BUFF_SIZE,
					rte_socket_id(), RING_F_SC_DEQ | RING_F_SP_ENQ);
		if (!mc_ctx->sched_enq_ring[i]) {
			CS_LOG_ERR("Cannot create ring for worker %u", i);
			return -1;
		}
		snprintf(r_name, sizeof(r_name), MC_SCHED_DEQ_RING_NAME_PREFIX "%u", i);
		mc_ctx->sched_deq_ring[i] = rte_ring_create(r_name, PER_SLAVE_BUFF_SIZE,
					rte_socket_id(), RING_F_SC_DEQ | RING_F_SP_ENQ);
		if (!mc_ctx->sched_deq_ring[i]) {
			CS_LOG_ERR("Cannot create ring for worker %u", i);
			return -1;
		}
	}

	sched_ctx->private_ctx = (void *)mc_ctx;

	return 0;
}

struct rte_cryptodev_scheduler_ops scheduler_mc_ops = {
	slave_attach,
	slave_detach,
	scheduler_start,
	scheduler_stop,
	scheduler_config_qp,
	scheduler_create_private_ctx,
	NULL,	/* option_set */
	NULL	/* option_get */
};

struct rte_cryptodev_scheduler mc_scheduler = {
		.name = "multicore-scheduler",
		.description = "scheduler which will run burst across multiple cpu cores",
		.mode = CDEV_SCHED_MODE_MULTICORE,
		.ops = &scheduler_mc_ops
};

struct rte_cryptodev_scheduler *multicore_scheduler = &mc_scheduler;