DPDK logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
/*-
 *   BSD LICENSE
 *
 *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
 *   All rights reserved.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of Intel Corporation nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <string.h>
#include <stdint.h>
#include <errno.h>
#include <stdio.h>
#include <stdarg.h>
#include <sys/queue.h>

#include <rte_common.h>
#include <rte_memory.h>         /* for definition of RTE_CACHE_LINE_SIZE */
#include <rte_log.h>
#include <rte_memcpy.h>
#include <rte_prefetch.h>
#include <rte_branch_prediction.h>
#include <rte_memzone.h>
#include <rte_malloc.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_per_lcore.h>
#include <rte_errno.h>
#include <rte_string_fns.h>
#include <rte_cpuflags.h>
#include <rte_rwlock.h>
#include <rte_spinlock.h>
#include <rte_ring.h>
#include <rte_compat.h>
#include <rte_pause.h>

#include "rte_hash.h"
#include "rte_cuckoo_hash.h"

#if defined(RTE_ARCH_X86)
#include "rte_cuckoo_hash_x86.h"
#endif

TAILQ_HEAD(rte_hash_list, rte_tailq_entry);

static struct rte_tailq_elem rte_hash_tailq = {
	.name = "RTE_HASH",
};
EAL_REGISTER_TAILQ(rte_hash_tailq)

struct rte_hash *
rte_hash_find_existing(const char *name)
{
	struct rte_hash *h = NULL;
	struct rte_tailq_entry *te;
	struct rte_hash_list *hash_list;

	hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);

	rte_rwlock_read_lock(RTE_EAL_TAILQ_RWLOCK);
	TAILQ_FOREACH(te, hash_list, next) {
		h = (struct rte_hash *) te->data;
		if (strncmp(name, h->name, RTE_HASH_NAMESIZE) == 0)
			break;
	}
	rte_rwlock_read_unlock(RTE_EAL_TAILQ_RWLOCK);

	if (te == NULL) {
		rte_errno = ENOENT;
		return NULL;
	}
	return h;
}

void rte_hash_set_cmp_func(struct rte_hash *h, rte_hash_cmp_eq_t func)
{
	h->cmp_jump_table_idx = KEY_CUSTOM;
	h->rte_hash_custom_cmp_eq = func;
}

static inline int
rte_hash_cmp_eq(const void *key1, const void *key2, const struct rte_hash *h)
{
	if (h->cmp_jump_table_idx == KEY_CUSTOM)
		return h->rte_hash_custom_cmp_eq(key1, key2, h->key_len);
	else
		return cmp_jump_table[h->cmp_jump_table_idx](key1, key2, h->key_len);
}

struct rte_hash *
rte_hash_create(const struct rte_hash_parameters *params)
{
	struct rte_hash *h = NULL;
	struct rte_tailq_entry *te = NULL;
	struct rte_hash_list *hash_list;
	struct rte_ring *r = NULL;
	char hash_name[RTE_HASH_NAMESIZE];
	void *k = NULL;
	void *buckets = NULL;
	char ring_name[RTE_RING_NAMESIZE];
	unsigned num_key_slots;
	unsigned hw_trans_mem_support = 0;
	unsigned i;

	hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);

	if (params == NULL) {
		RTE_LOG(ERR, HASH, "rte_hash_create has no parameters\n");
		return NULL;
	}

	/* Check for valid parameters */
	if ((params->entries > RTE_HASH_ENTRIES_MAX) ||
			(params->entries < RTE_HASH_BUCKET_ENTRIES) ||
			!rte_is_power_of_2(RTE_HASH_BUCKET_ENTRIES) ||
			(params->key_len == 0)) {
		rte_errno = EINVAL;
		RTE_LOG(ERR, HASH, "rte_hash_create has invalid parameters\n");
		return NULL;
	}

	/* Check extra flags field to check extra options. */
	if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_TRANS_MEM_SUPPORT)
		hw_trans_mem_support = 1;

	/* Store all keys and leave the first entry as a dummy entry for lookup_bulk */
	if (hw_trans_mem_support)
		/*
		 * Increase number of slots by total number of indices
		 * that can be stored in the lcore caches
		 * except for the first cache
		 */
		num_key_slots = params->entries + (RTE_MAX_LCORE - 1) *
					LCORE_CACHE_SIZE + 1;
	else
		num_key_slots = params->entries + 1;

	snprintf(ring_name, sizeof(ring_name), "HT_%s", params->name);
	/* Create ring (Dummy slot index is not enqueued) */
	r = rte_ring_create(ring_name, rte_align32pow2(num_key_slots - 1),
			params->socket_id, 0);
	if (r == NULL) {
		RTE_LOG(ERR, HASH, "memory allocation failed\n");
		goto err;
	}

	snprintf(hash_name, sizeof(hash_name), "HT_%s", params->name);

	rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);

	/* guarantee there's no existing: this is normally already checked
	 * by ring creation above */
	TAILQ_FOREACH(te, hash_list, next) {
		h = (struct rte_hash *) te->data;
		if (strncmp(params->name, h->name, RTE_HASH_NAMESIZE) == 0)
			break;
	}
	h = NULL;
	if (te != NULL) {
		rte_errno = EEXIST;
		te = NULL;
		goto err_unlock;
	}

	te = rte_zmalloc("HASH_TAILQ_ENTRY", sizeof(*te), 0);
	if (te == NULL) {
		RTE_LOG(ERR, HASH, "tailq entry allocation failed\n");
		goto err_unlock;
	}

	h = (struct rte_hash *)rte_zmalloc_socket(hash_name, sizeof(struct rte_hash),
					RTE_CACHE_LINE_SIZE, params->socket_id);

	if (h == NULL) {
		RTE_LOG(ERR, HASH, "memory allocation failed\n");
		goto err_unlock;
	}

	const uint32_t num_buckets = rte_align32pow2(params->entries)
					/ RTE_HASH_BUCKET_ENTRIES;

	buckets = rte_zmalloc_socket(NULL,
				num_buckets * sizeof(struct rte_hash_bucket),
				RTE_CACHE_LINE_SIZE, params->socket_id);

	if (buckets == NULL) {
		RTE_LOG(ERR, HASH, "memory allocation failed\n");
		goto err_unlock;
	}

	const uint32_t key_entry_size = sizeof(struct rte_hash_key) + params->key_len;
	const uint64_t key_tbl_size = (uint64_t) key_entry_size * num_key_slots;

	k = rte_zmalloc_socket(NULL, key_tbl_size,
			RTE_CACHE_LINE_SIZE, params->socket_id);

	if (k == NULL) {
		RTE_LOG(ERR, HASH, "memory allocation failed\n");
		goto err_unlock;
	}

/*
 * If x86 architecture is used, select appropriate compare function,
 * which may use x86 intrinsics, otherwise use memcmp
 */
#if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
	/* Select function to compare keys */
	switch (params->key_len) {
	case 16:
		h->cmp_jump_table_idx = KEY_16_BYTES;
		break;
	case 32:
		h->cmp_jump_table_idx = KEY_32_BYTES;
		break;
	case 48:
		h->cmp_jump_table_idx = KEY_48_BYTES;
		break;
	case 64:
		h->cmp_jump_table_idx = KEY_64_BYTES;
		break;
	case 80:
		h->cmp_jump_table_idx = KEY_80_BYTES;
		break;
	case 96:
		h->cmp_jump_table_idx = KEY_96_BYTES;
		break;
	case 112:
		h->cmp_jump_table_idx = KEY_112_BYTES;
		break;
	case 128:
		h->cmp_jump_table_idx = KEY_128_BYTES;
		break;
	default:
		/* If key is not multiple of 16, use generic memcmp */
		h->cmp_jump_table_idx = KEY_OTHER_BYTES;
	}
#else
	h->cmp_jump_table_idx = KEY_OTHER_BYTES;
#endif

	if (hw_trans_mem_support) {
		h->local_free_slots = rte_zmalloc_socket(NULL,
				sizeof(struct lcore_cache) * RTE_MAX_LCORE,
				RTE_CACHE_LINE_SIZE, params->socket_id);
	}

	/* Setup hash context */
	snprintf(h->name, sizeof(h->name), "%s", params->name);
	h->entries = params->entries;
	h->key_len = params->key_len;
	h->key_entry_size = key_entry_size;
	h->hash_func_init_val = params->hash_func_init_val;

	h->num_buckets = num_buckets;
	h->bucket_bitmask = h->num_buckets - 1;
	h->buckets = buckets;
	h->hash_func = (params->hash_func == NULL) ?
		DEFAULT_HASH_FUNC : params->hash_func;
	h->key_store = k;
	h->free_slots = r;
	h->hw_trans_mem_support = hw_trans_mem_support;

#if defined(RTE_ARCH_X86)
	if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2))
		h->sig_cmp_fn = RTE_HASH_COMPARE_AVX2;
	else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE2))
		h->sig_cmp_fn = RTE_HASH_COMPARE_SSE;
	else
#endif
		h->sig_cmp_fn = RTE_HASH_COMPARE_SCALAR;

	/* Turn on multi-writer only with explicit flat from user and TM
	 * support.
	 */
	if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_MULTI_WRITER_ADD) {
		if (h->hw_trans_mem_support) {
			h->add_key = ADD_KEY_MULTIWRITER_TM;
		} else {
			h->add_key = ADD_KEY_MULTIWRITER;
			h->multiwriter_lock = rte_malloc(NULL,
							sizeof(rte_spinlock_t),
							LCORE_CACHE_SIZE);
			rte_spinlock_init(h->multiwriter_lock);
		}
	} else
		h->add_key = ADD_KEY_SINGLEWRITER;

	/* Populate free slots ring. Entry zero is reserved for key misses. */
	for (i = 1; i < params->entries + 1; i++)
		rte_ring_sp_enqueue(r, (void *)((uintptr_t) i));

	te->data = (void *) h;
	TAILQ_INSERT_TAIL(hash_list, te, next);
	rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);

	return h;
err_unlock:
	rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
err:
	rte_ring_free(r);
	rte_free(te);
	rte_free(h);
	rte_free(buckets);
	rte_free(k);
	return NULL;
}

void
rte_hash_free(struct rte_hash *h)
{
	struct rte_tailq_entry *te;
	struct rte_hash_list *hash_list;

	if (h == NULL)
		return;

	hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);

	rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);

	/* find out tailq entry */
	TAILQ_FOREACH(te, hash_list, next) {
		if (te->data == (void *) h)
			break;
	}

	if (te == NULL) {
		rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
		return;
	}

	TAILQ_REMOVE(hash_list, te, next);

	rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);

	if (h->hw_trans_mem_support)
		rte_free(h->local_free_slots);

	if (h->add_key == ADD_KEY_MULTIWRITER)
		rte_free(h->multiwriter_lock);
	rte_ring_free(h->free_slots);
	rte_free(h->key_store);
	rte_free(h->buckets);
	rte_free(h);
	rte_free(te);
}

hash_sig_t
rte_hash_hash(const struct rte_hash *h, const void *key)
{
	/* calc hash result by key */
	return h->hash_func(key, h->key_len, h->hash_func_init_val);
}

/* Calc the secondary hash value from the primary hash value of a given key */
static inline hash_sig_t
rte_hash_secondary_hash(const hash_sig_t primary_hash)
{
	static const unsigned all_bits_shift = 12;
	static const unsigned alt_bits_xor = 0x5bd1e995;

	uint32_t tag = primary_hash >> all_bits_shift;

	return primary_hash ^ ((tag + 1) * alt_bits_xor);
}

void
rte_hash_reset(struct rte_hash *h)
{
	void *ptr;
	unsigned i;

	if (h == NULL)
		return;

	memset(h->buckets, 0, h->num_buckets * sizeof(struct rte_hash_bucket));
	memset(h->key_store, 0, h->key_entry_size * (h->entries + 1));

	/* clear the free ring */
	while (rte_ring_dequeue(h->free_slots, &ptr) == 0)
		rte_pause();

	/* Repopulate the free slots ring. Entry zero is reserved for key misses */
	for (i = 1; i < h->entries + 1; i++)
		rte_ring_sp_enqueue(h->free_slots, (void *)((uintptr_t) i));

	if (h->hw_trans_mem_support) {
		/* Reset local caches per lcore */
		for (i = 0; i < RTE_MAX_LCORE; i++)
			h->local_free_slots[i].len = 0;
	}
}

/* Search for an entry that can be pushed to its alternative location */
static inline int
make_space_bucket(const struct rte_hash *h, struct rte_hash_bucket *bkt)
{
	static unsigned int nr_pushes;
	unsigned i, j;
	int ret;
	uint32_t next_bucket_idx;
	struct rte_hash_bucket *next_bkt[RTE_HASH_BUCKET_ENTRIES];

	/*
	 * Push existing item (search for bucket with space in
	 * alternative locations) to its alternative location
	 */
	for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
		/* Search for space in alternative locations */
		next_bucket_idx = bkt->sig_alt[i] & h->bucket_bitmask;
		next_bkt[i] = &h->buckets[next_bucket_idx];
		for (j = 0; j < RTE_HASH_BUCKET_ENTRIES; j++) {
			if (next_bkt[i]->key_idx[j] == EMPTY_SLOT)
				break;
		}

		if (j != RTE_HASH_BUCKET_ENTRIES)
			break;
	}

	/* Alternative location has spare room (end of recursive function) */
	if (i != RTE_HASH_BUCKET_ENTRIES) {
		next_bkt[i]->sig_alt[j] = bkt->sig_current[i];
		next_bkt[i]->sig_current[j] = bkt->sig_alt[i];
		next_bkt[i]->key_idx[j] = bkt->key_idx[i];
		return i;
	}

	/* Pick entry that has not been pushed yet */
	for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++)
		if (bkt->flag[i] == 0)
			break;

	/* All entries have been pushed, so entry cannot be added */
	if (i == RTE_HASH_BUCKET_ENTRIES || nr_pushes > RTE_HASH_MAX_PUSHES)
		return -ENOSPC;

	/* Set flag to indicate that this entry is going to be pushed */
	bkt->flag[i] = 1;

	nr_pushes++;
	/* Need room in alternative bucket to insert the pushed entry */
	ret = make_space_bucket(h, next_bkt[i]);
	/*
	 * After recursive function.
	 * Clear flags and insert the pushed entry
	 * in its alternative location if successful,
	 * or return error
	 */
	bkt->flag[i] = 0;
	nr_pushes = 0;
	if (ret >= 0) {
		next_bkt[i]->sig_alt[ret] = bkt->sig_current[i];
		next_bkt[i]->sig_current[ret] = bkt->sig_alt[i];
		next_bkt[i]->key_idx[ret] = bkt->key_idx[i];
		return i;
	} else
		return ret;

}

/*
 * Function called to enqueue back an index in the cache/ring,
 * as slot has not being used and it can be used in the
 * next addition attempt.
 */
static inline void
enqueue_slot_back(const struct rte_hash *h,
		struct lcore_cache *cached_free_slots,
		void *slot_id)
{
	if (h->hw_trans_mem_support) {
		cached_free_slots->objs[cached_free_slots->len] = slot_id;
		cached_free_slots->len++;
	} else
		rte_ring_sp_enqueue(h->free_slots, slot_id);
}

static inline int32_t
__rte_hash_add_key_with_hash(const struct rte_hash *h, const void *key,
						hash_sig_t sig, void *data)
{
	hash_sig_t alt_hash;
	uint32_t prim_bucket_idx, sec_bucket_idx;
	unsigned i;
	struct rte_hash_bucket *prim_bkt, *sec_bkt;
	struct rte_hash_key *new_k, *k, *keys = h->key_store;
	void *slot_id = NULL;
	uint32_t new_idx;
	int ret;
	unsigned n_slots;
	unsigned lcore_id;
	struct lcore_cache *cached_free_slots = NULL;

	if (h->add_key == ADD_KEY_MULTIWRITER)
		rte_spinlock_lock(h->multiwriter_lock);

	prim_bucket_idx = sig & h->bucket_bitmask;
	prim_bkt = &h->buckets[prim_bucket_idx];
	rte_prefetch0(prim_bkt);

	alt_hash = rte_hash_secondary_hash(sig);
	sec_bucket_idx = alt_hash & h->bucket_bitmask;
	sec_bkt = &h->buckets[sec_bucket_idx];
	rte_prefetch0(sec_bkt);

	/* Get a new slot for storing the new key */
	if (h->hw_trans_mem_support) {
		lcore_id = rte_lcore_id();
		cached_free_slots = &h->local_free_slots[lcore_id];
		/* Try to get a free slot from the local cache */
		if (cached_free_slots->len == 0) {
			/* Need to get another burst of free slots from global ring */
			n_slots = rte_ring_mc_dequeue_burst(h->free_slots,
					cached_free_slots->objs,
					LCORE_CACHE_SIZE, NULL);
			if (n_slots == 0) {
				ret = -ENOSPC;
				goto failure;
			}

			cached_free_slots->len += n_slots;
		}

		/* Get a free slot from the local cache */
		cached_free_slots->len--;
		slot_id = cached_free_slots->objs[cached_free_slots->len];
	} else {
		if (rte_ring_sc_dequeue(h->free_slots, &slot_id) != 0) {
			ret = -ENOSPC;
			goto failure;
		}
	}

	new_k = RTE_PTR_ADD(keys, (uintptr_t)slot_id * h->key_entry_size);
	rte_prefetch0(new_k);
	new_idx = (uint32_t)((uintptr_t) slot_id);

	/* Check if key is already inserted in primary location */
	for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
		if (prim_bkt->sig_current[i] == sig &&
				prim_bkt->sig_alt[i] == alt_hash) {
			k = (struct rte_hash_key *) ((char *)keys +
					prim_bkt->key_idx[i] * h->key_entry_size);
			if (rte_hash_cmp_eq(key, k->key, h) == 0) {
				/* Enqueue index of free slot back in the ring. */
				enqueue_slot_back(h, cached_free_slots, slot_id);
				/* Update data */
				k->pdata = data;
				/*
				 * Return index where key is stored,
				 * subtracting the first dummy index
				 */
				return prim_bkt->key_idx[i] - 1;
			}
		}
	}

	/* Check if key is already inserted in secondary location */
	for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
		if (sec_bkt->sig_alt[i] == sig &&
				sec_bkt->sig_current[i] == alt_hash) {
			k = (struct rte_hash_key *) ((char *)keys +
					sec_bkt->key_idx[i] * h->key_entry_size);
			if (rte_hash_cmp_eq(key, k->key, h) == 0) {
				/* Enqueue index of free slot back in the ring. */
				enqueue_slot_back(h, cached_free_slots, slot_id);
				/* Update data */
				k->pdata = data;
				/*
				 * Return index where key is stored,
				 * subtracting the first dummy index
				 */
				return sec_bkt->key_idx[i] - 1;
			}
		}
	}

	/* Copy key */
	rte_memcpy(new_k->key, key, h->key_len);
	new_k->pdata = data;

#if defined(RTE_ARCH_X86) /* currently only x86 support HTM */
	if (h->add_key == ADD_KEY_MULTIWRITER_TM) {
		ret = rte_hash_cuckoo_insert_mw_tm(prim_bkt,
				sig, alt_hash, new_idx);
		if (ret >= 0)
			return new_idx - 1;

		/* Primary bucket full, need to make space for new entry */
		ret = rte_hash_cuckoo_make_space_mw_tm(h, prim_bkt, sig,
							alt_hash, new_idx);

		if (ret >= 0)
			return new_idx - 1;

		/* Also search secondary bucket to get better occupancy */
		ret = rte_hash_cuckoo_make_space_mw_tm(h, sec_bkt, sig,
							alt_hash, new_idx);

		if (ret >= 0)
			return new_idx - 1;
	} else {
#endif
		for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
			/* Check if slot is available */
			if (likely(prim_bkt->key_idx[i] == EMPTY_SLOT)) {
				prim_bkt->sig_current[i] = sig;
				prim_bkt->sig_alt[i] = alt_hash;
				prim_bkt->key_idx[i] = new_idx;
				break;
			}
		}

		if (i != RTE_HASH_BUCKET_ENTRIES) {
			if (h->add_key == ADD_KEY_MULTIWRITER)
				rte_spinlock_unlock(h->multiwriter_lock);
			return new_idx - 1;
		}

		/* Primary bucket full, need to make space for new entry
		 * After recursive function.
		 * Insert the new entry in the position of the pushed entry
		 * if successful or return error and
		 * store the new slot back in the ring
		 */
		ret = make_space_bucket(h, prim_bkt);
		if (ret >= 0) {
			prim_bkt->sig_current[ret] = sig;
			prim_bkt->sig_alt[ret] = alt_hash;
			prim_bkt->key_idx[ret] = new_idx;
			if (h->add_key == ADD_KEY_MULTIWRITER)
				rte_spinlock_unlock(h->multiwriter_lock);
			return new_idx - 1;
		}
#if defined(RTE_ARCH_X86)
	}
#endif
	/* Error in addition, store new slot back in the ring and return error */
	enqueue_slot_back(h, cached_free_slots, (void *)((uintptr_t) new_idx));

failure:
	if (h->add_key == ADD_KEY_MULTIWRITER)
		rte_spinlock_unlock(h->multiwriter_lock);
	return ret;
}

int32_t
rte_hash_add_key_with_hash(const struct rte_hash *h,
			const void *key, hash_sig_t sig)
{
	RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
	return __rte_hash_add_key_with_hash(h, key, sig, 0);
}

int32_t
rte_hash_add_key(const struct rte_hash *h, const void *key)
{
	RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
	return __rte_hash_add_key_with_hash(h, key, rte_hash_hash(h, key), 0);
}

int
rte_hash_add_key_with_hash_data(const struct rte_hash *h,
			const void *key, hash_sig_t sig, void *data)
{
	int ret;

	RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
	ret = __rte_hash_add_key_with_hash(h, key, sig, data);
	if (ret >= 0)
		return 0;
	else
		return ret;
}

int
rte_hash_add_key_data(const struct rte_hash *h, const void *key, void *data)
{
	int ret;

	RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);

	ret = __rte_hash_add_key_with_hash(h, key, rte_hash_hash(h, key), data);
	if (ret >= 0)
		return 0;
	else
		return ret;
}
static inline int32_t
__rte_hash_lookup_with_hash(const struct rte_hash *h, const void *key,
					hash_sig_t sig, void **data)
{
	uint32_t bucket_idx;
	hash_sig_t alt_hash;
	unsigned i;
	struct rte_hash_bucket *bkt;
	struct rte_hash_key *k, *keys = h->key_store;

	bucket_idx = sig & h->bucket_bitmask;
	bkt = &h->buckets[bucket_idx];

	/* Check if key is in primary location */
	for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
		if (bkt->sig_current[i] == sig &&
				bkt->key_idx[i] != EMPTY_SLOT) {
			k = (struct rte_hash_key *) ((char *)keys +
					bkt->key_idx[i] * h->key_entry_size);
			if (rte_hash_cmp_eq(key, k->key, h) == 0) {
				if (data != NULL)
					*data = k->pdata;
				/*
				 * Return index where key is stored,
				 * subtracting the first dummy index
				 */
				return bkt->key_idx[i] - 1;
			}
		}
	}

	/* Calculate secondary hash */
	alt_hash = rte_hash_secondary_hash(sig);
	bucket_idx = alt_hash & h->bucket_bitmask;
	bkt = &h->buckets[bucket_idx];

	/* Check if key is in secondary location */
	for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
		if (bkt->sig_current[i] == alt_hash &&
				bkt->sig_alt[i] == sig) {
			k = (struct rte_hash_key *) ((char *)keys +
					bkt->key_idx[i] * h->key_entry_size);
			if (rte_hash_cmp_eq(key, k->key, h) == 0) {
				if (data != NULL)
					*data = k->pdata;
				/*
				 * Return index where key is stored,
				 * subtracting the first dummy index
				 */
				return bkt->key_idx[i] - 1;
			}
		}
	}

	return -ENOENT;
}

int32_t
rte_hash_lookup_with_hash(const struct rte_hash *h,
			const void *key, hash_sig_t sig)
{
	RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
	return __rte_hash_lookup_with_hash(h, key, sig, NULL);
}

int32_t
rte_hash_lookup(const struct rte_hash *h, const void *key)
{
	RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
	return __rte_hash_lookup_with_hash(h, key, rte_hash_hash(h, key), NULL);
}

int
rte_hash_lookup_with_hash_data(const struct rte_hash *h,
			const void *key, hash_sig_t sig, void **data)
{
	RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
	return __rte_hash_lookup_with_hash(h, key, sig, data);
}

int
rte_hash_lookup_data(const struct rte_hash *h, const void *key, void **data)
{
	RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
	return __rte_hash_lookup_with_hash(h, key, rte_hash_hash(h, key), data);
}

static inline void
remove_entry(const struct rte_hash *h, struct rte_hash_bucket *bkt, unsigned i)
{
	unsigned lcore_id, n_slots;
	struct lcore_cache *cached_free_slots;

	bkt->sig_current[i] = NULL_SIGNATURE;
	bkt->sig_alt[i] = NULL_SIGNATURE;
	if (h->hw_trans_mem_support) {
		lcore_id = rte_lcore_id();
		cached_free_slots = &h->local_free_slots[lcore_id];
		/* Cache full, need to free it. */
		if (cached_free_slots->len == LCORE_CACHE_SIZE) {
			/* Need to enqueue the free slots in global ring. */
			n_slots = rte_ring_mp_enqueue_burst(h->free_slots,
						cached_free_slots->objs,
						LCORE_CACHE_SIZE, NULL);
			cached_free_slots->len -= n_slots;
		}
		/* Put index of new free slot in cache. */
		cached_free_slots->objs[cached_free_slots->len] =
				(void *)((uintptr_t)bkt->key_idx[i]);
		cached_free_slots->len++;
	} else {
		rte_ring_sp_enqueue(h->free_slots,
				(void *)((uintptr_t)bkt->key_idx[i]));
	}
}

static inline int32_t
__rte_hash_del_key_with_hash(const struct rte_hash *h, const void *key,
						hash_sig_t sig)
{
	uint32_t bucket_idx;
	hash_sig_t alt_hash;
	unsigned i;
	struct rte_hash_bucket *bkt;
	struct rte_hash_key *k, *keys = h->key_store;
	int32_t ret;

	bucket_idx = sig & h->bucket_bitmask;
	bkt = &h->buckets[bucket_idx];

	/* Check if key is in primary location */
	for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
		if (bkt->sig_current[i] == sig &&
				bkt->key_idx[i] != EMPTY_SLOT) {
			k = (struct rte_hash_key *) ((char *)keys +
					bkt->key_idx[i] * h->key_entry_size);
			if (rte_hash_cmp_eq(key, k->key, h) == 0) {
				remove_entry(h, bkt, i);

				/*
				 * Return index where key is stored,
				 * subtracting the first dummy index
				 */
				ret = bkt->key_idx[i] - 1;
				bkt->key_idx[i] = EMPTY_SLOT;
				return ret;
			}
		}
	}

	/* Calculate secondary hash */
	alt_hash = rte_hash_secondary_hash(sig);
	bucket_idx = alt_hash & h->bucket_bitmask;
	bkt = &h->buckets[bucket_idx];

	/* Check if key is in secondary location */
	for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
		if (bkt->sig_current[i] == alt_hash &&
				bkt->key_idx[i] != EMPTY_SLOT) {
			k = (struct rte_hash_key *) ((char *)keys +
					bkt->key_idx[i] * h->key_entry_size);
			if (rte_hash_cmp_eq(key, k->key, h) == 0) {
				remove_entry(h, bkt, i);

				/*
				 * Return index where key is stored,
				 * subtracting the first dummy index
				 */
				ret = bkt->key_idx[i] - 1;
				bkt->key_idx[i] = EMPTY_SLOT;
				return ret;
			}
		}
	}

	return -ENOENT;
}

int32_t
rte_hash_del_key_with_hash(const struct rte_hash *h,
			const void *key, hash_sig_t sig)
{
	RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
	return __rte_hash_del_key_with_hash(h, key, sig);
}

int32_t
rte_hash_del_key(const struct rte_hash *h, const void *key)
{
	RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
	return __rte_hash_del_key_with_hash(h, key, rte_hash_hash(h, key));
}

int
rte_hash_get_key_with_position(const struct rte_hash *h, const int32_t position,
			       void **key)
{
	RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);

	struct rte_hash_key *k, *keys = h->key_store;
	k = (struct rte_hash_key *) ((char *) keys + (position + 1) *
				     h->key_entry_size);
	*key = k->key;

	if (position !=
	    __rte_hash_lookup_with_hash(h, *key, rte_hash_hash(h, *key),
					NULL)) {
		return -ENOENT;
	}

	return 0;
}

static inline void
compare_signatures(uint32_t *prim_hash_matches, uint32_t *sec_hash_matches,
			const struct rte_hash_bucket *prim_bkt,
			const struct rte_hash_bucket *sec_bkt,
			hash_sig_t prim_hash, hash_sig_t sec_hash,
			enum rte_hash_sig_compare_function sig_cmp_fn)
{
	unsigned int i;

	switch (sig_cmp_fn) {
#ifdef RTE_MACHINE_CPUFLAG_AVX2
	case RTE_HASH_COMPARE_AVX2:
		*prim_hash_matches = _mm256_movemask_ps((__m256)_mm256_cmpeq_epi32(
				_mm256_load_si256(
					(__m256i const *)prim_bkt->sig_current),
				_mm256_set1_epi32(prim_hash)));
		*sec_hash_matches = _mm256_movemask_ps((__m256)_mm256_cmpeq_epi32(
				_mm256_load_si256(
					(__m256i const *)sec_bkt->sig_current),
				_mm256_set1_epi32(sec_hash)));
		break;
#endif
#ifdef RTE_MACHINE_CPUFLAG_SSE2
	case RTE_HASH_COMPARE_SSE:
		/* Compare the first 4 signatures in the bucket */
		*prim_hash_matches = _mm_movemask_ps((__m128)_mm_cmpeq_epi16(
				_mm_load_si128(
					(__m128i const *)prim_bkt->sig_current),
				_mm_set1_epi32(prim_hash)));
		*prim_hash_matches |= (_mm_movemask_ps((__m128)_mm_cmpeq_epi16(
				_mm_load_si128(
					(__m128i const *)&prim_bkt->sig_current[4]),
				_mm_set1_epi32(prim_hash)))) << 4;
		/* Compare the first 4 signatures in the bucket */
		*sec_hash_matches = _mm_movemask_ps((__m128)_mm_cmpeq_epi16(
				_mm_load_si128(
					(__m128i const *)sec_bkt->sig_current),
				_mm_set1_epi32(sec_hash)));
		*sec_hash_matches |= (_mm_movemask_ps((__m128)_mm_cmpeq_epi16(
				_mm_load_si128(
					(__m128i const *)&sec_bkt->sig_current[4]),
				_mm_set1_epi32(sec_hash)))) << 4;
		break;
#endif
	default:
		for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
			*prim_hash_matches |=
				((prim_hash == prim_bkt->sig_current[i]) << i);
			*sec_hash_matches |=
				((sec_hash == sec_bkt->sig_current[i]) << i);
		}
	}

}

#define PREFETCH_OFFSET 4
static inline void
__rte_hash_lookup_bulk(const struct rte_hash *h, const void **keys,
			int32_t num_keys, int32_t *positions,
			uint64_t *hit_mask, void *data[])
{
	uint64_t hits = 0;
	int32_t i;
	uint32_t prim_hash[RTE_HASH_LOOKUP_BULK_MAX];
	uint32_t sec_hash[RTE_HASH_LOOKUP_BULK_MAX];
	const struct rte_hash_bucket *primary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
	const struct rte_hash_bucket *secondary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
	uint32_t prim_hitmask[RTE_HASH_LOOKUP_BULK_MAX] = {0};
	uint32_t sec_hitmask[RTE_HASH_LOOKUP_BULK_MAX] = {0};

	/* Prefetch first keys */
	for (i = 0; i < PREFETCH_OFFSET && i < num_keys; i++)
		rte_prefetch0(keys[i]);

	/*
	 * Prefetch rest of the keys, calculate primary and
	 * secondary bucket and prefetch them
	 */
	for (i = 0; i < (num_keys - PREFETCH_OFFSET); i++) {
		rte_prefetch0(keys[i + PREFETCH_OFFSET]);

		prim_hash[i] = rte_hash_hash(h, keys[i]);
		sec_hash[i] = rte_hash_secondary_hash(prim_hash[i]);

		primary_bkt[i] = &h->buckets[prim_hash[i] & h->bucket_bitmask];
		secondary_bkt[i] = &h->buckets[sec_hash[i] & h->bucket_bitmask];

		rte_prefetch0(primary_bkt[i]);
		rte_prefetch0(secondary_bkt[i]);
	}

	/* Calculate and prefetch rest of the buckets */
	for (; i < num_keys; i++) {
		prim_hash[i] = rte_hash_hash(h, keys[i]);
		sec_hash[i] = rte_hash_secondary_hash(prim_hash[i]);

		primary_bkt[i] = &h->buckets[prim_hash[i] & h->bucket_bitmask];
		secondary_bkt[i] = &h->buckets[sec_hash[i] & h->bucket_bitmask];

		rte_prefetch0(primary_bkt[i]);
		rte_prefetch0(secondary_bkt[i]);
	}

	/* Compare signatures and prefetch key slot of first hit */
	for (i = 0; i < num_keys; i++) {
		compare_signatures(&prim_hitmask[i], &sec_hitmask[i],
				primary_bkt[i], secondary_bkt[i],
				prim_hash[i], sec_hash[i], h->sig_cmp_fn);

		if (prim_hitmask[i]) {
			uint32_t first_hit = __builtin_ctzl(prim_hitmask[i]);
			uint32_t key_idx = primary_bkt[i]->key_idx[first_hit];
			const struct rte_hash_key *key_slot =
				(const struct rte_hash_key *)(
				(const char *)h->key_store +
				key_idx * h->key_entry_size);
			rte_prefetch0(key_slot);
			continue;
		}

		if (sec_hitmask[i]) {
			uint32_t first_hit = __builtin_ctzl(sec_hitmask[i]);
			uint32_t key_idx = secondary_bkt[i]->key_idx[first_hit];
			const struct rte_hash_key *key_slot =
				(const struct rte_hash_key *)(
				(const char *)h->key_store +
				key_idx * h->key_entry_size);
			rte_prefetch0(key_slot);
		}
	}

	/* Compare keys, first hits in primary first */
	for (i = 0; i < num_keys; i++) {
		positions[i] = -ENOENT;
		while (prim_hitmask[i]) {
			uint32_t hit_index = __builtin_ctzl(prim_hitmask[i]);

			uint32_t key_idx = primary_bkt[i]->key_idx[hit_index];
			const struct rte_hash_key *key_slot =
				(const struct rte_hash_key *)(
				(const char *)h->key_store +
				key_idx * h->key_entry_size);
			/*
			 * If key index is 0, do not compare key,
			 * as it is checking the dummy slot
			 */
			if (!!key_idx & !rte_hash_cmp_eq(key_slot->key, keys[i], h)) {
				if (data != NULL)
					data[i] = key_slot->pdata;

				hits |= 1ULL << i;
				positions[i] = key_idx - 1;
				goto next_key;
			}
			prim_hitmask[i] &= ~(1 << (hit_index));
		}

		while (sec_hitmask[i]) {
			uint32_t hit_index = __builtin_ctzl(sec_hitmask[i]);

			uint32_t key_idx = secondary_bkt[i]->key_idx[hit_index];
			const struct rte_hash_key *key_slot =
				(const struct rte_hash_key *)(
				(const char *)h->key_store +
				key_idx * h->key_entry_size);
			/*
			 * If key index is 0, do not compare key,
			 * as it is checking the dummy slot
			 */

			if (!!key_idx & !rte_hash_cmp_eq(key_slot->key, keys[i], h)) {
				if (data != NULL)
					data[i] = key_slot->pdata;

				hits |= 1ULL << i;
				positions[i] = key_idx - 1;
				goto next_key;
			}
			sec_hitmask[i] &= ~(1 << (hit_index));
		}

next_key:
		continue;
	}

	if (hit_mask != NULL)
		*hit_mask = hits;
}

int
rte_hash_lookup_bulk(const struct rte_hash *h, const void **keys,
		      uint32_t num_keys, int32_t *positions)
{
	RETURN_IF_TRUE(((h == NULL) || (keys == NULL) || (num_keys == 0) ||
			(num_keys > RTE_HASH_LOOKUP_BULK_MAX) ||
			(positions == NULL)), -EINVAL);

	__rte_hash_lookup_bulk(h, keys, num_keys, positions, NULL, NULL);
	return 0;
}

int
rte_hash_lookup_bulk_data(const struct rte_hash *h, const void **keys,
		      uint32_t num_keys, uint64_t *hit_mask, void *data[])
{
	RETURN_IF_TRUE(((h == NULL) || (keys == NULL) || (num_keys == 0) ||
			(num_keys > RTE_HASH_LOOKUP_BULK_MAX) ||
			(hit_mask == NULL)), -EINVAL);

	int32_t positions[num_keys];

	__rte_hash_lookup_bulk(h, keys, num_keys, positions, hit_mask, data);

	/* Return number of hits */
	return __builtin_popcountl(*hit_mask);
}

int32_t
rte_hash_iterate(const struct rte_hash *h, const void **key, void **data, uint32_t *next)
{
	uint32_t bucket_idx, idx, position;
	struct rte_hash_key *next_key;

	RETURN_IF_TRUE(((h == NULL) || (next == NULL)), -EINVAL);

	const uint32_t total_entries = h->num_buckets * RTE_HASH_BUCKET_ENTRIES;
	/* Out of bounds */
	if (*next >= total_entries)
		return -ENOENT;

	/* Calculate bucket and index of current iterator */
	bucket_idx = *next / RTE_HASH_BUCKET_ENTRIES;
	idx = *next % RTE_HASH_BUCKET_ENTRIES;

	/* If current position is empty, go to the next one */
	while (h->buckets[bucket_idx].key_idx[idx] == EMPTY_SLOT) {
		(*next)++;
		/* End of table */
		if (*next == total_entries)
			return -ENOENT;
		bucket_idx = *next / RTE_HASH_BUCKET_ENTRIES;
		idx = *next % RTE_HASH_BUCKET_ENTRIES;
	}

	/* Get position of entry in key table */
	position = h->buckets[bucket_idx].key_idx[idx];
	next_key = (struct rte_hash_key *) ((char *)h->key_store +
				position * h->key_entry_size);
	/* Return key and data */
	*key = next_key->key;
	*data = next_key->pdata;

	/* Increment iterator */
	(*next)++;

	return position - 1;
}