DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <fcntl.h>

#include <rte_log.h>
#include <rte_byteorder.h>

#include "nfp_nfpu.h"

#define CFG_EXP_BAR_ADDR_SZ     1
#define CFG_EXP_BAR_MAP_TYPE	1

#define EXP_BAR_TARGET_SHIFT     23
#define EXP_BAR_LENGTH_SHIFT     27 /* 0=32, 1=64 bit increment */
#define EXP_BAR_MAP_TYPE_SHIFT   29 /* Bulk BAR map */

/* NFP target for NSP access */
#define NFP_NSP_TARGET   7

/* Expansion BARs for mapping PF vnic BARs */
#define NFP_NET_PF_CFG_EXP_BAR          6
#define NFP_NET_PF_HW_QUEUES_EXP_BAR    5

/*
 * This is an NFP internal address used for configuring properly an NFP
 * expansion BAR.
 */
#define MEM_CMD_BASE_ADDR       0x8100000000

/* NSP interface registers */
#define NSP_BASE                (MEM_CMD_BASE_ADDR + 0x22100)
#define NSP_STATUS              0x00
#define NSP_COMMAND             0x08
#define NSP_BUFFER		0x10
#define NSP_DEFAULT_BUF         0x18
#define NSP_DEFAULT_BUF_CFG  0x20

#define NSP_MAGIC                0xab10
#define NSP_STATUS_MAGIC(x)      (((x) >> 48) & 0xffff)
#define NSP_STATUS_MAJOR(x)      (int)(((x) >> 44) & 0xf)
#define NSP_STATUS_MINOR(x)      (int)(((x) >> 32) & 0xfff)

/* NSP commands */
#define NSP_CMD_RESET                   1
#define NSP_CMD_FW_LOAD                 6
#define NSP_CMD_READ_ETH_TABLE          7
#define NSP_CMD_WRITE_ETH_TABLE         8
#define NSP_CMD_GET_SYMBOL             14

#define NSP_BUFFER_CFG_SIZE_MASK	(0xff)

#define NSP_REG_ADDR(d, off, reg) ((uint8_t *)(d)->mem_base + (off) + (reg))
#define NSP_REG_VAL(p) (*(uint64_t *)(p))

/*
 * An NFP expansion BAR is configured for allowing access to a specific NFP
 * target:
 *
 *  IN:
 *	desc: struct with basic NSP addresses to work with
 *	expbar: NFP PF expansion BAR index to configure
 *	tgt: NFP target to configure access
 *	addr: NFP target address
 *
 *  OUT:
 *	pcie_offset: NFP PCI BAR offset to work with
 */
static void
nfp_nspu_mem_bar_cfg(nspu_desc_t *desc, int expbar, int tgt,
		     uint64_t addr, uint64_t *pcie_offset)
{
	uint64_t x, y, barsz;
	uint32_t *expbar_ptr;

	barsz = desc->barsz;

	/*
	 * NFP CPP address to configure. This comes from NFP 6000
	 * datasheet document based on Bulk mapping.
	 */
	x = (addr >> (barsz - 3)) << (21 - (40 - (barsz - 3)));
	x |= CFG_EXP_BAR_MAP_TYPE << EXP_BAR_MAP_TYPE_SHIFT;
	x |= CFG_EXP_BAR_ADDR_SZ << EXP_BAR_LENGTH_SHIFT;
	x |= tgt << EXP_BAR_TARGET_SHIFT;

	/* Getting expansion bar configuration register address */
	expbar_ptr = (uint32_t *)desc->cfg_base;
	/* Each physical PCI BAR has 8 NFP expansion BARs */
	expbar_ptr += (desc->pcie_bar * 8) + expbar;

	/* Writing to the expansion BAR register */
	*expbar_ptr = (uint32_t)x;

	/* Getting the pcie offset to work with from userspace */
	y = addr & ((uint64_t)(1 << (barsz - 3)) - 1);
	*pcie_offset = y;
}

/*
 * Configuring an expansion bar for accessing NSP userspace interface. This
 * function configures always the same expansion bar, which implies access to
 * previously configured NFP target is lost.
 */
static void
nspu_xlate(nspu_desc_t *desc, uint64_t addr, uint64_t *pcie_offset)
{
	nfp_nspu_mem_bar_cfg(desc, desc->exp_bar, NFP_NSP_TARGET, addr,
			     pcie_offset);
}

int
nfp_nsp_get_abi_version(nspu_desc_t *desc, int *major, int *minor)
{
	uint64_t pcie_offset;
	uint64_t nsp_reg;

	nspu_xlate(desc, NSP_BASE, &pcie_offset);
	nsp_reg = NSP_REG_VAL(NSP_REG_ADDR(desc, pcie_offset, NSP_STATUS));

	if (NSP_STATUS_MAGIC(nsp_reg) != NSP_MAGIC)
		return -1;

	*major = NSP_STATUS_MAJOR(nsp_reg);
	*minor = NSP_STATUS_MINOR(nsp_reg);

	return 0;
}

int
nfp_nspu_init(nspu_desc_t *desc, int nfp, int pcie_bar, size_t pcie_barsz,
	      int exp_bar, void *exp_bar_cfg_base, void *exp_bar_mmap)
{
	uint64_t offset, buffaddr;
	uint64_t nsp_reg;

	desc->nfp = nfp;
	desc->pcie_bar = pcie_bar;
	desc->exp_bar = exp_bar;
	desc->barsz = pcie_barsz;
	desc->windowsz = 1 << (desc->barsz - 3);
	desc->cfg_base = exp_bar_cfg_base;
	desc->mem_base = exp_bar_mmap;

	nspu_xlate(desc, NSP_BASE, &offset);

	/*
	 * Other NSPU clients can use other buffers. Let's tell NSPU we use the
	 * default buffer.
	 */
	buffaddr = NSP_REG_VAL(NSP_REG_ADDR(desc, offset, NSP_DEFAULT_BUF));
	NSP_REG_VAL(NSP_REG_ADDR(desc, offset, NSP_BUFFER)) = buffaddr;

	/* NFP internal addresses are 40 bits. Clean all other bits here */
	buffaddr = buffaddr & (((uint64_t)1 << 40) - 1);
	desc->bufaddr = buffaddr;

	/* Lets get information about the buffer */
	nsp_reg = NSP_REG_VAL(NSP_REG_ADDR(desc, offset, NSP_DEFAULT_BUF_CFG));

	/* Buffer size comes in MBs. Coversion to bytes */
	desc->buf_size = ((size_t)nsp_reg & NSP_BUFFER_CFG_SIZE_MASK) << 20;

	return 0;
}

#define NSPU_NFP_BUF(addr, base, off) \
	(*(uint64_t *)((uint8_t *)(addr)->mem_base + ((base) | (off))))

#define NSPU_HOST_BUF(base, off) (*(uint64_t *)((uint8_t *)(base) + (off)))

static int
nspu_buff_write(nspu_desc_t *desc, void *buffer, size_t size)
{
	uint64_t pcie_offset, pcie_window_base, pcie_window_offset;
	uint64_t windowsz = desc->windowsz;
	uint64_t buffaddr, j, i = 0;
	int ret = 0;

	if (size > desc->buf_size)
		return -1;

	buffaddr = desc->bufaddr;
	windowsz = desc->windowsz;

	while (i < size) {
		/* Expansion bar reconfiguration per window size */
		nspu_xlate(desc, buffaddr + i, &pcie_offset);
		pcie_window_base = pcie_offset & (~(windowsz - 1));
		pcie_window_offset = pcie_offset & (windowsz - 1);
		for (j = pcie_window_offset; ((j < windowsz) && (i < size));
		     j += 8) {
			NSPU_NFP_BUF(desc, pcie_window_base, j) =
				NSPU_HOST_BUF(buffer, i);
			i += 8;
		}
	}

	return ret;
}

static int
nspu_buff_read(nspu_desc_t *desc, void *buffer, size_t size)
{
	uint64_t pcie_offset, pcie_window_base, pcie_window_offset;
	uint64_t windowsz, i = 0, j;
	uint64_t buffaddr;
	int ret = 0;

	if (size > desc->buf_size)
		return -1;

	buffaddr = desc->bufaddr;
	windowsz = desc->windowsz;

	while (i < size) {
		/* Expansion bar reconfiguration per window size */
		nspu_xlate(desc, buffaddr + i, &pcie_offset);
		pcie_window_base = pcie_offset & (~(windowsz - 1));
		pcie_window_offset = pcie_offset & (windowsz - 1);
		for (j = pcie_window_offset; ((j < windowsz) && (i < size));
		     j += 8) {
			NSPU_HOST_BUF(buffer, i) =
				NSPU_NFP_BUF(desc, pcie_window_base, j);
			i += 8;
		}
	}

	return ret;
}

static int
nspu_command(nspu_desc_t *desc, uint16_t cmd, int read, int write,
		 void *buffer, size_t rsize, size_t wsize)
{
	uint64_t status, cmd_reg;
	uint64_t offset;
	int retry = 0;
	int retries = 120;
	int ret = 0;

	/* Same expansion BAR is used for different things */
	nspu_xlate(desc, NSP_BASE, &offset);

	status = NSP_REG_VAL(NSP_REG_ADDR(desc, offset, NSP_STATUS));

	while ((status & 0x1) && (retry < retries)) {
		status = NSP_REG_VAL(NSP_REG_ADDR(desc, offset, NSP_STATUS));
		retry++;
		sleep(1);
	}

	if (retry == retries)
		return -1;

	if (write) {
		ret = nspu_buff_write(desc, buffer, wsize);
		if (ret)
			return ret;

		/* Expansion BAR changes when writing the buffer */
		nspu_xlate(desc, NSP_BASE, &offset);
	}

	NSP_REG_VAL(NSP_REG_ADDR(desc, offset, NSP_COMMAND)) =
		(uint64_t)wsize << 32 | (uint64_t)cmd << 16 | 1;

	retry = 0;

	cmd_reg = NSP_REG_VAL(NSP_REG_ADDR(desc, offset, NSP_COMMAND));
	while ((cmd_reg & 0x1) && (retry < retries)) {
		cmd_reg = NSP_REG_VAL(NSP_REG_ADDR(desc, offset, NSP_COMMAND));
		retry++;
		sleep(1);
	}
	if (retry == retries)
		return -1;

	retry = 0;
	status = NSP_REG_VAL(NSP_REG_ADDR(desc, offset, NSP_STATUS));
	while ((status & 0x1) && (retry < retries)) {
		status = NSP_REG_VAL(NSP_REG_ADDR(desc, offset, NSP_STATUS));
		retry++;
		sleep(1);
	}

	if (retry == retries)
		return -1;

	ret = status & (0xff << 8);
	if (ret)
		return ret;

	if (read) {
		ret = nspu_buff_read(desc, buffer, rsize);
		if (ret)
			return ret;
	}

	return ret;
}

static int
nfp_fw_reset(nspu_desc_t *nspu_desc)
{
	int res;

	res = nspu_command(nspu_desc, NSP_CMD_RESET, 0, 0, 0, 0, 0);

	if (res < 0)
		RTE_LOG(INFO, PMD, "fw reset failed: error %d", res);

	return res;
}

#define DEFAULT_FW_PATH       "/lib/firmware/netronome"
#define DEFAULT_FW_FILENAME   "nic_dpdk_default.nffw"

static int
nfp_fw_upload(nspu_desc_t *nspu_desc)
{
	int fw_f;
	char *fw_buf;
	char filename[100];
	struct stat file_stat;
	off_t fsize, bytes;
	ssize_t size;
	int ret;

	size = nspu_desc->buf_size;

	sprintf(filename, "%s/%s", DEFAULT_FW_PATH, DEFAULT_FW_FILENAME);
	fw_f = open(filename, O_RDONLY);
	if (fw_f < 0) {
		RTE_LOG(INFO, PMD, "Firmware file %s/%s not found.",
			DEFAULT_FW_PATH, DEFAULT_FW_FILENAME);
		return -ENOENT;
	}

	if (fstat(fw_f, &file_stat) < 0) {
		RTE_LOG(INFO, PMD, "Firmware file %s/%s size is unknown",
			DEFAULT_FW_PATH, DEFAULT_FW_FILENAME);
		close(fw_f);
		return -ENOENT;
	}

	fsize = file_stat.st_size;
	RTE_LOG(DEBUG, PMD, "Firmware file with size: %" PRIu64 "\n",
			    (uint64_t)fsize);

	if (fsize > (off_t)size) {
		RTE_LOG(INFO, PMD, "fw file too big: %" PRIu64
				   " bytes (%" PRIu64 " max)",
				  (uint64_t)fsize, (uint64_t)size);
		close(fw_f);
		return -EINVAL;
	}

	fw_buf = malloc((size_t)size);
	if (!fw_buf) {
		RTE_LOG(INFO, PMD, "malloc failed for fw buffer");
		close(fw_f);
		return -ENOMEM;
	}
	memset(fw_buf, 0, size);

	bytes = read(fw_f, fw_buf, fsize);
	if (bytes != fsize) {
		RTE_LOG(INFO, PMD, "Reading fw to buffer failed.\n"
				   "Just %" PRIu64 " of %" PRIu64 " bytes read.",
				   (uint64_t)bytes, (uint64_t)fsize);
		free(fw_buf);
		close(fw_f);
		return -EIO;
	}

	ret = nspu_command(nspu_desc, NSP_CMD_FW_LOAD, 0, 1, fw_buf, 0, bytes);

	free(fw_buf);
	close(fw_f);

	return ret;
}

/* Firmware symbol descriptor size */
#define NFP_SYM_DESC_LEN 40

#define SYMBOL_DATA(b, off)     (*(int64_t *)((b) + (off)))
#define SYMBOL_UDATA(b, off)     (*(uint64_t *)((b) + (off)))

/* Firmware symbols contain information about how to access what they
 * represent. It can be as simple as an numeric variable declared at a
 * specific NFP memory, but it can also be more complex structures and
 * related to specific hardware functionalities or components. Target,
 * domain and address allow to create the BAR window for accessing such
 * hw object and size defines the length to map.
 *
 * A vNIC is a network interface implemented inside the NFP and using a
 * subset of device PCI BARs. Specific firmware symbols allow to map those
 * vNIC bars by host drivers like the NFP PMD.
 *
 * Accessing what the symbol represents implies to map the access through
 * a PCI BAR window. NFP expansion BARs are used in this regard through
 * the NSPU interface.
 */
static int
nfp_nspu_set_bar_from_symbl(nspu_desc_t *desc, const char *symbl,
			    uint32_t expbar, uint64_t *pcie_offset,
			    ssize_t *size)
{
	int64_t type;
	int64_t target;
	int64_t domain;
	uint64_t addr;
	char *sym_buf;
	int ret = 0;

	sym_buf = malloc(desc->buf_size);
	if (!sym_buf)
		return -ENOMEM;

	strncpy(sym_buf, symbl, strlen(symbl));
	ret = nspu_command(desc, NSP_CMD_GET_SYMBOL, 1, 1, sym_buf,
			   NFP_SYM_DESC_LEN, strlen(symbl));
	if (ret) {
		RTE_LOG(DEBUG, PMD, "symbol resolution (%s) failed\n", symbl);
		goto clean;
	}

	/* Reading symbol information */
	type = SYMBOL_DATA(sym_buf, 0);
	target = SYMBOL_DATA(sym_buf, 8);
	domain =  SYMBOL_DATA(sym_buf, 16);
	addr = SYMBOL_UDATA(sym_buf, 24);
	*size = (ssize_t)SYMBOL_UDATA(sym_buf, 32);

	if (type != 1) {
		RTE_LOG(INFO, PMD, "wrong symbol type\n");
		ret = -EINVAL;
		goto clean;
	}
	if (!(target == 7 || target == -7)) {
		RTE_LOG(INFO, PMD, "wrong symbol target\n");
		ret = -EINVAL;
		goto clean;
	}
	if (domain == 8 || domain == 9) {
		RTE_LOG(INFO, PMD, "wrong symbol domain\n");
		ret = -EINVAL;
		goto clean;
	}

	/* Adjusting address based on symbol location */
	if ((domain >= 24) && (domain < 28) && (target == 7)) {
		addr = 1ULL << 37 | addr | ((uint64_t)domain & 0x3) << 35;
	} else {
		addr = 1ULL << 39 | addr | ((uint64_t)domain & 0x3f) << 32;
		if (target == -7)
			target = 7;
	}

	/* Configuring NFP expansion bar for mapping specific PCI BAR window */
	nfp_nspu_mem_bar_cfg(desc, expbar, target, addr, pcie_offset);

	/* This is the PCI BAR offset to use by the host */
	*pcie_offset |= ((expbar & 0x7) << (desc->barsz - 3));

clean:
	free(sym_buf);
	return ret;
}

int
nfp_nsp_fw_setup(nspu_desc_t *desc, const char *sym, uint64_t *pcie_offset)
{
	ssize_t bar0_sym_size;

	/* If the symbol resolution works, it implies a firmware app
	 * is already there.
	 */
	if (!nfp_nspu_set_bar_from_symbl(desc, sym, NFP_NET_PF_CFG_EXP_BAR,
					 pcie_offset, &bar0_sym_size))
		return 0;

	/* No firmware app detected or not the right one */
	RTE_LOG(INFO, PMD, "No firmware detected. Resetting NFP...\n");
	if (nfp_fw_reset(desc) < 0) {
		RTE_LOG(ERR, PMD, "nfp fw reset failed\n");
		return -ENODEV;
	}

	RTE_LOG(INFO, PMD, "Reset done.\n");
	RTE_LOG(INFO, PMD, "Uploading firmware...\n");

	if (nfp_fw_upload(desc) < 0) {
		RTE_LOG(ERR, PMD, "nfp fw upload failed\n");
		return -ENODEV;
	}

	RTE_LOG(INFO, PMD, "Done.\n");

	/* Now the symbol should be there */
	if (nfp_nspu_set_bar_from_symbl(desc, sym, NFP_NET_PF_CFG_EXP_BAR,
					pcie_offset, &bar0_sym_size)) {
		RTE_LOG(ERR, PMD, "nfp PF BAR symbol resolution failed\n");
		return -ENODEV;
	}

	return 0;
}

int
nfp_nsp_map_ctrl_bar(nspu_desc_t *desc, uint64_t *pcie_offset)
{
	ssize_t bar0_sym_size;

	if (nfp_nspu_set_bar_from_symbl(desc, "_pf0_net_bar0",
					NFP_NET_PF_CFG_EXP_BAR,
					pcie_offset, &bar0_sym_size))
		return -ENODEV;

	return 0;
}

/*
 * This is a hardcoded fixed NFP internal CPP bus address for the hw queues unit
 * inside the PCIE island.
 */
#define NFP_CPP_PCIE_QUEUES ((uint64_t)(1ULL << 39) |  0x80000 | \
			     ((uint64_t)0x4 & 0x3f) << 32)

/* Configure a specific NFP expansion bar for accessing the vNIC rx/tx BARs */
void
nfp_nsp_map_queues_bar(nspu_desc_t *desc, uint64_t *pcie_offset)
{
	nfp_nspu_mem_bar_cfg(desc, NFP_NET_PF_HW_QUEUES_EXP_BAR, 0,
			     NFP_CPP_PCIE_QUEUES, pcie_offset);

	/* This is the pcie offset to use by the host */
	*pcie_offset |= ((NFP_NET_PF_HW_QUEUES_EXP_BAR & 0x7) << (27 - 3));
}

int
nfp_nsp_eth_config(nspu_desc_t *desc, int port, int up)
{
	union eth_table_entry *entries, *entry;
	int modified;
	int ret, idx;
	int i;

	idx = port;

	RTE_LOG(INFO, PMD, "Hw ethernet port %d configure...\n", port);
	rte_spinlock_lock(&desc->nsp_lock);
	entries = malloc(NSP_ETH_TABLE_SIZE);
	if (!entries) {
		rte_spinlock_unlock(&desc->nsp_lock);
		return -ENOMEM;
	}

	ret = nspu_command(desc, NSP_CMD_READ_ETH_TABLE, 1, 0, entries,
			   NSP_ETH_TABLE_SIZE, 0);
	if (ret) {
		rte_spinlock_unlock(&desc->nsp_lock);
		free(entries);
		return ret;
	}

	entry = entries;

	for (i = 0; i < NSP_ETH_MAX_COUNT; i++) {
		/* ports in use do not appear sequentially in the table */
		if (!(entry->port & NSP_ETH_PORT_LANES_MASK)) {
			/* entry not in use */
			entry++;
			continue;
		}
		if (idx == 0)
			break;
		idx--;
		entry++;
	}

	if (i == NSP_ETH_MAX_COUNT) {
		rte_spinlock_unlock(&desc->nsp_lock);
		free(entries);
		return -EINVAL;
	}

	if (up && !(entry->state & NSP_ETH_STATE_CONFIGURED)) {
		entry->control |= NSP_ETH_STATE_CONFIGURED;
		modified = 1;
	}

	if (!up && (entry->state & NSP_ETH_STATE_CONFIGURED)) {
		entry->control &= ~NSP_ETH_STATE_CONFIGURED;
		modified = 1;
	}

	if (modified) {
		ret = nspu_command(desc, NSP_CMD_WRITE_ETH_TABLE, 0, 1, entries,
				   0, NSP_ETH_TABLE_SIZE);
		if (!ret)
			RTE_LOG(INFO, PMD,
				"Hw ethernet port %d configure done\n", port);
		else
			RTE_LOG(INFO, PMD,
				"Hw ethernet port %d configure failed\n", port);
	}
	rte_spinlock_unlock(&desc->nsp_lock);
	free(entries);
	return ret;
}

int
nfp_nsp_eth_read_table(nspu_desc_t *desc, union eth_table_entry **table)
{
	int ret;

	if (!table)
		return -EINVAL;

	RTE_LOG(INFO, PMD, "Reading hw ethernet table...\n");

	/* port 0 allocates the eth table and read it using NSPU */
	*table = malloc(NSP_ETH_TABLE_SIZE);
	if (!*table)
		return -ENOMEM;

	ret = nspu_command(desc, NSP_CMD_READ_ETH_TABLE, 1, 0, *table,
			   NSP_ETH_TABLE_SIZE, 0);
	if (ret)
		return ret;

	RTE_LOG(INFO, PMD, "Done\n");

	return 0;
}