DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2017 Intel Corporation
 */

#include <rte_cryptodev.h>
#include <rte_malloc.h>

#include "rte_cryptodev_scheduler_operations.h"
#include "scheduler_pmd_private.h"

#define DEF_PKT_SIZE_THRESHOLD			(0xffffff80)
#define SLAVE_IDX_SWITCH_MASK			(0x01)
#define PRIMARY_SLAVE_IDX			0
#define SECONDARY_SLAVE_IDX			1
#define NB_PKT_SIZE_SLAVES			2

/** pkt size based scheduler context */
struct psd_scheduler_ctx {
	uint32_t threshold;
};

/** pkt size based scheduler queue pair context */
struct psd_scheduler_qp_ctx {
	struct scheduler_slave primary_slave;
	struct scheduler_slave secondary_slave;
	uint32_t threshold;
	uint8_t deq_idx;
} __rte_cache_aligned;

/** scheduling operation variables' wrapping */
struct psd_schedule_op {
	uint8_t slave_idx;
	uint16_t pos;
};

static uint16_t
schedule_enqueue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
{
	struct scheduler_qp_ctx *qp_ctx = qp;
	struct psd_scheduler_qp_ctx *psd_qp_ctx = qp_ctx->private_qp_ctx;
	struct rte_crypto_op *sched_ops[NB_PKT_SIZE_SLAVES][nb_ops];
	uint32_t in_flight_ops[NB_PKT_SIZE_SLAVES] = {
			psd_qp_ctx->primary_slave.nb_inflight_cops,
			psd_qp_ctx->secondary_slave.nb_inflight_cops
	};
	struct psd_schedule_op enq_ops[NB_PKT_SIZE_SLAVES] = {
		{PRIMARY_SLAVE_IDX, 0}, {SECONDARY_SLAVE_IDX, 0}
	};
	struct psd_schedule_op *p_enq_op;
	uint16_t i, processed_ops_pri = 0, processed_ops_sec = 0;
	uint32_t job_len;

	if (unlikely(nb_ops == 0))
		return 0;

	for (i = 0; i < nb_ops && i < 4; i++) {
		rte_prefetch0(ops[i]->sym);
		rte_prefetch0(ops[i]->sym->session);
	}

	for (i = 0; (i < (nb_ops - 8)) && (nb_ops > 8); i += 4) {
		rte_prefetch0(ops[i + 4]->sym);
		rte_prefetch0(ops[i + 4]->sym->session);
		rte_prefetch0(ops[i + 5]->sym);
		rte_prefetch0(ops[i + 5]->sym->session);
		rte_prefetch0(ops[i + 6]->sym);
		rte_prefetch0(ops[i + 6]->sym->session);
		rte_prefetch0(ops[i + 7]->sym);
		rte_prefetch0(ops[i + 7]->sym->session);

		/* job_len is initialized as cipher data length, once
		 * it is 0, equals to auth data length
		 */
		job_len = ops[i]->sym->cipher.data.length;
		job_len += (ops[i]->sym->cipher.data.length == 0) *
				ops[i]->sym->auth.data.length;
		/* decide the target op based on the job length */
		p_enq_op = &enq_ops[!(job_len & psd_qp_ctx->threshold)];

		/* stop schedule cops before the queue is full, this shall
		 * prevent the failed enqueue
		 */
		if (p_enq_op->pos + in_flight_ops[p_enq_op->slave_idx] ==
				qp_ctx->max_nb_objs) {
			i = nb_ops;
			break;
		}

		sched_ops[p_enq_op->slave_idx][p_enq_op->pos] = ops[i];
		p_enq_op->pos++;

		job_len = ops[i+1]->sym->cipher.data.length;
		job_len += (ops[i+1]->sym->cipher.data.length == 0) *
				ops[i+1]->sym->auth.data.length;
		p_enq_op = &enq_ops[!(job_len & psd_qp_ctx->threshold)];

		if (p_enq_op->pos + in_flight_ops[p_enq_op->slave_idx] ==
				qp_ctx->max_nb_objs) {
			i = nb_ops;
			break;
		}

		sched_ops[p_enq_op->slave_idx][p_enq_op->pos] = ops[i+1];
		p_enq_op->pos++;

		job_len = ops[i+2]->sym->cipher.data.length;
		job_len += (ops[i+2]->sym->cipher.data.length == 0) *
				ops[i+2]->sym->auth.data.length;
		p_enq_op = &enq_ops[!(job_len & psd_qp_ctx->threshold)];

		if (p_enq_op->pos + in_flight_ops[p_enq_op->slave_idx] ==
				qp_ctx->max_nb_objs) {
			i = nb_ops;
			break;
		}

		sched_ops[p_enq_op->slave_idx][p_enq_op->pos] = ops[i+2];
		p_enq_op->pos++;

		job_len = ops[i+3]->sym->cipher.data.length;
		job_len += (ops[i+3]->sym->cipher.data.length == 0) *
				ops[i+3]->sym->auth.data.length;
		p_enq_op = &enq_ops[!(job_len & psd_qp_ctx->threshold)];

		if (p_enq_op->pos + in_flight_ops[p_enq_op->slave_idx] ==
				qp_ctx->max_nb_objs) {
			i = nb_ops;
			break;
		}

		sched_ops[p_enq_op->slave_idx][p_enq_op->pos] = ops[i+3];
		p_enq_op->pos++;
	}

	for (; i < nb_ops; i++) {
		job_len = ops[i]->sym->cipher.data.length;
		job_len += (ops[i]->sym->cipher.data.length == 0) *
				ops[i]->sym->auth.data.length;
		p_enq_op = &enq_ops[!(job_len & psd_qp_ctx->threshold)];

		if (p_enq_op->pos + in_flight_ops[p_enq_op->slave_idx] ==
				qp_ctx->max_nb_objs) {
			i = nb_ops;
			break;
		}

		sched_ops[p_enq_op->slave_idx][p_enq_op->pos] = ops[i];
		p_enq_op->pos++;
	}

	processed_ops_pri = rte_cryptodev_enqueue_burst(
			psd_qp_ctx->primary_slave.dev_id,
			psd_qp_ctx->primary_slave.qp_id,
			sched_ops[PRIMARY_SLAVE_IDX],
			enq_ops[PRIMARY_SLAVE_IDX].pos);
	/* enqueue shall not fail as the slave queue is monitored */
	RTE_ASSERT(processed_ops_pri == enq_ops[PRIMARY_SLAVE_IDX].pos);

	psd_qp_ctx->primary_slave.nb_inflight_cops += processed_ops_pri;

	processed_ops_sec = rte_cryptodev_enqueue_burst(
			psd_qp_ctx->secondary_slave.dev_id,
			psd_qp_ctx->secondary_slave.qp_id,
			sched_ops[SECONDARY_SLAVE_IDX],
			enq_ops[SECONDARY_SLAVE_IDX].pos);
	RTE_ASSERT(processed_ops_sec == enq_ops[SECONDARY_SLAVE_IDX].pos);

	psd_qp_ctx->secondary_slave.nb_inflight_cops += processed_ops_sec;

	return processed_ops_pri + processed_ops_sec;
}

static uint16_t
schedule_enqueue_ordering(void *qp, struct rte_crypto_op **ops,
		uint16_t nb_ops)
{
	struct rte_ring *order_ring =
			((struct scheduler_qp_ctx *)qp)->order_ring;
	uint16_t nb_ops_to_enq = get_max_enqueue_order_count(order_ring,
			nb_ops);
	uint16_t nb_ops_enqd = schedule_enqueue(qp, ops,
			nb_ops_to_enq);

	scheduler_order_insert(order_ring, ops, nb_ops_enqd);

	return nb_ops_enqd;
}

static uint16_t
schedule_dequeue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
{
	struct psd_scheduler_qp_ctx *qp_ctx =
			((struct scheduler_qp_ctx *)qp)->private_qp_ctx;
	struct scheduler_slave *slaves[NB_PKT_SIZE_SLAVES] = {
			&qp_ctx->primary_slave, &qp_ctx->secondary_slave};
	struct scheduler_slave *slave = slaves[qp_ctx->deq_idx];
	uint16_t nb_deq_ops_pri = 0, nb_deq_ops_sec = 0;

	if (slave->nb_inflight_cops) {
		nb_deq_ops_pri = rte_cryptodev_dequeue_burst(slave->dev_id,
			slave->qp_id, ops, nb_ops);
		slave->nb_inflight_cops -= nb_deq_ops_pri;
	}

	qp_ctx->deq_idx = (~qp_ctx->deq_idx) & SLAVE_IDX_SWITCH_MASK;

	if (nb_deq_ops_pri == nb_ops)
		return nb_deq_ops_pri;

	slave = slaves[qp_ctx->deq_idx];

	if (slave->nb_inflight_cops) {
		nb_deq_ops_sec = rte_cryptodev_dequeue_burst(slave->dev_id,
				slave->qp_id, &ops[nb_deq_ops_pri],
				nb_ops - nb_deq_ops_pri);
		slave->nb_inflight_cops -= nb_deq_ops_sec;

		if (!slave->nb_inflight_cops)
			qp_ctx->deq_idx = (~qp_ctx->deq_idx) &
					SLAVE_IDX_SWITCH_MASK;
	}

	return nb_deq_ops_pri + nb_deq_ops_sec;
}

static uint16_t
schedule_dequeue_ordering(void *qp, struct rte_crypto_op **ops,
		uint16_t nb_ops)
{
	struct rte_ring *order_ring =
			((struct scheduler_qp_ctx *)qp)->order_ring;

	schedule_dequeue(qp, ops, nb_ops);

	return scheduler_order_drain(order_ring, ops, nb_ops);
}

static int
slave_attach(__rte_unused struct rte_cryptodev *dev,
		__rte_unused uint8_t slave_id)
{
	return 0;
}

static int
slave_detach(__rte_unused struct rte_cryptodev *dev,
		__rte_unused uint8_t slave_id)
{
	return 0;
}

static int
scheduler_start(struct rte_cryptodev *dev)
{
	struct scheduler_ctx *sched_ctx = dev->data->dev_private;
	struct psd_scheduler_ctx *psd_ctx = sched_ctx->private_ctx;
	uint16_t i;

	/* for packet size based scheduler, nb_slaves have to >= 2 */
	if (sched_ctx->nb_slaves < NB_PKT_SIZE_SLAVES) {
		CS_LOG_ERR("not enough slaves to start");
		return -1;
	}

	for (i = 0; i < dev->data->nb_queue_pairs; i++) {
		struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[i];
		struct psd_scheduler_qp_ctx *ps_qp_ctx =
				qp_ctx->private_qp_ctx;

		ps_qp_ctx->primary_slave.dev_id =
				sched_ctx->slaves[PRIMARY_SLAVE_IDX].dev_id;
		ps_qp_ctx->primary_slave.qp_id = i;
		ps_qp_ctx->primary_slave.nb_inflight_cops = 0;

		ps_qp_ctx->secondary_slave.dev_id =
				sched_ctx->slaves[SECONDARY_SLAVE_IDX].dev_id;
		ps_qp_ctx->secondary_slave.qp_id = i;
		ps_qp_ctx->secondary_slave.nb_inflight_cops = 0;

		ps_qp_ctx->threshold = psd_ctx->threshold;
	}

	if (sched_ctx->reordering_enabled) {
		dev->enqueue_burst = &schedule_enqueue_ordering;
		dev->dequeue_burst = &schedule_dequeue_ordering;
	} else {
		dev->enqueue_burst = &schedule_enqueue;
		dev->dequeue_burst = &schedule_dequeue;
	}

	return 0;
}

static int
scheduler_stop(struct rte_cryptodev *dev)
{
	uint16_t i;

	for (i = 0; i < dev->data->nb_queue_pairs; i++) {
		struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[i];
		struct psd_scheduler_qp_ctx *ps_qp_ctx = qp_ctx->private_qp_ctx;

		if (ps_qp_ctx->primary_slave.nb_inflight_cops +
				ps_qp_ctx->secondary_slave.nb_inflight_cops) {
			CS_LOG_ERR("Some crypto ops left in slave queue");
			return -1;
		}
	}

	return 0;
}

static int
scheduler_config_qp(struct rte_cryptodev *dev, uint16_t qp_id)
{
	struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[qp_id];
	struct psd_scheduler_qp_ctx *ps_qp_ctx;

	ps_qp_ctx = rte_zmalloc_socket(NULL, sizeof(*ps_qp_ctx), 0,
			rte_socket_id());
	if (!ps_qp_ctx) {
		CS_LOG_ERR("failed allocate memory for private queue pair");
		return -ENOMEM;
	}

	qp_ctx->private_qp_ctx = (void *)ps_qp_ctx;

	return 0;
}

static int
scheduler_create_private_ctx(struct rte_cryptodev *dev)
{
	struct scheduler_ctx *sched_ctx = dev->data->dev_private;
	struct psd_scheduler_ctx *psd_ctx;

	if (sched_ctx->private_ctx) {
		rte_free(sched_ctx->private_ctx);
		sched_ctx->private_ctx = NULL;
	}

	psd_ctx = rte_zmalloc_socket(NULL, sizeof(struct psd_scheduler_ctx), 0,
			rte_socket_id());
	if (!psd_ctx) {
		CS_LOG_ERR("failed allocate memory");
		return -ENOMEM;
	}

	psd_ctx->threshold = DEF_PKT_SIZE_THRESHOLD;

	sched_ctx->private_ctx = (void *)psd_ctx;

	return 0;
}
static int
scheduler_option_set(struct rte_cryptodev *dev, uint32_t option_type,
		void *option)
{
	struct psd_scheduler_ctx *psd_ctx = ((struct scheduler_ctx *)
			dev->data->dev_private)->private_ctx;
	uint32_t threshold;

	if ((enum rte_cryptodev_schedule_option_type)option_type !=
			CDEV_SCHED_OPTION_THRESHOLD) {
		CS_LOG_ERR("Option not supported");
		return -EINVAL;
	}

	threshold = ((struct rte_cryptodev_scheduler_threshold_option *)
			option)->threshold;
	if (!rte_is_power_of_2(threshold)) {
		CS_LOG_ERR("Threshold is not power of 2");
		return -EINVAL;
	}

	psd_ctx->threshold = ~(threshold - 1);

	return 0;
}

static int
scheduler_option_get(struct rte_cryptodev *dev, uint32_t option_type,
		void *option)
{
	struct psd_scheduler_ctx *psd_ctx = ((struct scheduler_ctx *)
			dev->data->dev_private)->private_ctx;
	struct rte_cryptodev_scheduler_threshold_option *threshold_option;

	if ((enum rte_cryptodev_schedule_option_type)option_type !=
			CDEV_SCHED_OPTION_THRESHOLD) {
		CS_LOG_ERR("Option not supported");
		return -EINVAL;
	}

	threshold_option = option;
	threshold_option->threshold = (~psd_ctx->threshold) + 1;

	return 0;
}

struct rte_cryptodev_scheduler_ops scheduler_ps_ops = {
	slave_attach,
	slave_detach,
	scheduler_start,
	scheduler_stop,
	scheduler_config_qp,
	scheduler_create_private_ctx,
	scheduler_option_set,
	scheduler_option_get
};

struct rte_cryptodev_scheduler psd_scheduler = {
		.name = "packet-size-based-scheduler",
		.description = "scheduler which will distribute crypto op "
				"burst based on the packet size",
		.mode = CDEV_SCHED_MODE_PKT_SIZE_DISTR,
		.ops = &scheduler_ps_ops
};

struct rte_cryptodev_scheduler *pkt_size_based_distr_scheduler = &psd_scheduler;