DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2015-2018 Intel Corporation
 */

#include <rte_common.h>
#include <rte_dev.h>
#include <rte_malloc.h>
#include <rte_memzone.h>
#include <rte_pci.h>
#include <rte_bus_pci.h>
#include <rte_atomic.h>
#include <rte_prefetch.h>

#include "qat_logs.h"
#include "qat_device.h"
#include "qat_qp.h"
#include "qat_sym.h"
#include "qat_comp.h"
#include "adf_transport_access_macros.h"


#define ADF_MAX_DESC				4096
#define ADF_MIN_DESC				128

#define ADF_ARB_REG_SLOT			0x1000
#define ADF_ARB_RINGSRVARBEN_OFFSET		0x19C

#define WRITE_CSR_ARB_RINGSRVARBEN(csr_addr, index, value) \
	ADF_CSR_WR(csr_addr, ADF_ARB_RINGSRVARBEN_OFFSET + \
	(ADF_ARB_REG_SLOT * index), value)

__extension__
const struct qat_qp_hw_data qat_gen1_qps[QAT_MAX_SERVICES]
					 [ADF_MAX_QPS_ON_ANY_SERVICE] = {
	/* queue pairs which provide an asymmetric crypto service */
	[QAT_SERVICE_ASYMMETRIC] = {
		{
			.service_type = QAT_SERVICE_ASYMMETRIC,
			.hw_bundle_num = 0,
			.tx_ring_num = 0,
			.rx_ring_num = 8,
			.tx_msg_size = 64,
			.rx_msg_size = 32,

		}, {
			.service_type = QAT_SERVICE_ASYMMETRIC,
			.hw_bundle_num = 0,
			.tx_ring_num = 1,
			.rx_ring_num = 9,
			.tx_msg_size = 64,
			.rx_msg_size = 32,
		}
	},
	/* queue pairs which provide a symmetric crypto service */
	[QAT_SERVICE_SYMMETRIC] = {
		{
			.service_type = QAT_SERVICE_SYMMETRIC,
			.hw_bundle_num = 0,
			.tx_ring_num = 2,
			.rx_ring_num = 10,
			.tx_msg_size = 128,
			.rx_msg_size = 32,
		},
		{
			.service_type = QAT_SERVICE_SYMMETRIC,
			.hw_bundle_num = 0,
			.tx_ring_num = 3,
			.rx_ring_num = 11,
			.tx_msg_size = 128,
			.rx_msg_size = 32,
		}
	},
	/* queue pairs which provide a compression service */
	[QAT_SERVICE_COMPRESSION] = {
		{
			.service_type = QAT_SERVICE_COMPRESSION,
			.hw_bundle_num = 0,
			.tx_ring_num = 6,
			.rx_ring_num = 14,
			.tx_msg_size = 128,
			.rx_msg_size = 32,
		}, {
			.service_type = QAT_SERVICE_COMPRESSION,
			.hw_bundle_num = 0,
			.tx_ring_num = 7,
			.rx_ring_num = 15,
			.tx_msg_size = 128,
			.rx_msg_size = 32,
		}
	}
};

__extension__
const struct qat_qp_hw_data qat_gen3_qps[QAT_MAX_SERVICES]
					 [ADF_MAX_QPS_ON_ANY_SERVICE] = {
	/* queue pairs which provide an asymmetric crypto service */
	[QAT_SERVICE_ASYMMETRIC] = {
		{
			.service_type = QAT_SERVICE_ASYMMETRIC,
			.hw_bundle_num = 0,
			.tx_ring_num = 0,
			.rx_ring_num = 4,
			.tx_msg_size = 64,
			.rx_msg_size = 32,
		}
	},
	/* queue pairs which provide a symmetric crypto service */
	[QAT_SERVICE_SYMMETRIC] = {
		{
			.service_type = QAT_SERVICE_SYMMETRIC,
			.hw_bundle_num = 0,
			.tx_ring_num = 1,
			.rx_ring_num = 5,
			.tx_msg_size = 128,
			.rx_msg_size = 32,
		}
	},
	/* queue pairs which provide a compression service */
	[QAT_SERVICE_COMPRESSION] = {
		{
			.service_type = QAT_SERVICE_COMPRESSION,
			.hw_bundle_num = 0,
			.tx_ring_num = 3,
			.rx_ring_num = 7,
			.tx_msg_size = 128,
			.rx_msg_size = 32,
		}
	}
};

static int qat_qp_check_queue_alignment(uint64_t phys_addr,
	uint32_t queue_size_bytes);
static void qat_queue_delete(struct qat_queue *queue);
static int qat_queue_create(struct qat_pci_device *qat_dev,
	struct qat_queue *queue, struct qat_qp_config *, uint8_t dir);
static int adf_verify_queue_size(uint32_t msg_size, uint32_t msg_num,
	uint32_t *queue_size_for_csr);
static void adf_configure_queues(struct qat_qp *queue);
static void adf_queue_arb_enable(struct qat_queue *txq, void *base_addr,
	rte_spinlock_t *lock);
static void adf_queue_arb_disable(struct qat_queue *txq, void *base_addr,
	rte_spinlock_t *lock);


int qat_qps_per_service(const struct qat_qp_hw_data *qp_hw_data,
		enum qat_service_type service)
{
	int i, count;

	for (i = 0, count = 0; i < ADF_MAX_QPS_ON_ANY_SERVICE; i++)
		if (qp_hw_data[i].service_type == service)
			count++;
	return count;
}

static const struct rte_memzone *
queue_dma_zone_reserve(const char *queue_name, uint32_t queue_size,
			int socket_id)
{
	const struct rte_memzone *mz;

	mz = rte_memzone_lookup(queue_name);
	if (mz != 0) {
		if (((size_t)queue_size <= mz->len) &&
				((socket_id == SOCKET_ID_ANY) ||
					(socket_id == mz->socket_id))) {
			QAT_LOG(DEBUG, "re-use memzone already "
					"allocated for %s", queue_name);
			return mz;
		}

		QAT_LOG(ERR, "Incompatible memzone already "
				"allocated %s, size %u, socket %d. "
				"Requested size %u, socket %u",
				queue_name, (uint32_t)mz->len,
				mz->socket_id, queue_size, socket_id);
		return NULL;
	}

	QAT_LOG(DEBUG, "Allocate memzone for %s, size %u on socket %u",
					queue_name, queue_size, socket_id);
	return rte_memzone_reserve_aligned(queue_name, queue_size,
		socket_id, RTE_MEMZONE_IOVA_CONTIG, queue_size);
}

int qat_qp_setup(struct qat_pci_device *qat_dev,
		struct qat_qp **qp_addr,
		uint16_t queue_pair_id,
		struct qat_qp_config *qat_qp_conf)

{
	struct qat_qp *qp;
	struct rte_pci_device *pci_dev = qat_dev->pci_dev;
	char op_cookie_pool_name[RTE_RING_NAMESIZE];
	uint32_t i;

	QAT_LOG(DEBUG, "Setup qp %u on qat pci device %d gen %d",
		queue_pair_id, qat_dev->qat_dev_id, qat_dev->qat_dev_gen);

	if ((qat_qp_conf->nb_descriptors > ADF_MAX_DESC) ||
		(qat_qp_conf->nb_descriptors < ADF_MIN_DESC)) {
		QAT_LOG(ERR, "Can't create qp for %u descriptors",
				qat_qp_conf->nb_descriptors);
		return -EINVAL;
	}

	if (pci_dev->mem_resource[0].addr == NULL) {
		QAT_LOG(ERR, "Could not find VF config space "
				"(UIO driver attached?).");
		return -EINVAL;
	}

	/* Allocate the queue pair data structure. */
	qp = rte_zmalloc("qat PMD qp metadata",
			sizeof(*qp), RTE_CACHE_LINE_SIZE);
	if (qp == NULL) {
		QAT_LOG(ERR, "Failed to alloc mem for qp struct");
		return -ENOMEM;
	}
	qp->nb_descriptors = qat_qp_conf->nb_descriptors;
	qp->op_cookies = rte_zmalloc("qat PMD op cookie pointer",
			qat_qp_conf->nb_descriptors * sizeof(*qp->op_cookies),
			RTE_CACHE_LINE_SIZE);
	if (qp->op_cookies == NULL) {
		QAT_LOG(ERR, "Failed to alloc mem for cookie");
		rte_free(qp);
		return -ENOMEM;
	}

	qp->mmap_bar_addr = pci_dev->mem_resource[0].addr;
	qp->inflights16 = 0;

	if (qat_queue_create(qat_dev, &(qp->tx_q), qat_qp_conf,
					ADF_RING_DIR_TX) != 0) {
		QAT_LOG(ERR, "Tx queue create failed "
				"queue_pair_id=%u", queue_pair_id);
		goto create_err;
	}

	if (qat_queue_create(qat_dev, &(qp->rx_q), qat_qp_conf,
					ADF_RING_DIR_RX) != 0) {
		QAT_LOG(ERR, "Rx queue create failed "
				"queue_pair_id=%hu", queue_pair_id);
		qat_queue_delete(&(qp->tx_q));
		goto create_err;
	}

	adf_configure_queues(qp);
	adf_queue_arb_enable(&qp->tx_q, qp->mmap_bar_addr,
					&qat_dev->arb_csr_lock);

	snprintf(op_cookie_pool_name, RTE_RING_NAMESIZE,
					"%s%d_cookies_%s_qp%hu",
		pci_dev->driver->driver.name, qat_dev->qat_dev_id,
		qat_qp_conf->service_str, queue_pair_id);

	QAT_LOG(DEBUG, "cookiepool: %s", op_cookie_pool_name);
	qp->op_cookie_pool = rte_mempool_lookup(op_cookie_pool_name);
	if (qp->op_cookie_pool == NULL)
		qp->op_cookie_pool = rte_mempool_create(op_cookie_pool_name,
				qp->nb_descriptors,
				qat_qp_conf->cookie_size, 64, 0,
				NULL, NULL, NULL, NULL, qat_qp_conf->socket_id,
				0);
	if (!qp->op_cookie_pool) {
		QAT_LOG(ERR, "QAT PMD Cannot create"
				" op mempool");
		goto create_err;
	}

	for (i = 0; i < qp->nb_descriptors; i++) {
		if (rte_mempool_get(qp->op_cookie_pool, &qp->op_cookies[i])) {
			QAT_LOG(ERR, "QAT PMD Cannot get op_cookie");
			goto create_err;
		}
	}

	qp->qat_dev_gen = qat_dev->qat_dev_gen;
	qp->build_request = qat_qp_conf->build_request;
	qp->service_type = qat_qp_conf->hw->service_type;
	qp->qat_dev = qat_dev;

	QAT_LOG(DEBUG, "QP setup complete: id: %d, cookiepool: %s",
			queue_pair_id, op_cookie_pool_name);

	*qp_addr = qp;
	return 0;

create_err:
	if (qp->op_cookie_pool)
		rte_mempool_free(qp->op_cookie_pool);
	rte_free(qp->op_cookies);
	rte_free(qp);
	return -EFAULT;
}

int qat_qp_release(struct qat_qp **qp_addr)
{
	struct qat_qp *qp = *qp_addr;
	uint32_t i;

	if (qp == NULL) {
		QAT_LOG(DEBUG, "qp already freed");
		return 0;
	}

	QAT_LOG(DEBUG, "Free qp on qat_pci device %d",
				qp->qat_dev->qat_dev_id);

	/* Don't free memory if there are still responses to be processed */
	if (qp->inflights16 == 0) {
		qat_queue_delete(&(qp->tx_q));
		qat_queue_delete(&(qp->rx_q));
	} else {
		return -EAGAIN;
	}

	adf_queue_arb_disable(&(qp->tx_q), qp->mmap_bar_addr,
					&qp->qat_dev->arb_csr_lock);

	for (i = 0; i < qp->nb_descriptors; i++)
		rte_mempool_put(qp->op_cookie_pool, qp->op_cookies[i]);

	if (qp->op_cookie_pool)
		rte_mempool_free(qp->op_cookie_pool);

	rte_free(qp->op_cookies);
	rte_free(qp);
	*qp_addr = NULL;
	return 0;
}


static void qat_queue_delete(struct qat_queue *queue)
{
	const struct rte_memzone *mz;
	int status = 0;

	if (queue == NULL) {
		QAT_LOG(DEBUG, "Invalid queue");
		return;
	}
	QAT_LOG(DEBUG, "Free ring %d, memzone: %s",
			queue->hw_queue_number, queue->memz_name);

	mz = rte_memzone_lookup(queue->memz_name);
	if (mz != NULL)	{
		/* Write an unused pattern to the queue memory. */
		memset(queue->base_addr, 0x7F, queue->queue_size);
		status = rte_memzone_free(mz);
		if (status != 0)
			QAT_LOG(ERR, "Error %d on freeing queue %s",
					status, queue->memz_name);
	} else {
		QAT_LOG(DEBUG, "queue %s doesn't exist",
				queue->memz_name);
	}
}

static int
qat_queue_create(struct qat_pci_device *qat_dev, struct qat_queue *queue,
		struct qat_qp_config *qp_conf, uint8_t dir)
{
	uint64_t queue_base;
	void *io_addr;
	const struct rte_memzone *qp_mz;
	struct rte_pci_device *pci_dev = qat_dev->pci_dev;
	int ret = 0;
	uint16_t desc_size = (dir == ADF_RING_DIR_TX ?
			qp_conf->hw->tx_msg_size : qp_conf->hw->rx_msg_size);
	uint32_t queue_size_bytes = (qp_conf->nb_descriptors)*(desc_size);

	queue->hw_bundle_number = qp_conf->hw->hw_bundle_num;
	queue->hw_queue_number = (dir == ADF_RING_DIR_TX ?
			qp_conf->hw->tx_ring_num : qp_conf->hw->rx_ring_num);

	if (desc_size > ADF_MSG_SIZE_TO_BYTES(ADF_MAX_MSG_SIZE)) {
		QAT_LOG(ERR, "Invalid descriptor size %d", desc_size);
		return -EINVAL;
	}

	/*
	 * Allocate a memzone for the queue - create a unique name.
	 */
	snprintf(queue->memz_name, sizeof(queue->memz_name),
			"%s_%d_%s_%s_%d_%d",
		pci_dev->driver->driver.name, qat_dev->qat_dev_id,
		qp_conf->service_str, "qp_mem",
		queue->hw_bundle_number, queue->hw_queue_number);
	qp_mz = queue_dma_zone_reserve(queue->memz_name, queue_size_bytes,
			qp_conf->socket_id);
	if (qp_mz == NULL) {
		QAT_LOG(ERR, "Failed to allocate ring memzone");
		return -ENOMEM;
	}

	queue->base_addr = (char *)qp_mz->addr;
	queue->base_phys_addr = qp_mz->iova;
	if (qat_qp_check_queue_alignment(queue->base_phys_addr,
			queue_size_bytes)) {
		QAT_LOG(ERR, "Invalid alignment on queue create "
					" 0x%"PRIx64"\n",
					queue->base_phys_addr);
		ret = -EFAULT;
		goto queue_create_err;
	}

	if (adf_verify_queue_size(desc_size, qp_conf->nb_descriptors,
			&(queue->queue_size)) != 0) {
		QAT_LOG(ERR, "Invalid num inflights");
		ret = -EINVAL;
		goto queue_create_err;
	}

	queue->max_inflights = ADF_MAX_INFLIGHTS(queue->queue_size,
					ADF_BYTES_TO_MSG_SIZE(desc_size));
	queue->modulo_mask = (1 << ADF_RING_SIZE_MODULO(queue->queue_size)) - 1;

	if (queue->max_inflights < 2) {
		QAT_LOG(ERR, "Invalid num inflights");
		ret = -EINVAL;
		goto queue_create_err;
	}
	queue->head = 0;
	queue->tail = 0;
	queue->msg_size = desc_size;

	/*
	 * Write an unused pattern to the queue memory.
	 */
	memset(queue->base_addr, 0x7F, queue_size_bytes);

	queue_base = BUILD_RING_BASE_ADDR(queue->base_phys_addr,
					queue->queue_size);

	io_addr = pci_dev->mem_resource[0].addr;

	WRITE_CSR_RING_BASE(io_addr, queue->hw_bundle_number,
			queue->hw_queue_number, queue_base);

	QAT_LOG(DEBUG, "RING: Name:%s, size in CSR: %u, in bytes %u,"
		" nb msgs %u, msg_size %u, max_inflights %u modulo mask %u",
			queue->memz_name,
			queue->queue_size, queue_size_bytes,
			qp_conf->nb_descriptors, desc_size,
			queue->max_inflights, queue->modulo_mask);

	return 0;

queue_create_err:
	rte_memzone_free(qp_mz);
	return ret;
}

static int qat_qp_check_queue_alignment(uint64_t phys_addr,
					uint32_t queue_size_bytes)
{
	if (((queue_size_bytes - 1) & phys_addr) != 0)
		return -EINVAL;
	return 0;
}

static int adf_verify_queue_size(uint32_t msg_size, uint32_t msg_num,
	uint32_t *p_queue_size_for_csr)
{
	uint8_t i = ADF_MIN_RING_SIZE;

	for (; i <= ADF_MAX_RING_SIZE; i++)
		if ((msg_size * msg_num) ==
				(uint32_t)ADF_SIZE_TO_RING_SIZE_IN_BYTES(i)) {
			*p_queue_size_for_csr = i;
			return 0;
		}
	QAT_LOG(ERR, "Invalid ring size %d", msg_size * msg_num);
	return -EINVAL;
}

static void adf_queue_arb_enable(struct qat_queue *txq, void *base_addr,
					rte_spinlock_t *lock)
{
	uint32_t arb_csr_offset =  ADF_ARB_RINGSRVARBEN_OFFSET +
					(ADF_ARB_REG_SLOT *
							txq->hw_bundle_number);
	uint32_t value;

	rte_spinlock_lock(lock);
	value = ADF_CSR_RD(base_addr, arb_csr_offset);
	value |= (0x01 << txq->hw_queue_number);
	ADF_CSR_WR(base_addr, arb_csr_offset, value);
	rte_spinlock_unlock(lock);
}

static void adf_queue_arb_disable(struct qat_queue *txq, void *base_addr,
					rte_spinlock_t *lock)
{
	uint32_t arb_csr_offset =  ADF_ARB_RINGSRVARBEN_OFFSET +
					(ADF_ARB_REG_SLOT *
							txq->hw_bundle_number);
	uint32_t value;

	rte_spinlock_lock(lock);
	value = ADF_CSR_RD(base_addr, arb_csr_offset);
	value &= ~(0x01 << txq->hw_queue_number);
	ADF_CSR_WR(base_addr, arb_csr_offset, value);
	rte_spinlock_unlock(lock);
}

static void adf_configure_queues(struct qat_qp *qp)
{
	uint32_t queue_config;
	struct qat_queue *queue = &qp->tx_q;

	queue_config = BUILD_RING_CONFIG(queue->queue_size);

	WRITE_CSR_RING_CONFIG(qp->mmap_bar_addr, queue->hw_bundle_number,
			queue->hw_queue_number, queue_config);

	queue = &qp->rx_q;
	queue_config =
			BUILD_RESP_RING_CONFIG(queue->queue_size,
					ADF_RING_NEAR_WATERMARK_512,
					ADF_RING_NEAR_WATERMARK_0);

	WRITE_CSR_RING_CONFIG(qp->mmap_bar_addr, queue->hw_bundle_number,
			queue->hw_queue_number, queue_config);
}

static inline uint32_t adf_modulo(uint32_t data, uint32_t modulo_mask)
{
	return data & modulo_mask;
}

static inline void
txq_write_tail(struct qat_qp *qp, struct qat_queue *q) {
	WRITE_CSR_RING_TAIL(qp->mmap_bar_addr, q->hw_bundle_number,
			q->hw_queue_number, q->tail);
	q->nb_pending_requests = 0;
	q->csr_tail = q->tail;
}

static inline
void rxq_free_desc(struct qat_qp *qp, struct qat_queue *q)
{
	uint32_t old_head, new_head;
	uint32_t max_head;

	old_head = q->csr_head;
	new_head = q->head;
	max_head = qp->nb_descriptors * q->msg_size;

	/* write out free descriptors */
	void *cur_desc = (uint8_t *)q->base_addr + old_head;

	if (new_head < old_head) {
		memset(cur_desc, ADF_RING_EMPTY_SIG_BYTE, max_head - old_head);
		memset(q->base_addr, ADF_RING_EMPTY_SIG_BYTE, new_head);
	} else {
		memset(cur_desc, ADF_RING_EMPTY_SIG_BYTE, new_head - old_head);
	}
	q->nb_processed_responses = 0;
	q->csr_head = new_head;

	/* write current head to CSR */
	WRITE_CSR_RING_HEAD(qp->mmap_bar_addr, q->hw_bundle_number,
			    q->hw_queue_number, new_head);
}

uint16_t
qat_enqueue_op_burst(void *qp, void **ops, uint16_t nb_ops)
{
	register struct qat_queue *queue;
	struct qat_qp *tmp_qp = (struct qat_qp *)qp;
	register uint32_t nb_ops_sent = 0;
	register int ret;
	uint16_t nb_ops_possible = nb_ops;
	register uint8_t *base_addr;
	register uint32_t tail;
	int overflow;

	if (unlikely(nb_ops == 0))
		return 0;

	/* read params used a lot in main loop into registers */
	queue = &(tmp_qp->tx_q);
	base_addr = (uint8_t *)queue->base_addr;
	tail = queue->tail;

	/* Find how many can actually fit on the ring */
	tmp_qp->inflights16 += nb_ops;
	overflow = tmp_qp->inflights16 - queue->max_inflights;
	if (overflow > 0) {
		tmp_qp->inflights16 -= overflow;
		nb_ops_possible = nb_ops - overflow;
		if (nb_ops_possible == 0)
			return 0;
	}

	while (nb_ops_sent != nb_ops_possible) {
		ret = tmp_qp->build_request(*ops, base_addr + tail,
				tmp_qp->op_cookies[tail / queue->msg_size],
				tmp_qp->qat_dev_gen);
		if (ret != 0) {
			tmp_qp->stats.enqueue_err_count++;
			/*
			 * This message cannot be enqueued,
			 * decrease number of ops that wasn't sent
			 */
			tmp_qp->inflights16 -= nb_ops_possible - nb_ops_sent;
			if (nb_ops_sent == 0)
				return 0;
			goto kick_tail;
		}

		tail = adf_modulo(tail + queue->msg_size, queue->modulo_mask);
		ops++;
		nb_ops_sent++;
	}
kick_tail:
	queue->tail = tail;
	tmp_qp->stats.enqueued_count += nb_ops_sent;
	queue->nb_pending_requests += nb_ops_sent;
	if (tmp_qp->inflights16 < QAT_CSR_TAIL_FORCE_WRITE_THRESH ||
		    queue->nb_pending_requests > QAT_CSR_TAIL_WRITE_THRESH) {
		txq_write_tail(tmp_qp, queue);
	}
	return nb_ops_sent;
}

uint16_t
qat_dequeue_op_burst(void *qp, void **ops, uint16_t nb_ops)
{
	struct qat_queue *rx_queue, *tx_queue;
	struct qat_qp *tmp_qp = (struct qat_qp *)qp;
	uint32_t head;
	uint32_t resp_counter = 0;
	uint8_t *resp_msg;

	rx_queue = &(tmp_qp->rx_q);
	tx_queue = &(tmp_qp->tx_q);
	head = rx_queue->head;
	resp_msg = (uint8_t *)rx_queue->base_addr + rx_queue->head;

	while (*(uint32_t *)resp_msg != ADF_RING_EMPTY_SIG &&
			resp_counter != nb_ops) {

		if (tmp_qp->service_type == QAT_SERVICE_SYMMETRIC)
			qat_sym_process_response(ops, resp_msg);
		else if (tmp_qp->service_type == QAT_SERVICE_COMPRESSION)
			qat_comp_process_response(ops, resp_msg,
					&tmp_qp->stats.dequeue_err_count);

		head = adf_modulo(head + rx_queue->msg_size,
				  rx_queue->modulo_mask);

		resp_msg = (uint8_t *)rx_queue->base_addr + head;
		ops++;
		resp_counter++;
	}
	if (resp_counter > 0) {
		rx_queue->head = head;
		tmp_qp->stats.dequeued_count += resp_counter;
		rx_queue->nb_processed_responses += resp_counter;
		tmp_qp->inflights16 -= resp_counter;

		if (rx_queue->nb_processed_responses >
						QAT_CSR_HEAD_WRITE_THRESH)
			rxq_free_desc(tmp_qp, rx_queue);
	}
	/* also check if tail needs to be advanced */
	if (tmp_qp->inflights16 <= QAT_CSR_TAIL_FORCE_WRITE_THRESH &&
		tx_queue->tail != tx_queue->csr_tail) {
		txq_write_tail(tmp_qp, tx_queue);
	}
	return resp_counter;
}

__rte_weak int
qat_comp_process_response(void **op __rte_unused, uint8_t *resp __rte_unused,
			  uint64_t *dequeue_err_count __rte_unused)
{
	return  0;
}