DPDK logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2001 - 2015 Intel Corporation
 */

/*
 * 82543GC Gigabit Ethernet Controller (Fiber)
 * 82543GC Gigabit Ethernet Controller (Copper)
 * 82544EI Gigabit Ethernet Controller (Copper)
 * 82544EI Gigabit Ethernet Controller (Fiber)
 * 82544GC Gigabit Ethernet Controller (Copper)
 * 82544GC Gigabit Ethernet Controller (LOM)
 */

#include "e1000_api.h"

STATIC s32  e1000_init_phy_params_82543(struct e1000_hw *hw);
STATIC s32  e1000_init_nvm_params_82543(struct e1000_hw *hw);
STATIC s32  e1000_init_mac_params_82543(struct e1000_hw *hw);
STATIC s32  e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset,
				     u16 *data);
STATIC s32  e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset,
				      u16 data);
STATIC s32  e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw);
STATIC s32  e1000_phy_hw_reset_82543(struct e1000_hw *hw);
STATIC s32  e1000_reset_hw_82543(struct e1000_hw *hw);
STATIC s32  e1000_init_hw_82543(struct e1000_hw *hw);
STATIC s32  e1000_setup_link_82543(struct e1000_hw *hw);
STATIC s32  e1000_setup_copper_link_82543(struct e1000_hw *hw);
STATIC s32  e1000_setup_fiber_link_82543(struct e1000_hw *hw);
STATIC s32  e1000_check_for_copper_link_82543(struct e1000_hw *hw);
STATIC s32  e1000_check_for_fiber_link_82543(struct e1000_hw *hw);
STATIC s32  e1000_led_on_82543(struct e1000_hw *hw);
STATIC s32  e1000_led_off_82543(struct e1000_hw *hw);
STATIC void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset,
				   u32 value);
STATIC void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw);
STATIC s32  e1000_config_mac_to_phy_82543(struct e1000_hw *hw);
STATIC bool e1000_init_phy_disabled_82543(struct e1000_hw *hw);
STATIC void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
STATIC s32  e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw);
STATIC void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
STATIC u16  e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw);
STATIC void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
					   u16 count);
STATIC bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw);
STATIC void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state);

/**
 *  e1000_init_phy_params_82543 - Init PHY func ptrs.
 *  @hw: pointer to the HW structure
 **/
STATIC s32 e1000_init_phy_params_82543(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = E1000_SUCCESS;

	DEBUGFUNC("e1000_init_phy_params_82543");

	if (hw->phy.media_type != e1000_media_type_copper) {
		phy->type = e1000_phy_none;
		goto out;
	} else {
		phy->ops.power_up = e1000_power_up_phy_copper;
		phy->ops.power_down = e1000_power_down_phy_copper;
	}

	phy->addr		= 1;
	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
	phy->reset_delay_us	= 10000;
	phy->type		= e1000_phy_m88;

	/* Function Pointers */
	phy->ops.check_polarity	= e1000_check_polarity_m88;
	phy->ops.commit		= e1000_phy_sw_reset_generic;
	phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82543;
	phy->ops.get_cable_length = e1000_get_cable_length_m88;
	phy->ops.get_cfg_done	= e1000_get_cfg_done_generic;
	phy->ops.read_reg	= (hw->mac.type == e1000_82543)
				  ? e1000_read_phy_reg_82543
				  : e1000_read_phy_reg_m88;
	phy->ops.reset		= (hw->mac.type == e1000_82543)
				  ? e1000_phy_hw_reset_82543
				  : e1000_phy_hw_reset_generic;
	phy->ops.write_reg	= (hw->mac.type == e1000_82543)
				  ? e1000_write_phy_reg_82543
				  : e1000_write_phy_reg_m88;
	phy->ops.get_info	= e1000_get_phy_info_m88;

	/*
	 * The external PHY of the 82543 can be in a funky state.
	 * Resetting helps us read the PHY registers for acquiring
	 * the PHY ID.
	 */
	if (!e1000_init_phy_disabled_82543(hw)) {
		ret_val = phy->ops.reset(hw);
		if (ret_val) {
			DEBUGOUT("Resetting PHY during init failed.\n");
			goto out;
		}
		msec_delay(20);
	}

	ret_val = e1000_get_phy_id(hw);
	if (ret_val)
		goto out;

	/* Verify phy id */
	switch (hw->mac.type) {
	case e1000_82543:
		if (phy->id != M88E1000_E_PHY_ID) {
			ret_val = -E1000_ERR_PHY;
			goto out;
		}
		break;
	case e1000_82544:
		if (phy->id != M88E1000_I_PHY_ID) {
			ret_val = -E1000_ERR_PHY;
			goto out;
		}
		break;
	default:
		ret_val = -E1000_ERR_PHY;
		goto out;
		break;
	}

out:
	return ret_val;
}

/**
 *  e1000_init_nvm_params_82543 - Init NVM func ptrs.
 *  @hw: pointer to the HW structure
 **/
STATIC s32 e1000_init_nvm_params_82543(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;

	DEBUGFUNC("e1000_init_nvm_params_82543");

	nvm->type		= e1000_nvm_eeprom_microwire;
	nvm->word_size		= 64;
	nvm->delay_usec		= 50;
	nvm->address_bits	=  6;
	nvm->opcode_bits	=  3;

	/* Function Pointers */
	nvm->ops.read		= e1000_read_nvm_microwire;
	nvm->ops.update		= e1000_update_nvm_checksum_generic;
	nvm->ops.valid_led_default = e1000_valid_led_default_generic;
	nvm->ops.validate	= e1000_validate_nvm_checksum_generic;
	nvm->ops.write		= e1000_write_nvm_microwire;

	return E1000_SUCCESS;
}

/**
 *  e1000_init_mac_params_82543 - Init MAC func ptrs.
 *  @hw: pointer to the HW structure
 **/
STATIC s32 e1000_init_mac_params_82543(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;

	DEBUGFUNC("e1000_init_mac_params_82543");

	/* Set media type */
	switch (hw->device_id) {
	case E1000_DEV_ID_82543GC_FIBER:
	case E1000_DEV_ID_82544EI_FIBER:
		hw->phy.media_type = e1000_media_type_fiber;
		break;
	default:
		hw->phy.media_type = e1000_media_type_copper;
		break;
	}

	/* Set mta register count */
	mac->mta_reg_count = 128;
	/* Set rar entry count */
	mac->rar_entry_count = E1000_RAR_ENTRIES;

	/* Function pointers */

	/* bus type/speed/width */
	mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
	/* function id */
	mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
	/* reset */
	mac->ops.reset_hw = e1000_reset_hw_82543;
	/* hw initialization */
	mac->ops.init_hw = e1000_init_hw_82543;
	/* link setup */
	mac->ops.setup_link = e1000_setup_link_82543;
	/* physical interface setup */
	mac->ops.setup_physical_interface =
		(hw->phy.media_type == e1000_media_type_copper)
		 ? e1000_setup_copper_link_82543 : e1000_setup_fiber_link_82543;
	/* check for link */
	mac->ops.check_for_link =
		(hw->phy.media_type == e1000_media_type_copper)
		 ? e1000_check_for_copper_link_82543
		 : e1000_check_for_fiber_link_82543;
	/* link info */
	mac->ops.get_link_up_info =
		(hw->phy.media_type == e1000_media_type_copper)
		 ? e1000_get_speed_and_duplex_copper_generic
		 : e1000_get_speed_and_duplex_fiber_serdes_generic;
	/* multicast address update */
	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
	/* writing VFTA */
	mac->ops.write_vfta = e1000_write_vfta_82543;
	/* clearing VFTA */
	mac->ops.clear_vfta = e1000_clear_vfta_generic;
	/* turn on/off LED */
	mac->ops.led_on = e1000_led_on_82543;
	mac->ops.led_off = e1000_led_off_82543;
	/* clear hardware counters */
	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82543;

	/* Set tbi compatibility */
	if ((hw->mac.type != e1000_82543) ||
	    (hw->phy.media_type == e1000_media_type_fiber))
		e1000_set_tbi_compatibility_82543(hw, false);

	return E1000_SUCCESS;
}

/**
 *  e1000_init_function_pointers_82543 - Init func ptrs.
 *  @hw: pointer to the HW structure
 *
 *  Called to initialize all function pointers and parameters.
 **/
void e1000_init_function_pointers_82543(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_init_function_pointers_82543");

	hw->mac.ops.init_params = e1000_init_mac_params_82543;
	hw->nvm.ops.init_params = e1000_init_nvm_params_82543;
	hw->phy.ops.init_params = e1000_init_phy_params_82543;
}

/**
 *  e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status
 *  @hw: pointer to the HW structure
 *
 *  Returns the current status of 10-bit Interface (TBI) compatibility
 *  (enabled/disabled).
 **/
STATIC bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw)
{
	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
	bool state = false;

	DEBUGFUNC("e1000_tbi_compatibility_enabled_82543");

	if (hw->mac.type != e1000_82543) {
		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
		goto out;
	}

	state = !!(dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED);

out:
	return state;
}

/**
 *  e1000_set_tbi_compatibility_82543 - Set TBI compatibility
 *  @hw: pointer to the HW structure
 *  @state: enable/disable TBI compatibility
 *
 *  Enables or disabled 10-bit Interface (TBI) compatibility.
 **/
void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state)
{
	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;

	DEBUGFUNC("e1000_set_tbi_compatibility_82543");

	if (hw->mac.type != e1000_82543) {
		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
		goto out;
	}

	if (state)
		dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED;
	else
		dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED;

out:
	return;
}

/**
 *  e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status
 *  @hw: pointer to the HW structure
 *
 *  Returns the current status of 10-bit Interface (TBI) store bad packet (SBP)
 *  (enabled/disabled).
 **/
bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw)
{
	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
	bool state = false;

	DEBUGFUNC("e1000_tbi_sbp_enabled_82543");

	if (hw->mac.type != e1000_82543) {
		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
		goto out;
	}

	state = !!(dev_spec->tbi_compatibility & TBI_SBP_ENABLED);

out:
	return state;
}

/**
 *  e1000_set_tbi_sbp_82543 - Set TBI SBP
 *  @hw: pointer to the HW structure
 *  @state: enable/disable TBI store bad packet
 *
 *  Enables or disabled 10-bit Interface (TBI) store bad packet (SBP).
 **/
STATIC void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state)
{
	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;

	DEBUGFUNC("e1000_set_tbi_sbp_82543");

	if (state && e1000_tbi_compatibility_enabled_82543(hw))
		dev_spec->tbi_compatibility |= TBI_SBP_ENABLED;
	else
		dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED;

	return;
}

/**
 *  e1000_init_phy_disabled_82543 - Returns init PHY status
 *  @hw: pointer to the HW structure
 *
 *  Returns the current status of whether PHY initialization is disabled.
 *  True if PHY initialization is disabled else false.
 **/
STATIC bool e1000_init_phy_disabled_82543(struct e1000_hw *hw)
{
	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
	bool ret_val;

	DEBUGFUNC("e1000_init_phy_disabled_82543");

	if (hw->mac.type != e1000_82543) {
		ret_val = false;
		goto out;
	}

	ret_val = dev_spec->init_phy_disabled;

out:
	return ret_val;
}

/**
 *  e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled
 *  @hw: pointer to the HW structure
 *  @stats: Struct containing statistic register values
 *  @frame_len: The length of the frame in question
 *  @mac_addr: The Ethernet destination address of the frame in question
 *  @max_frame_size: The maximum frame size
 *
 *  Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
 **/
void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
				  struct e1000_hw_stats *stats, u32 frame_len,
				  u8 *mac_addr, u32 max_frame_size)
{
	if (!(e1000_tbi_sbp_enabled_82543(hw)))
		goto out;

	/* First adjust the frame length. */
	frame_len--;
	/*
	 * We need to adjust the statistics counters, since the hardware
	 * counters overcount this packet as a CRC error and undercount
	 * the packet as a good packet
	 */
	/* This packet should not be counted as a CRC error. */
	stats->crcerrs--;
	/* This packet does count as a Good Packet Received. */
	stats->gprc++;

	/* Adjust the Good Octets received counters */
	stats->gorc += frame_len;

	/*
	 * Is this a broadcast or multicast?  Check broadcast first,
	 * since the test for a multicast frame will test positive on
	 * a broadcast frame.
	 */
	if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff))
		/* Broadcast packet */
		stats->bprc++;
	else if (*mac_addr & 0x01)
		/* Multicast packet */
		stats->mprc++;

	/*
	 * In this case, the hardware has over counted the number of
	 * oversize frames.
	 */
	if ((frame_len == max_frame_size) && (stats->roc > 0))
		stats->roc--;

	/*
	 * Adjust the bin counters when the extra byte put the frame in the
	 * wrong bin. Remember that the frame_len was adjusted above.
	 */
	if (frame_len == 64) {
		stats->prc64++;
		stats->prc127--;
	} else if (frame_len == 127) {
		stats->prc127++;
		stats->prc255--;
	} else if (frame_len == 255) {
		stats->prc255++;
		stats->prc511--;
	} else if (frame_len == 511) {
		stats->prc511++;
		stats->prc1023--;
	} else if (frame_len == 1023) {
		stats->prc1023++;
		stats->prc1522--;
	} else if (frame_len == 1522) {
		stats->prc1522++;
	}

out:
	return;
}

/**
 *  e1000_read_phy_reg_82543 - Read PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Reads the PHY at offset and stores the information read to data.
 **/
STATIC s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 *data)
{
	u32 mdic;
	s32 ret_val = E1000_SUCCESS;

	DEBUGFUNC("e1000_read_phy_reg_82543");

	if (offset > MAX_PHY_REG_ADDRESS) {
		DEBUGOUT1("PHY Address %d is out of range\n", offset);
		ret_val = -E1000_ERR_PARAM;
		goto out;
	}

	/*
	 * We must first send a preamble through the MDIO pin to signal the
	 * beginning of an MII instruction.  This is done by sending 32
	 * consecutive "1" bits.
	 */
	e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);

	/*
	 * Now combine the next few fields that are required for a read
	 * operation.  We use this method instead of calling the
	 * e1000_shift_out_mdi_bits routine five different times.  The format
	 * of an MII read instruction consists of a shift out of 14 bits and
	 * is defined as follows:
	 *         <Preamble><SOF><Op Code><Phy Addr><Offset>
	 * followed by a shift in of 18 bits.  This first two bits shifted in
	 * are TurnAround bits used to avoid contention on the MDIO pin when a
	 * READ operation is performed.  These two bits are thrown away
	 * followed by a shift in of 16 bits which contains the desired data.
	 */
	mdic = (offset | (hw->phy.addr << 5) |
		(PHY_OP_READ << 10) | (PHY_SOF << 12));

	e1000_shift_out_mdi_bits_82543(hw, mdic, 14);

	/*
	 * Now that we've shifted out the read command to the MII, we need to
	 * "shift in" the 16-bit value (18 total bits) of the requested PHY
	 * register address.
	 */
	*data = e1000_shift_in_mdi_bits_82543(hw);

out:
	return ret_val;
}

/**
 *  e1000_write_phy_reg_82543 - Write PHY register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be written
 *  @data: pointer to the data to be written at offset
 *
 *  Writes data to the PHY at offset.
 **/
STATIC s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data)
{
	u32 mdic;
	s32 ret_val = E1000_SUCCESS;

	DEBUGFUNC("e1000_write_phy_reg_82543");

	if (offset > MAX_PHY_REG_ADDRESS) {
		DEBUGOUT1("PHY Address %d is out of range\n", offset);
		ret_val = -E1000_ERR_PARAM;
		goto out;
	}

	/*
	 * We'll need to use the SW defined pins to shift the write command
	 * out to the PHY. We first send a preamble to the PHY to signal the
	 * beginning of the MII instruction.  This is done by sending 32
	 * consecutive "1" bits.
	 */
	e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);

	/*
	 * Now combine the remaining required fields that will indicate a
	 * write operation. We use this method instead of calling the
	 * e1000_shift_out_mdi_bits routine for each field in the command. The
	 * format of a MII write instruction is as follows:
	 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
	 */
	mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) |
		(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
	mdic <<= 16;
	mdic |= (u32)data;

	e1000_shift_out_mdi_bits_82543(hw, mdic, 32);

out:
	return ret_val;
}

/**
 *  e1000_raise_mdi_clk_82543 - Raise Management Data Input clock
 *  @hw: pointer to the HW structure
 *  @ctrl: pointer to the control register
 *
 *  Raise the management data input clock by setting the MDC bit in the control
 *  register.
 **/
STATIC void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
{
	/*
	 * Raise the clock input to the Management Data Clock (by setting the
	 * MDC bit), and then delay a sufficient amount of time.
	 */
	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC));
	E1000_WRITE_FLUSH(hw);
	usec_delay(10);
}

/**
 *  e1000_lower_mdi_clk_82543 - Lower Management Data Input clock
 *  @hw: pointer to the HW structure
 *  @ctrl: pointer to the control register
 *
 *  Lower the management data input clock by clearing the MDC bit in the
 *  control register.
 **/
STATIC void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
{
	/*
	 * Lower the clock input to the Management Data Clock (by clearing the
	 * MDC bit), and then delay a sufficient amount of time.
	 */
	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC));
	E1000_WRITE_FLUSH(hw);
	usec_delay(10);
}

/**
 *  e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY
 *  @hw: pointer to the HW structure
 *  @data: data to send to the PHY
 *  @count: number of bits to shift out
 *
 *  We need to shift 'count' bits out to the PHY.  So, the value in the
 *  "data" parameter will be shifted out to the PHY one bit at a time.
 *  In order to do this, "data" must be broken down into bits.
 **/
STATIC void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
					   u16 count)
{
	u32 ctrl, mask;

	/*
	 * We need to shift "count" number of bits out to the PHY.  So, the
	 * value in the "data" parameter will be shifted out to the PHY one
	 * bit at a time.  In order to do this, "data" must be broken down
	 * into bits.
	 */
	mask = 0x01;
	mask <<= (count - 1);

	ctrl = E1000_READ_REG(hw, E1000_CTRL);

	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);

	while (mask) {
		/*
		 * A "1" is shifted out to the PHY by setting the MDIO bit to
		 * "1" and then raising and lowering the Management Data Clock.
		 * A "0" is shifted out to the PHY by setting the MDIO bit to
		 * "0" and then raising and lowering the clock.
		 */
		if (data & mask)
			ctrl |= E1000_CTRL_MDIO;
		else
			ctrl &= ~E1000_CTRL_MDIO;

		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
		E1000_WRITE_FLUSH(hw);

		usec_delay(10);

		e1000_raise_mdi_clk_82543(hw, &ctrl);
		e1000_lower_mdi_clk_82543(hw, &ctrl);

		mask >>= 1;
	}
}

/**
 *  e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY
 *  @hw: pointer to the HW structure
 *
 *  In order to read a register from the PHY, we need to shift 18 bits
 *  in from the PHY.  Bits are "shifted in" by raising the clock input to
 *  the PHY (setting the MDC bit), and then reading the value of the data out
 *  MDIO bit.
 **/
STATIC u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw)
{
	u32 ctrl;
	u16 data = 0;
	u8 i;

	/*
	 * In order to read a register from the PHY, we need to shift in a
	 * total of 18 bits from the PHY.  The first two bit (turnaround)
	 * times are used to avoid contention on the MDIO pin when a read
	 * operation is performed.  These two bits are ignored by us and
	 * thrown away.  Bits are "shifted in" by raising the input to the
	 * Management Data Clock (setting the MDC bit) and then reading the
	 * value of the MDIO bit.
	 */
	ctrl = E1000_READ_REG(hw, E1000_CTRL);

	/*
	 * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
	 * input.
	 */
	ctrl &= ~E1000_CTRL_MDIO_DIR;
	ctrl &= ~E1000_CTRL_MDIO;

	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
	E1000_WRITE_FLUSH(hw);

	/*
	 * Raise and lower the clock before reading in the data.  This accounts
	 * for the turnaround bits.  The first clock occurred when we clocked
	 * out the last bit of the Register Address.
	 */
	e1000_raise_mdi_clk_82543(hw, &ctrl);
	e1000_lower_mdi_clk_82543(hw, &ctrl);

	for (data = 0, i = 0; i < 16; i++) {
		data <<= 1;
		e1000_raise_mdi_clk_82543(hw, &ctrl);
		ctrl = E1000_READ_REG(hw, E1000_CTRL);
		/* Check to see if we shifted in a "1". */
		if (ctrl & E1000_CTRL_MDIO)
			data |= 1;
		e1000_lower_mdi_clk_82543(hw, &ctrl);
	}

	e1000_raise_mdi_clk_82543(hw, &ctrl);
	e1000_lower_mdi_clk_82543(hw, &ctrl);

	return data;
}

/**
 *  e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY
 *  @hw: pointer to the HW structure
 *
 *  Calls the function to force speed and duplex for the m88 PHY, and
 *  if the PHY is not auto-negotiating and the speed is forced to 10Mbit,
 *  then call the function for polarity reversal workaround.
 **/
STATIC s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw)
{
	s32 ret_val;

	DEBUGFUNC("e1000_phy_force_speed_duplex_82543");

	ret_val = e1000_phy_force_speed_duplex_m88(hw);
	if (ret_val)
		goto out;

	if (!hw->mac.autoneg && (hw->mac.forced_speed_duplex &
	    E1000_ALL_10_SPEED))
		ret_val = e1000_polarity_reversal_workaround_82543(hw);

out:
	return ret_val;
}

/**
 *  e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal
 *  @hw: pointer to the HW structure
 *
 *  When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity
 *  inadvertently.  To workaround the issue, we disable the transmitter on
 *  the PHY until we have established the link partner's link parameters.
 **/
STATIC s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw)
{
	s32 ret_val = E1000_SUCCESS;
	u16 mii_status_reg;
	u16 i;
	bool link;

	if (!(hw->phy.ops.write_reg))
		goto out;

	/* Polarity reversal workaround for forced 10F/10H links. */

	/* Disable the transmitter on the PHY */

	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
	if (ret_val)
		goto out;
	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
	if (ret_val)
		goto out;

	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
	if (ret_val)
		goto out;

	/*
	 * This loop will early-out if the NO link condition has been met.
	 * In other words, DO NOT use e1000_phy_has_link_generic() here.
	 */
	for (i = PHY_FORCE_TIME; i > 0; i--) {
		/*
		 * Read the MII Status Register and wait for Link Status bit
		 * to be clear.
		 */

		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
		if (ret_val)
			goto out;

		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
		if (ret_val)
			goto out;

		if (!(mii_status_reg & ~MII_SR_LINK_STATUS))
			break;
		msec_delay_irq(100);
	}

	/* Recommended delay time after link has been lost */
	msec_delay_irq(1000);

	/* Now we will re-enable the transmitter on the PHY */

	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
	if (ret_val)
		goto out;
	msec_delay_irq(50);
	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
	if (ret_val)
		goto out;
	msec_delay_irq(50);
	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
	if (ret_val)
		goto out;
	msec_delay_irq(50);
	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
	if (ret_val)
		goto out;

	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
	if (ret_val)
		goto out;

	/*
	 * Read the MII Status Register and wait for Link Status bit
	 * to be set.
	 */
	ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_TIME, 100000, &link);
	if (ret_val)
		goto out;

out:
	return ret_val;
}

/**
 *  e1000_phy_hw_reset_82543 - PHY hardware reset
 *  @hw: pointer to the HW structure
 *
 *  Sets the PHY_RESET_DIR bit in the extended device control register
 *  to put the PHY into a reset and waits for completion.  Once the reset
 *  has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out
 *  of reset.
 **/
STATIC s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw)
{
	u32 ctrl_ext;
	s32 ret_val;

	DEBUGFUNC("e1000_phy_hw_reset_82543");

	/*
	 * Read the Extended Device Control Register, assert the PHY_RESET_DIR
	 * bit to put the PHY into reset...
	 */
	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
	ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
	E1000_WRITE_FLUSH(hw);

	msec_delay(10);

	/* ...then take it out of reset. */
	ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
	E1000_WRITE_FLUSH(hw);

	usec_delay(150);

	if (!(hw->phy.ops.get_cfg_done))
		return E1000_SUCCESS;

	ret_val = hw->phy.ops.get_cfg_done(hw);

	return ret_val;
}

/**
 *  e1000_reset_hw_82543 - Reset hardware
 *  @hw: pointer to the HW structure
 *
 *  This resets the hardware into a known state.
 **/
STATIC s32 e1000_reset_hw_82543(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val = E1000_SUCCESS;

	DEBUGFUNC("e1000_reset_hw_82543");

	DEBUGOUT("Masking off all interrupts\n");
	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);

	E1000_WRITE_REG(hw, E1000_RCTL, 0);
	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
	E1000_WRITE_FLUSH(hw);

	e1000_set_tbi_sbp_82543(hw, false);

	/*
	 * Delay to allow any outstanding PCI transactions to complete before
	 * resetting the device
	 */
	msec_delay(10);

	ctrl = E1000_READ_REG(hw, E1000_CTRL);

	DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n");
	if (hw->mac.type == e1000_82543) {
		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
	} else {
		/*
		 * The 82544 can't ACK the 64-bit write when issuing the
		 * reset, so use IO-mapping as a workaround.
		 */
		E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
	}

	/*
	 * After MAC reset, force reload of NVM to restore power-on
	 * settings to device.
	 */
	hw->nvm.ops.reload(hw);
	msec_delay(2);

	/* Masking off and clearing any pending interrupts */
	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
	E1000_READ_REG(hw, E1000_ICR);

	return ret_val;
}

/**
 *  e1000_init_hw_82543 - Initialize hardware
 *  @hw: pointer to the HW structure
 *
 *  This inits the hardware readying it for operation.
 **/
STATIC s32 e1000_init_hw_82543(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
	u32 ctrl;
	s32 ret_val;
	u16 i;

	DEBUGFUNC("e1000_init_hw_82543");

	/* Disabling VLAN filtering */
	E1000_WRITE_REG(hw, E1000_VET, 0);
	mac->ops.clear_vfta(hw);

	/* Setup the receive address. */
	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);

	/* Zero out the Multicast HASH table */
	DEBUGOUT("Zeroing the MTA\n");
	for (i = 0; i < mac->mta_reg_count; i++) {
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
		E1000_WRITE_FLUSH(hw);
	}

	/*
	 * Set the PCI priority bit correctly in the CTRL register.  This
	 * determines if the adapter gives priority to receives, or if it
	 * gives equal priority to transmits and receives.
	 */
	if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) {
		ctrl = E1000_READ_REG(hw, E1000_CTRL);
		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
	}

	e1000_pcix_mmrbc_workaround_generic(hw);

	/* Setup link and flow control */
	ret_val = mac->ops.setup_link(hw);

	/*
	 * Clear all of the statistics registers (clear on read).  It is
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_82543(hw);

	return ret_val;
}

/**
 *  e1000_setup_link_82543 - Setup flow control and link settings
 *  @hw: pointer to the HW structure
 *
 *  Read the EEPROM to determine the initial polarity value and write the
 *  extended device control register with the information before calling
 *  the generic setup link function, which does the following:
 *  Determines which flow control settings to use, then configures flow
 *  control.  Calls the appropriate media-specific link configuration
 *  function.  Assuming the adapter has a valid link partner, a valid link
 *  should be established.  Assumes the hardware has previously been reset
 *  and the transmitter and receiver are not enabled.
 **/
STATIC s32 e1000_setup_link_82543(struct e1000_hw *hw)
{
	u32 ctrl_ext;
	s32  ret_val;
	u16 data;

	DEBUGFUNC("e1000_setup_link_82543");

	/*
	 * Take the 4 bits from NVM word 0xF that determine the initial
	 * polarity value for the SW controlled pins, and setup the
	 * Extended Device Control reg with that info.
	 * This is needed because one of the SW controlled pins is used for
	 * signal detection.  So this should be done before phy setup.
	 */
	if (hw->mac.type == e1000_82543) {
		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
		if (ret_val) {
			DEBUGOUT("NVM Read Error\n");
			ret_val = -E1000_ERR_NVM;
			goto out;
		}
		ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) <<
			    NVM_SWDPIO_EXT_SHIFT);
		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
	}

	ret_val = e1000_setup_link_generic(hw);

out:
	return ret_val;
}

/**
 *  e1000_setup_copper_link_82543 - Configure copper link settings
 *  @hw: pointer to the HW structure
 *
 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
 *  for link, once link is established calls to configure collision distance
 *  and flow control are called.
 **/
STATIC s32 e1000_setup_copper_link_82543(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;
	bool link;

	DEBUGFUNC("e1000_setup_copper_link_82543");

	ctrl = E1000_READ_REG(hw, E1000_CTRL) | E1000_CTRL_SLU;
	/*
	 * With 82543, we need to force speed and duplex on the MAC
	 * equal to what the PHY speed and duplex configuration is.
	 * In addition, we need to perform a hardware reset on the
	 * PHY to take it out of reset.
	 */
	if (hw->mac.type == e1000_82543) {
		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
		ret_val = hw->phy.ops.reset(hw);
		if (ret_val)
			goto out;
	} else {
		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
	}

	/* Set MDI/MDI-X, Polarity Reversal, and downshift settings */
	ret_val = e1000_copper_link_setup_m88(hw);
	if (ret_val)
		goto out;

	if (hw->mac.autoneg) {
		/*
		 * Setup autoneg and flow control advertisement and perform
		 * autonegotiation.
		 */
		ret_val = e1000_copper_link_autoneg(hw);
		if (ret_val)
			goto out;
	} else {
		/*
		 * PHY will be set to 10H, 10F, 100H or 100F
		 * depending on user settings.
		 */
		DEBUGOUT("Forcing Speed and Duplex\n");
		ret_val = e1000_phy_force_speed_duplex_82543(hw);
		if (ret_val) {
			DEBUGOUT("Error Forcing Speed and Duplex\n");
			goto out;
		}
	}

	/*
	 * Check link status. Wait up to 100 microseconds for link to become
	 * valid.
	 */
	ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
					     &link);
	if (ret_val)
		goto out;


	if (link) {
		DEBUGOUT("Valid link established!!!\n");
		/* Config the MAC and PHY after link is up */
		if (hw->mac.type == e1000_82544) {
			hw->mac.ops.config_collision_dist(hw);
		} else {
			ret_val = e1000_config_mac_to_phy_82543(hw);
			if (ret_val)
				goto out;
		}
		ret_val = e1000_config_fc_after_link_up_generic(hw);
	} else {
		DEBUGOUT("Unable to establish link!!!\n");
	}

out:
	return ret_val;
}

/**
 *  e1000_setup_fiber_link_82543 - Setup link for fiber
 *  @hw: pointer to the HW structure
 *
 *  Configures collision distance and flow control for fiber links.  Upon
 *  successful setup, poll for link.
 **/
STATIC s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;

	DEBUGFUNC("e1000_setup_fiber_link_82543");

	ctrl = E1000_READ_REG(hw, E1000_CTRL);

	/* Take the link out of reset */
	ctrl &= ~E1000_CTRL_LRST;

	hw->mac.ops.config_collision_dist(hw);

	ret_val = e1000_commit_fc_settings_generic(hw);
	if (ret_val)
		goto out;

	DEBUGOUT("Auto-negotiation enabled\n");

	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
	E1000_WRITE_FLUSH(hw);
	msec_delay(1);

	/*
	 * For these adapters, the SW definable pin 1 is cleared when the
	 * optics detect a signal.  If we have a signal, then poll for a
	 * "Link-Up" indication.
	 */
	if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1))
		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
	else
		DEBUGOUT("No signal detected\n");

out:
	return ret_val;
}

/**
 *  e1000_check_for_copper_link_82543 - Check for link (Copper)
 *  @hw: pointer to the HW structure
 *
 *  Checks the phy for link, if link exists, do the following:
 *   - check for downshift
 *   - do polarity workaround (if necessary)
 *   - configure collision distance
 *   - configure flow control after link up
 *   - configure tbi compatibility
 **/
STATIC s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 icr, rctl;
	s32 ret_val;
	u16 speed, duplex;
	bool link;

	DEBUGFUNC("e1000_check_for_copper_link_82543");

	if (!mac->get_link_status) {
		ret_val = E1000_SUCCESS;
		goto out;
	}

	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		goto out;

	if (!link)
		goto out; /* No link detected */

	mac->get_link_status = false;

	e1000_check_downshift_generic(hw);

	/*
	 * If we are forcing speed/duplex, then we can return since
	 * we have already determined whether we have link or not.
	 */
	if (!mac->autoneg) {
		/*
		 * If speed and duplex are forced to 10H or 10F, then we will
		 * implement the polarity reversal workaround.  We disable
		 * interrupts first, and upon returning, place the devices
		 * interrupt state to its previous value except for the link
		 * status change interrupt which will happened due to the
		 * execution of this workaround.
		 */
		if (mac->forced_speed_duplex & E1000_ALL_10_SPEED) {
			E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
			ret_val = e1000_polarity_reversal_workaround_82543(hw);
			icr = E1000_READ_REG(hw, E1000_ICR);
			E1000_WRITE_REG(hw, E1000_ICS, (icr & ~E1000_ICS_LSC));
			E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
		}

		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

	/*
	 * We have a M88E1000 PHY and Auto-Neg is enabled.  If we
	 * have Si on board that is 82544 or newer, Auto
	 * Speed Detection takes care of MAC speed/duplex
	 * configuration.  So we only need to configure Collision
	 * Distance in the MAC.  Otherwise, we need to force
	 * speed/duplex on the MAC to the current PHY speed/duplex
	 * settings.
	 */
	if (mac->type == e1000_82544)
		hw->mac.ops.config_collision_dist(hw);
	else {
		ret_val = e1000_config_mac_to_phy_82543(hw);
		if (ret_val) {
			DEBUGOUT("Error configuring MAC to PHY settings\n");
			goto out;
		}
	}

	/*
	 * Configure Flow Control now that Auto-Neg has completed.
	 * First, we need to restore the desired flow control
	 * settings because we may have had to re-autoneg with a
	 * different link partner.
	 */
	ret_val = e1000_config_fc_after_link_up_generic(hw);
	if (ret_val)
		DEBUGOUT("Error configuring flow control\n");

	/*
	 * At this point we know that we are on copper and we have
	 * auto-negotiated link.  These are conditions for checking the link
	 * partner capability register.  We use the link speed to determine if
	 * TBI compatibility needs to be turned on or off.  If the link is not
	 * at gigabit speed, then TBI compatibility is not needed.  If we are
	 * at gigabit speed, we turn on TBI compatibility.
	 */
	if (e1000_tbi_compatibility_enabled_82543(hw)) {
		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
		if (ret_val) {
			DEBUGOUT("Error getting link speed and duplex\n");
			return ret_val;
		}
		if (speed != SPEED_1000) {
			/*
			 * If link speed is not set to gigabit speed,
			 * we do not need to enable TBI compatibility.
			 */
			if (e1000_tbi_sbp_enabled_82543(hw)) {
				/*
				 * If we previously were in the mode,
				 * turn it off.
				 */
				e1000_set_tbi_sbp_82543(hw, false);
				rctl = E1000_READ_REG(hw, E1000_RCTL);
				rctl &= ~E1000_RCTL_SBP;
				E1000_WRITE_REG(hw, E1000_RCTL, rctl);
			}
		} else {
			/*
			 * If TBI compatibility is was previously off,
			 * turn it on. For compatibility with a TBI link
			 * partner, we will store bad packets. Some
			 * frames have an additional byte on the end and
			 * will look like CRC errors to to the hardware.
			 */
			if (!e1000_tbi_sbp_enabled_82543(hw)) {
				e1000_set_tbi_sbp_82543(hw, true);
				rctl = E1000_READ_REG(hw, E1000_RCTL);
				rctl |= E1000_RCTL_SBP;
				E1000_WRITE_REG(hw, E1000_RCTL, rctl);
			}
		}
	}
out:
	return ret_val;
}

/**
 *  e1000_check_for_fiber_link_82543 - Check for link (Fiber)
 *  @hw: pointer to the HW structure
 *
 *  Checks for link up on the hardware.  If link is not up and we have
 *  a signal, then we need to force link up.
 **/
STATIC s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 rxcw, ctrl, status;
	s32 ret_val = E1000_SUCCESS;

	DEBUGFUNC("e1000_check_for_fiber_link_82543");

	ctrl = E1000_READ_REG(hw, E1000_CTRL);
	status = E1000_READ_REG(hw, E1000_STATUS);
	rxcw = E1000_READ_REG(hw, E1000_RXCW);

	/*
	 * If we don't have link (auto-negotiation failed or link partner
	 * cannot auto-negotiate), the cable is plugged in (we have signal),
	 * and our link partner is not trying to auto-negotiate with us (we
	 * are receiving idles or data), we need to force link up. We also
	 * need to give auto-negotiation time to complete, in case the cable
	 * was just plugged in. The autoneg_failed flag does this.
	 */
	/* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */
	if ((!(ctrl & E1000_CTRL_SWDPIN1)) &&
	    (!(status & E1000_STATUS_LU)) &&
	    (!(rxcw & E1000_RXCW_C))) {
		if (!mac->autoneg_failed) {
			mac->autoneg_failed = true;
			ret_val = 0;
			goto out;
		}
		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");

		/* Disable auto-negotiation in the TXCW register */
		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));

		/* Force link-up and also force full-duplex. */
		ctrl = E1000_READ_REG(hw, E1000_CTRL);
		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);

		/* Configure Flow Control after forcing link up. */
		ret_val = e1000_config_fc_after_link_up_generic(hw);
		if (ret_val) {
			DEBUGOUT("Error configuring flow control\n");
			goto out;
		}
	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
		/*
		 * If we are forcing link and we are receiving /C/ ordered
		 * sets, re-enable auto-negotiation in the TXCW register
		 * and disable forced link in the Device Control register
		 * in an attempt to auto-negotiate with our link partner.
		 */
		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));

		mac->serdes_has_link = true;
	}

out:
	return ret_val;
}

/**
 *  e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings
 *  @hw: pointer to the HW structure
 *
 *  For the 82543 silicon, we need to set the MAC to match the settings
 *  of the PHY, even if the PHY is auto-negotiating.
 **/
STATIC s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val = E1000_SUCCESS;
	u16 phy_data;

	DEBUGFUNC("e1000_config_mac_to_phy_82543");

	if (!(hw->phy.ops.read_reg))
		goto out;

	/* Set the bits to force speed and duplex */
	ctrl = E1000_READ_REG(hw, E1000_CTRL);
	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);

	/*
	 * Set up duplex in the Device Control and Transmit Control
	 * registers depending on negotiated values.
	 */
	ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
	if (ret_val)
		goto out;

	ctrl &= ~E1000_CTRL_FD;
	if (phy_data & M88E1000_PSSR_DPLX)
		ctrl |= E1000_CTRL_FD;

	hw->mac.ops.config_collision_dist(hw);

	/*
	 * Set up speed in the Device Control register depending on
	 * negotiated values.
	 */
	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
		ctrl |= E1000_CTRL_SPD_1000;
	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
		ctrl |= E1000_CTRL_SPD_100;

	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);

out:
	return ret_val;
}

/**
 *  e1000_write_vfta_82543 - Write value to VLAN filter table
 *  @hw: pointer to the HW structure
 *  @offset: the 32-bit offset in which to write the value to.
 *  @value: the 32-bit value to write at location offset.
 *
 *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
 *  table.
 **/
STATIC void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value)
{
	u32 temp;

	DEBUGFUNC("e1000_write_vfta_82543");

	if ((hw->mac.type == e1000_82544) && (offset & 1)) {
		temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1);
		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
		E1000_WRITE_FLUSH(hw);
		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp);
		E1000_WRITE_FLUSH(hw);
	} else {
		e1000_write_vfta_generic(hw, offset, value);
	}
}

/**
 *  e1000_led_on_82543 - Turn on SW controllable LED
 *  @hw: pointer to the HW structure
 *
 *  Turns the SW defined LED on.
 **/
STATIC s32 e1000_led_on_82543(struct e1000_hw *hw)
{
	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);

	DEBUGFUNC("e1000_led_on_82543");

	if (hw->mac.type == e1000_82544 &&
	    hw->phy.media_type == e1000_media_type_copper) {
		/* Clear SW-definable Pin 0 to turn on the LED */
		ctrl &= ~E1000_CTRL_SWDPIN0;
		ctrl |= E1000_CTRL_SWDPIO0;
	} else {
		/* Fiber 82544 and all 82543 use this method */
		ctrl |= E1000_CTRL_SWDPIN0;
		ctrl |= E1000_CTRL_SWDPIO0;
	}
	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);

	return E1000_SUCCESS;
}

/**
 *  e1000_led_off_82543 - Turn off SW controllable LED
 *  @hw: pointer to the HW structure
 *
 *  Turns the SW defined LED off.
 **/
STATIC s32 e1000_led_off_82543(struct e1000_hw *hw)
{
	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);

	DEBUGFUNC("e1000_led_off_82543");

	if (hw->mac.type == e1000_82544 &&
	    hw->phy.media_type == e1000_media_type_copper) {
		/* Set SW-definable Pin 0 to turn off the LED */
		ctrl |= E1000_CTRL_SWDPIN0;
		ctrl |= E1000_CTRL_SWDPIO0;
	} else {
		ctrl &= ~E1000_CTRL_SWDPIN0;
		ctrl |= E1000_CTRL_SWDPIO0;
	}
	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);

	return E1000_SUCCESS;
}

/**
 *  e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters
 *  @hw: pointer to the HW structure
 *
 *  Clears the hardware counters by reading the counter registers.
 **/
STATIC void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_clear_hw_cntrs_82543");

	e1000_clear_hw_cntrs_base_generic(hw);

	E1000_READ_REG(hw, E1000_PRC64);
	E1000_READ_REG(hw, E1000_PRC127);
	E1000_READ_REG(hw, E1000_PRC255);
	E1000_READ_REG(hw, E1000_PRC511);
	E1000_READ_REG(hw, E1000_PRC1023);
	E1000_READ_REG(hw, E1000_PRC1522);
	E1000_READ_REG(hw, E1000_PTC64);
	E1000_READ_REG(hw, E1000_PTC127);
	E1000_READ_REG(hw, E1000_PTC255);
	E1000_READ_REG(hw, E1000_PTC511);
	E1000_READ_REG(hw, E1000_PTC1023);
	E1000_READ_REG(hw, E1000_PTC1522);

	E1000_READ_REG(hw, E1000_ALGNERRC);
	E1000_READ_REG(hw, E1000_RXERRC);
	E1000_READ_REG(hw, E1000_TNCRS);
	E1000_READ_REG(hw, E1000_CEXTERR);
	E1000_READ_REG(hw, E1000_TSCTC);
	E1000_READ_REG(hw, E1000_TSCTFC);
}