DPDK logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
/*-
 *   BSD LICENSE
 *
 *   Copyright(c) 2014-2015 Chelsio Communications.
 *   All rights reserved.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of Chelsio Communications nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <netinet/in.h>

#include <rte_interrupts.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_pci.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_tailq.h>
#include <rte_eal.h>
#include <rte_alarm.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_atomic.h>
#include <rte_malloc.h>
#include <rte_random.h>
#include <rte_dev.h>
#include <rte_byteorder.h>

#include "common.h"
#include "t4_regs.h"
#include "t4_regs_values.h"
#include "t4fw_interface.h"

static void init_link_config(struct link_config *lc, unsigned int caps);

/**
 * t4_read_mtu_tbl - returns the values in the HW path MTU table
 * @adap: the adapter
 * @mtus: where to store the MTU values
 * @mtu_log: where to store the MTU base-2 log (may be %NULL)
 *
 * Reads the HW path MTU table.
 */
void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
{
	u32 v;
	int i;

	for (i = 0; i < NMTUS; ++i) {
		t4_write_reg(adap, A_TP_MTU_TABLE,
			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
		v = t4_read_reg(adap, A_TP_MTU_TABLE);
		mtus[i] = G_MTUVALUE(v);
		if (mtu_log)
			mtu_log[i] = G_MTUWIDTH(v);
	}
}

/**
 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
 * @adap: the adapter
 * @addr: the indirect TP register address
 * @mask: specifies the field within the register to modify
 * @val: new value for the field
 *
 * Sets a field of an indirect TP register to the given value.
 */
void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
			    unsigned int mask, unsigned int val)
{
	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
	t4_write_reg(adap, A_TP_PIO_DATA, val);
}

/* The minimum additive increment value for the congestion control table */
#define CC_MIN_INCR 2U

/**
 * t4_load_mtus - write the MTU and congestion control HW tables
 * @adap: the adapter
 * @mtus: the values for the MTU table
 * @alpha: the values for the congestion control alpha parameter
 * @beta: the values for the congestion control beta parameter
 *
 * Write the HW MTU table with the supplied MTUs and the high-speed
 * congestion control table with the supplied alpha, beta, and MTUs.
 * We write the two tables together because the additive increments
 * depend on the MTUs.
 */
void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
		  const unsigned short *alpha, const unsigned short *beta)
{
	static const unsigned int avg_pkts[NCCTRL_WIN] = {
		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
		28672, 40960, 57344, 81920, 114688, 163840, 229376
	};

	unsigned int i, w;

	for (i = 0; i < NMTUS; ++i) {
		unsigned int mtu = mtus[i];
		unsigned int log2 = cxgbe_fls(mtu);

		if (!(mtu & ((1 << log2) >> 2)))     /* round */
			log2--;
		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));

		for (w = 0; w < NCCTRL_WIN; ++w) {
			unsigned int inc;

			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
				  CC_MIN_INCR);

			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
				     (w << 16) | (beta[w] << 13) | inc);
		}
	}
}

/**
 * t4_wait_op_done_val - wait until an operation is completed
 * @adapter: the adapter performing the operation
 * @reg: the register to check for completion
 * @mask: a single-bit field within @reg that indicates completion
 * @polarity: the value of the field when the operation is completed
 * @attempts: number of check iterations
 * @delay: delay in usecs between iterations
 * @valp: where to store the value of the register at completion time
 *
 * Wait until an operation is completed by checking a bit in a register
 * up to @attempts times.  If @valp is not NULL the value of the register
 * at the time it indicated completion is stored there.  Returns 0 if the
 * operation completes and -EAGAIN otherwise.
 */
int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
			int polarity, int attempts, int delay, u32 *valp)
{
	while (1) {
		u32 val = t4_read_reg(adapter, reg);

		if (!!(val & mask) == polarity) {
			if (valp)
				*valp = val;
			return 0;
		}
		if (--attempts == 0)
			return -EAGAIN;
		if (delay)
			udelay(delay);
	}
}

/**
 * t4_set_reg_field - set a register field to a value
 * @adapter: the adapter to program
 * @addr: the register address
 * @mask: specifies the portion of the register to modify
 * @val: the new value for the register field
 *
 * Sets a register field specified by the supplied mask to the
 * given value.
 */
void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
		      u32 val)
{
	u32 v = t4_read_reg(adapter, addr) & ~mask;

	t4_write_reg(adapter, addr, v | val);
	(void)t4_read_reg(adapter, addr);      /* flush */
}

/**
 * t4_read_indirect - read indirectly addressed registers
 * @adap: the adapter
 * @addr_reg: register holding the indirect address
 * @data_reg: register holding the value of the indirect register
 * @vals: where the read register values are stored
 * @nregs: how many indirect registers to read
 * @start_idx: index of first indirect register to read
 *
 * Reads registers that are accessed indirectly through an address/data
 * register pair.
 */
void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
		      unsigned int data_reg, u32 *vals, unsigned int nregs,
		      unsigned int start_idx)
{
	while (nregs--) {
		t4_write_reg(adap, addr_reg, start_idx);
		*vals++ = t4_read_reg(adap, data_reg);
		start_idx++;
	}
}

/**
 * t4_write_indirect - write indirectly addressed registers
 * @adap: the adapter
 * @addr_reg: register holding the indirect addresses
 * @data_reg: register holding the value for the indirect registers
 * @vals: values to write
 * @nregs: how many indirect registers to write
 * @start_idx: address of first indirect register to write
 *
 * Writes a sequential block of registers that are accessed indirectly
 * through an address/data register pair.
 */
void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
		       unsigned int data_reg, const u32 *vals,
		       unsigned int nregs, unsigned int start_idx)
{
	while (nregs--) {
		t4_write_reg(adap, addr_reg, start_idx++);
		t4_write_reg(adap, data_reg, *vals++);
	}
}

/**
 * t4_report_fw_error - report firmware error
 * @adap: the adapter
 *
 * The adapter firmware can indicate error conditions to the host.
 * If the firmware has indicated an error, print out the reason for
 * the firmware error.
 */
static void t4_report_fw_error(struct adapter *adap)
{
	static const char * const reason[] = {
		"Crash",			/* PCIE_FW_EVAL_CRASH */
		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
		"Unexpected Event",	/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
		"Device Shutdown",	/* PCIE_FW_EVAL_DEVICESHUTDOWN */
		"Reserved",			/* reserved */
	};
	u32 pcie_fw;

	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
	if (pcie_fw & F_PCIE_FW_ERR)
		pr_err("%s: Firmware reports adapter error: %s\n",
		       __func__, reason[G_PCIE_FW_EVAL(pcie_fw)]);
}

/*
 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
 */
static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
			 u32 mbox_addr)
{
	for ( ; nflit; nflit--, mbox_addr += 8)
		*rpl++ = htobe64(t4_read_reg64(adap, mbox_addr));
}

/*
 * Handle a FW assertion reported in a mailbox.
 */
static void fw_asrt(struct adapter *adap, u32 mbox_addr)
{
	struct fw_debug_cmd asrt;

	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
	pr_warn("FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
		asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
		be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
}

#define X_CIM_PF_NOACCESS 0xeeeeeeee

/*
 * If the Host OS Driver needs locking arround accesses to the mailbox, this
 * can be turned on via the T4_OS_NEEDS_MBOX_LOCKING CPP define ...
 */
/* makes single-statement usage a bit cleaner ... */
#ifdef T4_OS_NEEDS_MBOX_LOCKING
#define T4_OS_MBOX_LOCKING(x) x
#else
#define T4_OS_MBOX_LOCKING(x) do {} while (0)
#endif

/**
 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
 * @adap: the adapter
 * @mbox: index of the mailbox to use
 * @cmd: the command to write
 * @size: command length in bytes
 * @rpl: where to optionally store the reply
 * @sleep_ok: if true we may sleep while awaiting command completion
 * @timeout: time to wait for command to finish before timing out
 *	     (negative implies @sleep_ok=false)
 *
 * Sends the given command to FW through the selected mailbox and waits
 * for the FW to execute the command.  If @rpl is not %NULL it is used to
 * store the FW's reply to the command.  The command and its optional
 * reply are of the same length.  Some FW commands like RESET and
 * INITIALIZE can take a considerable amount of time to execute.
 * @sleep_ok determines whether we may sleep while awaiting the response.
 * If sleeping is allowed we use progressive backoff otherwise we spin.
 * Note that passing in a negative @timeout is an alternate mechanism
 * for specifying @sleep_ok=false.  This is useful when a higher level
 * interface allows for specification of @timeout but not @sleep_ok ...
 *
 * Returns 0 on success or a negative errno on failure.  A
 * failure can happen either because we are not able to execute the
 * command or FW executes it but signals an error.  In the latter case
 * the return value is the error code indicated by FW (negated).
 */
int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox,
			    const void __attribute__((__may_alias__)) *cmd,
			    int size, void *rpl, bool sleep_ok, int timeout)
{
	/*
	 * We delay in small increments at first in an effort to maintain
	 * responsiveness for simple, fast executing commands but then back
	 * off to larger delays to a maximum retry delay.
	 */
	static const int delay[] = {
		1, 1, 3, 5, 10, 10, 20, 50, 100
	};

	u32 v;
	u64 res;
	int i, ms;
	unsigned int delay_idx;
	__be64 *temp = (__be64 *)malloc(size * sizeof(char));
	__be64 *p = temp;
	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
	u32 ctl;
	struct mbox_entry entry;
	u32 pcie_fw = 0;

	if ((size & 15) || size > MBOX_LEN) {
		free(temp);
		return -EINVAL;
	}

	bzero(p, size);
	memcpy(p, (const __be64 *)cmd, size);

	/*
	 * If we have a negative timeout, that implies that we can't sleep.
	 */
	if (timeout < 0) {
		sleep_ok = false;
		timeout = -timeout;
	}

#ifdef T4_OS_NEEDS_MBOX_LOCKING
	/*
	 * Queue ourselves onto the mailbox access list.  When our entry is at
	 * the front of the list, we have rights to access the mailbox.  So we
	 * wait [for a while] till we're at the front [or bail out with an
	 * EBUSY] ...
	 */
	t4_os_atomic_add_tail(&entry, &adap->mbox_list, &adap->mbox_lock);

	delay_idx = 0;
	ms = delay[0];

	for (i = 0; ; i += ms) {
		/*
		 * If we've waited too long, return a busy indication.  This
		 * really ought to be based on our initial position in the
		 * mailbox access list but this is a start.  We very rarely
		 * contend on access to the mailbox ...  Also check for a
		 * firmware error which we'll report as a device error.
		 */
		pcie_fw = t4_read_reg(adap, A_PCIE_FW);
		if (i > 4 * timeout || (pcie_fw & F_PCIE_FW_ERR)) {
			t4_os_atomic_list_del(&entry, &adap->mbox_list,
					      &adap->mbox_lock);
			t4_report_fw_error(adap);
			return (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -EBUSY;
		}

		/*
		 * If we're at the head, break out and start the mailbox
		 * protocol.
		 */
		if (t4_os_list_first_entry(&adap->mbox_list) == &entry)
			break;

		/*
		 * Delay for a bit before checking again ...
		 */
		if (sleep_ok) {
			ms = delay[delay_idx];  /* last element may repeat */
			if (delay_idx < ARRAY_SIZE(delay) - 1)
				delay_idx++;
			msleep(ms);
		} else {
			rte_delay_ms(ms);
		}
	}
#endif /* T4_OS_NEEDS_MBOX_LOCKING */

	/*
	 * Attempt to gain access to the mailbox.
	 */
	for (i = 0; i < 4; i++) {
		ctl = t4_read_reg(adap, ctl_reg);
		v = G_MBOWNER(ctl);
		if (v != X_MBOWNER_NONE)
			break;
	}

	/*
	 * If we were unable to gain access, dequeue ourselves from the
	 * mailbox atomic access list and report the error to our caller.
	 */
	if (v != X_MBOWNER_PL) {
		T4_OS_MBOX_LOCKING(t4_os_atomic_list_del(&entry,
							 &adap->mbox_list,
							 &adap->mbox_lock));
		t4_report_fw_error(adap);
		return (v == X_MBOWNER_FW ? -EBUSY : -ETIMEDOUT);
	}

	/*
	 * If we gain ownership of the mailbox and there's a "valid" message
	 * in it, this is likely an asynchronous error message from the
	 * firmware.  So we'll report that and then proceed on with attempting
	 * to issue our own command ... which may well fail if the error
	 * presaged the firmware crashing ...
	 */
	if (ctl & F_MBMSGVALID) {
		dev_err(adap, "found VALID command in mbox %u: "
			"%llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
			(unsigned long long)t4_read_reg64(adap, data_reg),
			(unsigned long long)t4_read_reg64(adap, data_reg + 8),
			(unsigned long long)t4_read_reg64(adap, data_reg + 16),
			(unsigned long long)t4_read_reg64(adap, data_reg + 24),
			(unsigned long long)t4_read_reg64(adap, data_reg + 32),
			(unsigned long long)t4_read_reg64(adap, data_reg + 40),
			(unsigned long long)t4_read_reg64(adap, data_reg + 48),
			(unsigned long long)t4_read_reg64(adap, data_reg + 56));
	}

	/*
	 * Copy in the new mailbox command and send it on its way ...
	 */
	for (i = 0; i < size; i += 8, p++)
		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));

	CXGBE_DEBUG_MBOX(adap, "%s: mbox %u: %016llx %016llx %016llx %016llx "
			"%016llx %016llx %016llx %016llx\n", __func__,  (mbox),
			(unsigned long long)t4_read_reg64(adap, data_reg),
			(unsigned long long)t4_read_reg64(adap, data_reg + 8),
			(unsigned long long)t4_read_reg64(adap, data_reg + 16),
			(unsigned long long)t4_read_reg64(adap, data_reg + 24),
			(unsigned long long)t4_read_reg64(adap, data_reg + 32),
			(unsigned long long)t4_read_reg64(adap, data_reg + 40),
			(unsigned long long)t4_read_reg64(adap, data_reg + 48),
			(unsigned long long)t4_read_reg64(adap, data_reg + 56));

	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
	t4_read_reg(adap, ctl_reg);          /* flush write */

	delay_idx = 0;
	ms = delay[0];

	/*
	 * Loop waiting for the reply; bail out if we time out or the firmware
	 * reports an error.
	 */
	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
	for (i = 0; i < timeout && !(pcie_fw & F_PCIE_FW_ERR); i += ms) {
		if (sleep_ok) {
			ms = delay[delay_idx];  /* last element may repeat */
			if (delay_idx < ARRAY_SIZE(delay) - 1)
				delay_idx++;
			msleep(ms);
		} else {
			msleep(ms);
		}

		pcie_fw = t4_read_reg(adap, A_PCIE_FW);
		v = t4_read_reg(adap, ctl_reg);
		if (v == X_CIM_PF_NOACCESS)
			continue;
		if (G_MBOWNER(v) == X_MBOWNER_PL) {
			if (!(v & F_MBMSGVALID)) {
				t4_write_reg(adap, ctl_reg,
					     V_MBOWNER(X_MBOWNER_NONE));
				continue;
			}

			CXGBE_DEBUG_MBOX(adap,
			"%s: mbox %u: %016llx %016llx %016llx %016llx "
			"%016llx %016llx %016llx %016llx\n", __func__,  (mbox),
			(unsigned long long)t4_read_reg64(adap, data_reg),
			(unsigned long long)t4_read_reg64(adap, data_reg + 8),
			(unsigned long long)t4_read_reg64(adap, data_reg + 16),
			(unsigned long long)t4_read_reg64(adap, data_reg + 24),
			(unsigned long long)t4_read_reg64(adap, data_reg + 32),
			(unsigned long long)t4_read_reg64(adap, data_reg + 40),
			(unsigned long long)t4_read_reg64(adap, data_reg + 48),
			(unsigned long long)t4_read_reg64(adap, data_reg + 56));

			CXGBE_DEBUG_MBOX(adap,
				"command %#x completed in %d ms (%ssleeping)\n",
				*(const u8 *)cmd,
				i + ms, sleep_ok ? "" : "non-");

			res = t4_read_reg64(adap, data_reg);
			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
				fw_asrt(adap, data_reg);
				res = V_FW_CMD_RETVAL(EIO);
			} else if (rpl) {
				get_mbox_rpl(adap, rpl, size / 8, data_reg);
			}
			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
			T4_OS_MBOX_LOCKING(
				t4_os_atomic_list_del(&entry, &adap->mbox_list,
						      &adap->mbox_lock));
			return -G_FW_CMD_RETVAL((int)res);
		}
	}

	/*
	 * We timed out waiting for a reply to our mailbox command.  Report
	 * the error and also check to see if the firmware reported any
	 * errors ...
	 */
	dev_err(adap, "command %#x in mailbox %d timed out\n",
		*(const u8 *)cmd, mbox);
	T4_OS_MBOX_LOCKING(t4_os_atomic_list_del(&entry,
						 &adap->mbox_list,
						 &adap->mbox_lock));
	t4_report_fw_error(adap);
	free(temp);
	return (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
}

int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
		    void *rpl, bool sleep_ok)
{
	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
				       FW_CMD_MAX_TIMEOUT);
}

/**
 * t4_config_rss_range - configure a portion of the RSS mapping table
 * @adapter: the adapter
 * @mbox: mbox to use for the FW command
 * @viid: virtual interface whose RSS subtable is to be written
 * @start: start entry in the table to write
 * @n: how many table entries to write
 * @rspq: values for the "response queue" (Ingress Queue) lookup table
 * @nrspq: number of values in @rspq
 *
 * Programs the selected part of the VI's RSS mapping table with the
 * provided values.  If @nrspq < @n the supplied values are used repeatedly
 * until the full table range is populated.
 *
 * The caller must ensure the values in @rspq are in the range allowed for
 * @viid.
 */
int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
			int start, int n, const u16 *rspq, unsigned int nrspq)
{
	int ret;
	const u16 *rsp = rspq;
	const u16 *rsp_end = rspq + nrspq;
	struct fw_rss_ind_tbl_cmd cmd;

	memset(&cmd, 0, sizeof(cmd));
	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));

	/*
	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
	 * reserved.
	 */
	while (n > 0) {
		int nq = min(n, 32);
		int nq_packed = 0;
		__be32 *qp = &cmd.iq0_to_iq2;

		/*
		 * Set up the firmware RSS command header to send the next
		 * "nq" Ingress Queue IDs to the firmware.
		 */
		cmd.niqid = cpu_to_be16(nq);
		cmd.startidx = cpu_to_be16(start);

		/*
		 * "nq" more done for the start of the next loop.
		 */
		start += nq;
		n -= nq;

		/*
		 * While there are still Ingress Queue IDs to stuff into the
		 * current firmware RSS command, retrieve them from the
		 * Ingress Queue ID array and insert them into the command.
		 */
		while (nq > 0) {
			/*
			 * Grab up to the next 3 Ingress Queue IDs (wrapping
			 * around the Ingress Queue ID array if necessary) and
			 * insert them into the firmware RSS command at the
			 * current 3-tuple position within the commad.
			 */
			u16 qbuf[3];
			u16 *qbp = qbuf;
			int nqbuf = min(3, nq);

			nq -= nqbuf;
			qbuf[0] = 0;
			qbuf[1] = 0;
			qbuf[2] = 0;
			while (nqbuf && nq_packed < 32) {
				nqbuf--;
				nq_packed++;
				*qbp++ = *rsp++;
				if (rsp >= rsp_end)
					rsp = rspq;
			}
			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
		}

		/*
		 * Send this portion of the RRS table update to the firmware;
		 * bail out on any errors.
		 */
		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
		if (ret)
			return ret;
	}

	return 0;
}

/**
 * t4_config_vi_rss - configure per VI RSS settings
 * @adapter: the adapter
 * @mbox: mbox to use for the FW command
 * @viid: the VI id
 * @flags: RSS flags
 * @defq: id of the default RSS queue for the VI.
 *
 * Configures VI-specific RSS properties.
 */
int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
		     unsigned int flags, unsigned int defq)
{
	struct fw_rss_vi_config_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
			V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
}

/**
 * init_cong_ctrl - initialize congestion control parameters
 * @a: the alpha values for congestion control
 * @b: the beta values for congestion control
 *
 * Initialize the congestion control parameters.
 */
static void init_cong_ctrl(unsigned short *a, unsigned short *b)
{
	int i;

	for (i = 0; i < 9; i++) {
		a[i] = 1;
		b[i] = 0;
	}

	a[9] = 2;
	a[10] = 3;
	a[11] = 4;
	a[12] = 5;
	a[13] = 6;
	a[14] = 7;
	a[15] = 8;
	a[16] = 9;
	a[17] = 10;
	a[18] = 14;
	a[19] = 17;
	a[20] = 21;
	a[21] = 25;
	a[22] = 30;
	a[23] = 35;
	a[24] = 45;
	a[25] = 60;
	a[26] = 80;
	a[27] = 100;
	a[28] = 200;
	a[29] = 300;
	a[30] = 400;
	a[31] = 500;

	b[9] = 1;
	b[10] = 1;
	b[11] = 2;
	b[12] = 2;
	b[13] = 3;
	b[14] = 3;
	b[15] = 3;
	b[16] = 3;
	b[17] = 4;
	b[18] = 4;
	b[19] = 4;
	b[20] = 4;
	b[21] = 4;
	b[22] = 5;
	b[23] = 5;
	b[24] = 5;
	b[25] = 5;
	b[26] = 5;
	b[27] = 5;
	b[28] = 6;
	b[29] = 6;
	b[30] = 7;
	b[31] = 7;
}

#define INIT_CMD(var, cmd, rd_wr) do { \
	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
			F_FW_CMD_REQUEST | F_FW_CMD_##rd_wr); \
	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
} while (0)

int t4_get_core_clock(struct adapter *adapter, struct vpd_params *p)
{
	u32 cclk_param, cclk_val;
	int ret;

	/*
	 * Ask firmware for the Core Clock since it knows how to translate the
	 * Reference Clock ('V2') VPD field into a Core Clock value ...
	 */
	cclk_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
		      V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
			      1, &cclk_param, &cclk_val);
	if (ret) {
		dev_err(adapter, "%s: error in fetching from coreclock - %d\n",
			__func__, ret);
		return ret;
	}

	p->cclk = cclk_val;
	dev_debug(adapter, "%s: p->cclk = %u\n", __func__, p->cclk);
	return 0;
}

/* serial flash and firmware constants and flash config file constants */
enum {
	SF_ATTEMPTS = 10,             /* max retries for SF operations */

	/* flash command opcodes */
	SF_PROG_PAGE    = 2,          /* program page */
	SF_WR_DISABLE   = 4,          /* disable writes */
	SF_RD_STATUS    = 5,          /* read status register */
	SF_WR_ENABLE    = 6,          /* enable writes */
	SF_RD_DATA_FAST = 0xb,        /* read flash */
	SF_RD_ID        = 0x9f,       /* read ID */
	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
};

/**
 * sf1_read - read data from the serial flash
 * @adapter: the adapter
 * @byte_cnt: number of bytes to read
 * @cont: whether another operation will be chained
 * @lock: whether to lock SF for PL access only
 * @valp: where to store the read data
 *
 * Reads up to 4 bytes of data from the serial flash.  The location of
 * the read needs to be specified prior to calling this by issuing the
 * appropriate commands to the serial flash.
 */
static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
		    int lock, u32 *valp)
{
	int ret;

	if (!byte_cnt || byte_cnt > 4)
		return -EINVAL;
	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
		return -EBUSY;
	t4_write_reg(adapter, A_SF_OP,
		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
	if (!ret)
		*valp = t4_read_reg(adapter, A_SF_DATA);
	return ret;
}

/**
 * sf1_write - write data to the serial flash
 * @adapter: the adapter
 * @byte_cnt: number of bytes to write
 * @cont: whether another operation will be chained
 * @lock: whether to lock SF for PL access only
 * @val: value to write
 *
 * Writes up to 4 bytes of data to the serial flash.  The location of
 * the write needs to be specified prior to calling this by issuing the
 * appropriate commands to the serial flash.
 */
static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
		     int lock, u32 val)
{
	if (!byte_cnt || byte_cnt > 4)
		return -EINVAL;
	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
		return -EBUSY;
	t4_write_reg(adapter, A_SF_DATA, val);
	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
}

/**
 * t4_read_flash - read words from serial flash
 * @adapter: the adapter
 * @addr: the start address for the read
 * @nwords: how many 32-bit words to read
 * @data: where to store the read data
 * @byte_oriented: whether to store data as bytes or as words
 *
 * Read the specified number of 32-bit words from the serial flash.
 * If @byte_oriented is set the read data is stored as a byte array
 * (i.e., big-endian), otherwise as 32-bit words in the platform's
 * natural endianness.
 */
int t4_read_flash(struct adapter *adapter, unsigned int addr,
		  unsigned int nwords, u32 *data, int byte_oriented)
{
	int ret;

	if (((addr + nwords * sizeof(u32)) > adapter->params.sf_size) ||
	    (addr & 3))
		return -EINVAL;

	addr = rte_constant_bswap32(addr) | SF_RD_DATA_FAST;

	ret = sf1_write(adapter, 4, 1, 0, addr);
	if (ret != 0)
		return ret;

	ret = sf1_read(adapter, 1, 1, 0, data);
	if (ret != 0)
		return ret;

	for ( ; nwords; nwords--, data++) {
		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
		if (nwords == 1)
			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
		if (ret)
			return ret;
		if (byte_oriented)
			*data = cpu_to_be32(*data);
	}
	return 0;
}

/**
 * t4_get_fw_version - read the firmware version
 * @adapter: the adapter
 * @vers: where to place the version
 *
 * Reads the FW version from flash.
 */
int t4_get_fw_version(struct adapter *adapter, u32 *vers)
{
	return t4_read_flash(adapter, FLASH_FW_START +
			     offsetof(struct fw_hdr, fw_ver), 1, vers, 0);
}

/**
 * t4_get_tp_version - read the TP microcode version
 * @adapter: the adapter
 * @vers: where to place the version
 *
 * Reads the TP microcode version from flash.
 */
int t4_get_tp_version(struct adapter *adapter, u32 *vers)
{
	return t4_read_flash(adapter, FLASH_FW_START +
			     offsetof(struct fw_hdr, tp_microcode_ver),
			     1, vers, 0);
}

#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
		FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
		FW_PORT_CAP_SPEED_100G | FW_PORT_CAP_ANEG)

/**
 * t4_link_l1cfg - apply link configuration to MAC/PHY
 * @phy: the PHY to setup
 * @mac: the MAC to setup
 * @lc: the requested link configuration
 *
 * Set up a port's MAC and PHY according to a desired link configuration.
 * - If the PHY can auto-negotiate first decide what to advertise, then
 *   enable/disable auto-negotiation as desired, and reset.
 * - If the PHY does not auto-negotiate just reset it.
 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
 *   otherwise do it later based on the outcome of auto-negotiation.
 */
int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
		  struct link_config *lc)
{
	struct fw_port_cmd c;
	unsigned int fc = 0, mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);

	lc->link_ok = 0;
	if (lc->requested_fc & PAUSE_RX)
		fc |= FW_PORT_CAP_FC_RX;
	if (lc->requested_fc & PAUSE_TX)
		fc |= FW_PORT_CAP_FC_TX;

	memset(&c, 0, sizeof(c));
	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
				     V_FW_PORT_CMD_PORTID(port));
	c.action_to_len16 =
		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
			    FW_LEN16(c));

	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
		c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
					     fc);
		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
	} else if (lc->autoneg == AUTONEG_DISABLE) {
		c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
	} else {
		c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
	}

	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 * t4_flash_cfg_addr - return the address of the flash configuration file
 * @adapter: the adapter
 *
 * Return the address within the flash where the Firmware Configuration
 * File is stored, or an error if the device FLASH is too small to contain
 * a Firmware Configuration File.
 */
int t4_flash_cfg_addr(struct adapter *adapter)
{
	/*
	 * If the device FLASH isn't large enough to hold a Firmware
	 * Configuration File, return an error.
	 */
	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
		return -ENOSPC;

	return FLASH_CFG_START;
}

#define PF_INTR_MASK (F_PFSW | F_PFCIM)

/**
 * t4_intr_enable - enable interrupts
 * @adapter: the adapter whose interrupts should be enabled
 *
 * Enable PF-specific interrupts for the calling function and the top-level
 * interrupt concentrator for global interrupts.  Interrupts are already
 * enabled at each module, here we just enable the roots of the interrupt
 * hierarchies.
 *
 * Note: this function should be called only when the driver manages
 * non PF-specific interrupts from the various HW modules.  Only one PCI
 * function at a time should be doing this.
 */
void t4_intr_enable(struct adapter *adapter)
{
	u32 val = 0;
	u32 pf = G_SOURCEPF(t4_read_reg(adapter, A_PL_WHOAMI));

	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
	t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
		     F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
		     F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
		     F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
		     F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
		     F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
		     F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
	t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
}

/**
 * t4_intr_disable - disable interrupts
 * @adapter: the adapter whose interrupts should be disabled
 *
 * Disable interrupts.  We only disable the top-level interrupt
 * concentrators.  The caller must be a PCI function managing global
 * interrupts.
 */
void t4_intr_disable(struct adapter *adapter)
{
	u32 pf = G_SOURCEPF(t4_read_reg(adapter, A_PL_WHOAMI));

	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
	t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
}

/**
 * t4_get_port_type_description - return Port Type string description
 * @port_type: firmware Port Type enumeration
 */
const char *t4_get_port_type_description(enum fw_port_type port_type)
{
	static const char * const port_type_description[] = {
		"Fiber_XFI",
		"Fiber_XAUI",
		"BT_SGMII",
		"BT_XFI",
		"BT_XAUI",
		"KX4",
		"CX4",
		"KX",
		"KR",
		"SFP",
		"BP_AP",
		"BP4_AP",
		"QSFP_10G",
		"QSA",
		"QSFP",
		"BP40_BA",
	};

	if (port_type < ARRAY_SIZE(port_type_description))
		return port_type_description[port_type];
	return "UNKNOWN";
}

/**
 * t4_get_mps_bg_map - return the buffer groups associated with a port
 * @adap: the adapter
 * @idx: the port index
 *
 * Returns a bitmap indicating which MPS buffer groups are associated
 * with the given port.  Bit i is set if buffer group i is used by the
 * port.
 */
unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
{
	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));

	if (n == 0)
		return idx == 0 ? 0xf : 0;
	if (n == 1)
		return idx < 2 ? (3 << (2 * idx)) : 0;
	return 1 << idx;
}

/**
 * t4_get_port_stats - collect port statistics
 * @adap: the adapter
 * @idx: the port index
 * @p: the stats structure to fill
 *
 * Collect statistics related to the given port from HW.
 */
void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
{
	u32 bgmap = t4_get_mps_bg_map(adap, idx);

#define GET_STAT(name) \
	t4_read_reg64(adap, \
		      (is_t4(adap->params.chip) ? \
		       PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) :\
		       T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
#define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)

	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
	p->tx_drop             = GET_STAT(TX_PORT_DROP);
	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);

	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;

#undef GET_STAT
#undef GET_STAT_COM
}

/**
 * t4_get_port_stats_offset - collect port stats relative to a previous snapshot
 * @adap: The adapter
 * @idx: The port
 * @stats: Current stats to fill
 * @offset: Previous stats snapshot
 */
void t4_get_port_stats_offset(struct adapter *adap, int idx,
			      struct port_stats *stats,
			      struct port_stats *offset)
{
	u64 *s, *o;
	unsigned int i;

	t4_get_port_stats(adap, idx, stats);
	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
	     i < (sizeof(struct port_stats) / sizeof(u64));
	     i++, s++, o++)
		*s -= *o;
}

/**
 * t4_clr_port_stats - clear port statistics
 * @adap: the adapter
 * @idx: the port index
 *
 * Clear HW statistics for the given port.
 */
void t4_clr_port_stats(struct adapter *adap, int idx)
{
	unsigned int i;
	u32 bgmap = t4_get_mps_bg_map(adap, idx);
	u32 port_base_addr;

	if (is_t4(adap->params.chip))
		port_base_addr = PORT_BASE(idx);
	else
		port_base_addr = T5_PORT_BASE(idx);

	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
	     i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
		t4_write_reg(adap, port_base_addr + i, 0);
	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
	     i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
		t4_write_reg(adap, port_base_addr + i, 0);
	for (i = 0; i < 4; i++)
		if (bgmap & (1 << i)) {
			t4_write_reg(adap,
				     A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L +
				     i * 8, 0);
			t4_write_reg(adap,
				     A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L +
				     i * 8, 0);
		}
}

/**
 * t4_fw_hello - establish communication with FW
 * @adap: the adapter
 * @mbox: mailbox to use for the FW command
 * @evt_mbox: mailbox to receive async FW events
 * @master: specifies the caller's willingness to be the device master
 * @state: returns the current device state (if non-NULL)
 *
 * Issues a command to establish communication with FW.  Returns either
 * an error (negative integer) or the mailbox of the Master PF.
 */
int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
		enum dev_master master, enum dev_state *state)
{
	int ret;
	struct fw_hello_cmd c;
	u32 v;
	unsigned int master_mbox;
	int retries = FW_CMD_HELLO_RETRIES;

retry:
	memset(&c, 0, sizeof(c));
	INIT_CMD(c, HELLO, WRITE);
	c.err_to_clearinit = cpu_to_be32(
			V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
			V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
			V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox :
						M_FW_HELLO_CMD_MBMASTER) |
			V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
			V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
			F_FW_HELLO_CMD_CLEARINIT);

	/*
	 * Issue the HELLO command to the firmware.  If it's not successful
	 * but indicates that we got a "busy" or "timeout" condition, retry
	 * the HELLO until we exhaust our retry limit.  If we do exceed our
	 * retry limit, check to see if the firmware left us any error
	 * information and report that if so ...
	 */
	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret != FW_SUCCESS) {
		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
			goto retry;
		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
			t4_report_fw_error(adap);
		return ret;
	}

	v = be32_to_cpu(c.err_to_clearinit);
	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
	if (state) {
		if (v & F_FW_HELLO_CMD_ERR)
			*state = DEV_STATE_ERR;
		else if (v & F_FW_HELLO_CMD_INIT)
			*state = DEV_STATE_INIT;
		else
			*state = DEV_STATE_UNINIT;
	}

	/*
	 * If we're not the Master PF then we need to wait around for the
	 * Master PF Driver to finish setting up the adapter.
	 *
	 * Note that we also do this wait if we're a non-Master-capable PF and
	 * there is no current Master PF; a Master PF may show up momentarily
	 * and we wouldn't want to fail pointlessly.  (This can happen when an
	 * OS loads lots of different drivers rapidly at the same time).  In
	 * this case, the Master PF returned by the firmware will be
	 * M_PCIE_FW_MASTER so the test below will work ...
	 */
	if ((v & (F_FW_HELLO_CMD_ERR | F_FW_HELLO_CMD_INIT)) == 0 &&
	    master_mbox != mbox) {
		int waiting = FW_CMD_HELLO_TIMEOUT;

		/*
		 * Wait for the firmware to either indicate an error or
		 * initialized state.  If we see either of these we bail out
		 * and report the issue to the caller.  If we exhaust the
		 * "hello timeout" and we haven't exhausted our retries, try
		 * again.  Otherwise bail with a timeout error.
		 */
		for (;;) {
			u32 pcie_fw;

			msleep(50);
			waiting -= 50;

			/*
			 * If neither Error nor Initialialized are indicated
			 * by the firmware keep waiting till we exaust our
			 * timeout ... and then retry if we haven't exhausted
			 * our retries ...
			 */
			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
			if (!(pcie_fw & (F_PCIE_FW_ERR | F_PCIE_FW_INIT))) {
				if (waiting <= 0) {
					if (retries-- > 0)
						goto retry;

					return -ETIMEDOUT;
				}
				continue;
			}

			/*
			 * We either have an Error or Initialized condition
			 * report errors preferentially.
			 */
			if (state) {
				if (pcie_fw & F_PCIE_FW_ERR)
					*state = DEV_STATE_ERR;
				else if (pcie_fw & F_PCIE_FW_INIT)
					*state = DEV_STATE_INIT;
			}

			/*
			 * If we arrived before a Master PF was selected and
			 * there's not a valid Master PF, grab its identity
			 * for our caller.
			 */
			if (master_mbox == M_PCIE_FW_MASTER &&
			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
			break;
		}
	}

	return master_mbox;
}

/**
 * t4_fw_bye - end communication with FW
 * @adap: the adapter
 * @mbox: mailbox to use for the FW command
 *
 * Issues a command to terminate communication with FW.
 */
int t4_fw_bye(struct adapter *adap, unsigned int mbox)
{
	struct fw_bye_cmd c;

	memset(&c, 0, sizeof(c));
	INIT_CMD(c, BYE, WRITE);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 * t4_fw_reset - issue a reset to FW
 * @adap: the adapter
 * @mbox: mailbox to use for the FW command
 * @reset: specifies the type of reset to perform
 *
 * Issues a reset command of the specified type to FW.
 */
int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
{
	struct fw_reset_cmd c;

	memset(&c, 0, sizeof(c));
	INIT_CMD(c, RESET, WRITE);
	c.val = cpu_to_be32(reset);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
 * @adap: the adapter
 * @mbox: mailbox to use for the FW RESET command (if desired)
 * @force: force uP into RESET even if FW RESET command fails
 *
 * Issues a RESET command to firmware (if desired) with a HALT indication
 * and then puts the microprocessor into RESET state.  The RESET command
 * will only be issued if a legitimate mailbox is provided (mbox <=
 * M_PCIE_FW_MASTER).
 *
 * This is generally used in order for the host to safely manipulate the
 * adapter without fear of conflicting with whatever the firmware might
 * be doing.  The only way out of this state is to RESTART the firmware
 * ...
 */
int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
{
	int ret = 0;

	/*
	 * If a legitimate mailbox is provided, issue a RESET command
	 * with a HALT indication.
	 */
	if (mbox <= M_PCIE_FW_MASTER) {
		struct fw_reset_cmd c;

		memset(&c, 0, sizeof(c));
		INIT_CMD(c, RESET, WRITE);
		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
	}

	/*
	 * Normally we won't complete the operation if the firmware RESET
	 * command fails but if our caller insists we'll go ahead and put the
	 * uP into RESET.  This can be useful if the firmware is hung or even
	 * missing ...  We'll have to take the risk of putting the uP into
	 * RESET without the cooperation of firmware in that case.
	 *
	 * We also force the firmware's HALT flag to be on in case we bypassed
	 * the firmware RESET command above or we're dealing with old firmware
	 * which doesn't have the HALT capability.  This will serve as a flag
	 * for the incoming firmware to know that it's coming out of a HALT
	 * rather than a RESET ... if it's new enough to understand that ...
	 */
	if (ret == 0 || force) {
		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
				 F_PCIE_FW_HALT);
	}

	/*
	 * And we always return the result of the firmware RESET command
	 * even when we force the uP into RESET ...
	 */
	return ret;
}

/**
 * t4_fw_restart - restart the firmware by taking the uP out of RESET
 * @adap: the adapter
 * @mbox: mailbox to use for the FW RESET command (if desired)
 * @reset: if we want to do a RESET to restart things
 *
 * Restart firmware previously halted by t4_fw_halt().  On successful
 * return the previous PF Master remains as the new PF Master and there
 * is no need to issue a new HELLO command, etc.
 *
 * We do this in two ways:
 *
 * 1. If we're dealing with newer firmware we'll simply want to take
 *    the chip's microprocessor out of RESET.  This will cause the
 *    firmware to start up from its start vector.  And then we'll loop
 *    until the firmware indicates it's started again (PCIE_FW.HALT
 *    reset to 0) or we timeout.
 *
 * 2. If we're dealing with older firmware then we'll need to RESET
 *    the chip since older firmware won't recognize the PCIE_FW.HALT
 *    flag and automatically RESET itself on startup.
 */
int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
{
	if (reset) {
		/*
		 * Since we're directing the RESET instead of the firmware
		 * doing it automatically, we need to clear the PCIE_FW.HALT
		 * bit.
		 */
		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);

		/*
		 * If we've been given a valid mailbox, first try to get the
		 * firmware to do the RESET.  If that works, great and we can
		 * return success.  Otherwise, if we haven't been given a
		 * valid mailbox or the RESET command failed, fall back to
		 * hitting the chip with a hammer.
		 */
		if (mbox <= M_PCIE_FW_MASTER) {
			t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
			msleep(100);
			if (t4_fw_reset(adap, mbox,
					F_PIORST | F_PIORSTMODE) == 0)
				return 0;
		}

		t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
		msleep(2000);
	} else {
		int ms;

		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
			if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
				return FW_SUCCESS;
			msleep(100);
			ms += 100;
		}
		return -ETIMEDOUT;
	}
	return 0;
}

/**
 * t4_fixup_host_params_compat - fix up host-dependent parameters
 * @adap: the adapter
 * @page_size: the host's Base Page Size
 * @cache_line_size: the host's Cache Line Size
 * @chip_compat: maintain compatibility with designated chip
 *
 * Various registers in the chip contain values which are dependent on the
 * host's Base Page and Cache Line Sizes.  This function will fix all of
 * those registers with the appropriate values as passed in ...
 *
 * @chip_compat is used to limit the set of changes that are made
 * to be compatible with the indicated chip release.  This is used by
 * drivers to maintain compatibility with chip register settings when
 * the drivers haven't [yet] been updated with new chip support.
 */
int t4_fixup_host_params_compat(struct adapter *adap,
				unsigned int page_size,
				unsigned int cache_line_size,
				enum chip_type chip_compat)
{
	unsigned int page_shift = cxgbe_fls(page_size) - 1;
	unsigned int sge_hps = page_shift - 10;
	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
	unsigned int fl_align_log = cxgbe_fls(fl_align) - 1;

	t4_write_reg(adap, A_SGE_HOST_PAGE_SIZE,
		     V_HOSTPAGESIZEPF0(sge_hps) |
		     V_HOSTPAGESIZEPF1(sge_hps) |
		     V_HOSTPAGESIZEPF2(sge_hps) |
		     V_HOSTPAGESIZEPF3(sge_hps) |
		     V_HOSTPAGESIZEPF4(sge_hps) |
		     V_HOSTPAGESIZEPF5(sge_hps) |
		     V_HOSTPAGESIZEPF6(sge_hps) |
		     V_HOSTPAGESIZEPF7(sge_hps));

	if (is_t4(adap->params.chip) || is_t4(chip_compat))
		t4_set_reg_field(adap, A_SGE_CONTROL,
				 V_INGPADBOUNDARY(M_INGPADBOUNDARY) |
				 F_EGRSTATUSPAGESIZE,
				 V_INGPADBOUNDARY(fl_align_log -
						  X_INGPADBOUNDARY_SHIFT) |
				V_EGRSTATUSPAGESIZE(stat_len != 64));
	else {
		/*
		 * T5 introduced the separation of the Free List Padding and
		 * Packing Boundaries.  Thus, we can select a smaller Padding
		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
		 * Bandwidth, and use a Packing Boundary which is large enough
		 * to avoid false sharing between CPUs, etc.
		 *
		 * For the PCI Link, the smaller the Padding Boundary the
		 * better.  For the Memory Controller, a smaller Padding
		 * Boundary is better until we cross under the Memory Line
		 * Size (the minimum unit of transfer to/from Memory).  If we
		 * have a Padding Boundary which is smaller than the Memory
		 * Line Size, that'll involve a Read-Modify-Write cycle on the
		 * Memory Controller which is never good.  For T5 the smallest
		 * Padding Boundary which we can select is 32 bytes which is
		 * larger than any known Memory Controller Line Size so we'll
		 * use that.
		 */

		/*
		 * N.B. T5 has a different interpretation of the "0" value for
		 * the Packing Boundary.  This corresponds to 16 bytes instead
		 * of the expected 32 bytes.  We never have a Packing Boundary
		 * less than 32 bytes so we can't use that special value but
		 * on the other hand, if we wanted 32 bytes, the best we can
		 * really do is 64 bytes ...
		 */
		if (fl_align <= 32) {
			fl_align = 64;
			fl_align_log = 6;
		}
		t4_set_reg_field(adap, A_SGE_CONTROL,
				 V_INGPADBOUNDARY(M_INGPADBOUNDARY) |
				 F_EGRSTATUSPAGESIZE,
				 V_INGPADBOUNDARY(X_INGPCIEBOUNDARY_32B) |
				 V_EGRSTATUSPAGESIZE(stat_len != 64));
		t4_set_reg_field(adap, A_SGE_CONTROL2,
				 V_INGPACKBOUNDARY(M_INGPACKBOUNDARY),
				 V_INGPACKBOUNDARY(fl_align_log -
						   X_INGPACKBOUNDARY_SHIFT));
	}

	/*
	 * Adjust various SGE Free List Host Buffer Sizes.
	 *
	 * The first four entries are:
	 *
	 *   0: Host Page Size
	 *   1: 64KB
	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
	 *
	 * For the single-MTU buffers in unpacked mode we need to include
	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
	 * Padding boundary.  All of these are accommodated in the Factory
	 * Default Firmware Configuration File but we need to adjust it for
	 * this host's cache line size.
	 */
	t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE0, page_size);
	t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE2,
		     (t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE2) + fl_align - 1)
		     & ~(fl_align - 1));
	t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE3,
		     (t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE3) + fl_align - 1)
		     & ~(fl_align - 1));

	t4_write_reg(adap, A_ULP_RX_TDDP_PSZ, V_HPZ0(page_shift - 12));

	return 0;
}

/**
 * t4_fixup_host_params - fix up host-dependent parameters (T4 compatible)
 * @adap: the adapter
 * @page_size: the host's Base Page Size
 * @cache_line_size: the host's Cache Line Size
 *
 * Various registers in T4 contain values which are dependent on the
 * host's Base Page and Cache Line Sizes.  This function will fix all of
 * those registers with the appropriate values as passed in ...
 *
 * This routine makes changes which are compatible with T4 chips.
 */
int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
			 unsigned int cache_line_size)
{
	return t4_fixup_host_params_compat(adap, page_size, cache_line_size,
					   T4_LAST_REV);
}

/**
 * t4_fw_initialize - ask FW to initialize the device
 * @adap: the adapter
 * @mbox: mailbox to use for the FW command
 *
 * Issues a command to FW to partially initialize the device.  This
 * performs initialization that generally doesn't depend on user input.
 */
int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
{
	struct fw_initialize_cmd c;

	memset(&c, 0, sizeof(c));
	INIT_CMD(c, INITIALIZE, WRITE);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 * t4_query_params_rw - query FW or device parameters
 * @adap: the adapter
 * @mbox: mailbox to use for the FW command
 * @pf: the PF
 * @vf: the VF
 * @nparams: the number of parameters
 * @params: the parameter names
 * @val: the parameter values
 * @rw: Write and read flag
 *
 * Reads the value of FW or device parameters.  Up to 7 parameters can be
 * queried at once.
 */
static int t4_query_params_rw(struct adapter *adap, unsigned int mbox,
			      unsigned int pf, unsigned int vf,
			      unsigned int nparams, const u32 *params,
			      u32 *val, int rw)
{
	unsigned int i;
	int ret;
	struct fw_params_cmd c;
	__be32 *p = &c.param[0].mnem;

	if (nparams > 7)
		return -EINVAL;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
				  V_FW_PARAMS_CMD_PFN(pf) |
				  V_FW_PARAMS_CMD_VFN(vf));
	c.retval_len16 = cpu_to_be32(FW_LEN16(c));

	for (i = 0; i < nparams; i++) {
		*p++ = cpu_to_be32(*params++);
		if (rw)
			*p = cpu_to_be32(*(val + i));
		p++;
	}

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret == 0)
		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
			*val++ = be32_to_cpu(*p);
	return ret;
}

int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
		    unsigned int vf, unsigned int nparams, const u32 *params,
		    u32 *val)
{
	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
}

/**
 * t4_set_params_timeout - sets FW or device parameters
 * @adap: the adapter
 * @mbox: mailbox to use for the FW command
 * @pf: the PF
 * @vf: the VF
 * @nparams: the number of parameters
 * @params: the parameter names
 * @val: the parameter values
 * @timeout: the timeout time
 *
 * Sets the value of FW or device parameters.  Up to 7 parameters can be
 * specified at once.
 */
int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
			  unsigned int pf, unsigned int vf,
			  unsigned int nparams, const u32 *params,
			  const u32 *val, int timeout)
{
	struct fw_params_cmd c;
	__be32 *p = &c.param[0].mnem;

	if (nparams > 7)
		return -EINVAL;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
				  V_FW_PARAMS_CMD_PFN(pf) |
				  V_FW_PARAMS_CMD_VFN(vf));
	c.retval_len16 = cpu_to_be32(FW_LEN16(c));

	while (nparams--) {
		*p++ = cpu_to_be32(*params++);
		*p++ = cpu_to_be32(*val++);
	}

	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
}

int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
		  unsigned int vf, unsigned int nparams, const u32 *params,
		  const u32 *val)
{
	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
				     FW_CMD_MAX_TIMEOUT);
}

/**
 * t4_alloc_vi_func - allocate a virtual interface
 * @adap: the adapter
 * @mbox: mailbox to use for the FW command
 * @port: physical port associated with the VI
 * @pf: the PF owning the VI
 * @vf: the VF owning the VI
 * @nmac: number of MAC addresses needed (1 to 5)
 * @mac: the MAC addresses of the VI
 * @rss_size: size of RSS table slice associated with this VI
 * @portfunc: which Port Application Function MAC Address is desired
 * @idstype: Intrusion Detection Type
 *
 * Allocates a virtual interface for the given physical port.  If @mac is
 * not %NULL it contains the MAC addresses of the VI as assigned by FW.
 * @mac should be large enough to hold @nmac Ethernet addresses, they are
 * stored consecutively so the space needed is @nmac * 6 bytes.
 * Returns a negative error number or the non-negative VI id.
 */
int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
		     unsigned int port, unsigned int pf, unsigned int vf,
		     unsigned int nmac, u8 *mac, unsigned int *rss_size,
		     unsigned int portfunc, unsigned int idstype)
{
	int ret;
	struct fw_vi_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
				     V_FW_VI_CMD_FUNC(portfunc));
	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
	c.nmac = nmac - 1;

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret)
		return ret;

	if (mac) {
		memcpy(mac, c.mac, sizeof(c.mac));
		switch (nmac) {
		case 5:
			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
			/* FALLTHROUGH */
		case 4:
			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
			/* FALLTHROUGH */
		case 3:
			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
			/* FALLTHROUGH */
		case 2:
			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
			/* FALLTHROUGH */
		}
	}
	if (rss_size)
		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
	return G_FW_VI_CMD_VIID(cpu_to_be16(c.type_to_viid));
}

/**
 * t4_alloc_vi - allocate an [Ethernet Function] virtual interface
 * @adap: the adapter
 * @mbox: mailbox to use for the FW command
 * @port: physical port associated with the VI
 * @pf: the PF owning the VI
 * @vf: the VF owning the VI
 * @nmac: number of MAC addresses needed (1 to 5)
 * @mac: the MAC addresses of the VI
 * @rss_size: size of RSS table slice associated with this VI
 *
 * Backwards compatible and convieniance routine to allocate a Virtual
 * Interface with a Ethernet Port Application Function and Intrustion
 * Detection System disabled.
 */
int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
		unsigned int *rss_size)
{
	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
				FW_VI_FUNC_ETH, 0);
}

/**
 * t4_free_vi - free a virtual interface
 * @adap: the adapter
 * @mbox: mailbox to use for the FW command
 * @pf: the PF owning the VI
 * @vf: the VF owning the VI
 * @viid: virtual interface identifiler
 *
 * Free a previously allocated virtual interface.
 */
int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
	       unsigned int vf, unsigned int viid)
{
	struct fw_vi_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
				  F_FW_CMD_EXEC | V_FW_VI_CMD_PFN(pf) |
				  V_FW_VI_CMD_VFN(vf));
	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));

	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
}

/**
 * t4_set_rxmode - set Rx properties of a virtual interface
 * @adap: the adapter
 * @mbox: mailbox to use for the FW command
 * @viid: the VI id
 * @mtu: the new MTU or -1
 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
 * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
 *          -1 no change
 * @sleep_ok: if true we may sleep while awaiting command completion
 *
 * Sets Rx properties of a virtual interface.
 */
int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
		  bool sleep_ok)
{
	struct fw_vi_rxmode_cmd c;

	/* convert to FW values */
	if (mtu < 0)
		mtu = M_FW_VI_RXMODE_CMD_MTU;
	if (promisc < 0)
		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
	if (all_multi < 0)
		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
	if (bcast < 0)
		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
	if (vlanex < 0)
		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;

	memset(&c, 0, sizeof(c));
	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
				   V_FW_VI_RXMODE_CMD_VIID(viid));
	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
	c.mtu_to_vlanexen = cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
}

/**
 * t4_change_mac - modifies the exact-match filter for a MAC address
 * @adap: the adapter
 * @mbox: mailbox to use for the FW command
 * @viid: the VI id
 * @idx: index of existing filter for old value of MAC address, or -1
 * @addr: the new MAC address value
 * @persist: whether a new MAC allocation should be persistent
 * @add_smt: if true also add the address to the HW SMT
 *
 * Modifies an exact-match filter and sets it to the new MAC address if
 * @idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
 * latter case the address is added persistently if @persist is %true.
 *
 * Note that in general it is not possible to modify the value of a given
 * filter so the generic way to modify an address filter is to free the one
 * being used by the old address value and allocate a new filter for the
 * new address value.
 *
 * Returns a negative error number or the index of the filter with the new
 * MAC value.  Note that this index may differ from @idx.
 */
int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
		  int idx, const u8 *addr, bool persist, bool add_smt)
{
	int ret, mode;
	struct fw_vi_mac_cmd c;
	struct fw_vi_mac_exact *p = c.u.exact;
	int max_mac_addr = adap->params.arch.mps_tcam_size;

	if (idx < 0)                             /* new allocation */
		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;

	memset(&c, 0, sizeof(c));
	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
				   V_FW_VI_MAC_CMD_VIID(viid));
	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
				      V_FW_VI_MAC_CMD_IDX(idx));
	memcpy(p->macaddr, addr, sizeof(p->macaddr));

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret == 0) {
		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
		if (ret >= max_mac_addr)
			ret = -ENOMEM;
	}
	return ret;
}

/**
 * t4_enable_vi_params - enable/disable a virtual interface
 * @adap: the adapter
 * @mbox: mailbox to use for the FW command
 * @viid: the VI id
 * @rx_en: 1=enable Rx, 0=disable Rx
 * @tx_en: 1=enable Tx, 0=disable Tx
 * @dcb_en: 1=enable delivery of Data Center Bridging messages.
 *
 * Enables/disables a virtual interface.  Note that setting DCB Enable
 * only makes sense when enabling a Virtual Interface ...
 */
int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
{
	struct fw_vi_enable_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
				   V_FW_VI_ENABLE_CMD_VIID(viid));
	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
				     FW_LEN16(c));
	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
}

/**
 * t4_enable_vi - enable/disable a virtual interface
 * @adap: the adapter
 * @mbox: mailbox to use for the FW command
 * @viid: the VI id
 * @rx_en: 1=enable Rx, 0=disable Rx
 * @tx_en: 1=enable Tx, 0=disable Tx
 *
 * Enables/disables a virtual interface.  Note that setting DCB Enable
 * only makes sense when enabling a Virtual Interface ...
 */
int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
		 bool rx_en, bool tx_en)
{
	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
}

/**
 * t4_iq_start_stop - enable/disable an ingress queue and its FLs
 * @adap: the adapter
 * @mbox: mailbox to use for the FW command
 * @start: %true to enable the queues, %false to disable them
 * @pf: the PF owning the queues
 * @vf: the VF owning the queues
 * @iqid: ingress queue id
 * @fl0id: FL0 queue id or 0xffff if no attached FL0
 * @fl1id: FL1 queue id or 0xffff if no attached FL1
 *
 * Starts or stops an ingress queue and its associated FLs, if any.
 */
int t4_iq_start_stop(struct adapter *adap, unsigned int mbox, bool start,
		     unsigned int pf, unsigned int vf, unsigned int iqid,
		     unsigned int fl0id, unsigned int fl1id)
{
	struct fw_iq_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
				  V_FW_IQ_CMD_VFN(vf));
	c.alloc_to_len16 = cpu_to_be32(V_FW_IQ_CMD_IQSTART(start) |
				       V_FW_IQ_CMD_IQSTOP(!start) |
				       FW_LEN16(c));
	c.iqid = cpu_to_be16(iqid);
	c.fl0id = cpu_to_be16(fl0id);
	c.fl1id = cpu_to_be16(fl1id);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 * t4_iq_free - free an ingress queue and its FLs
 * @adap: the adapter
 * @mbox: mailbox to use for the FW command
 * @pf: the PF owning the queues
 * @vf: the VF owning the queues
 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
 * @iqid: ingress queue id
 * @fl0id: FL0 queue id or 0xffff if no attached FL0
 * @fl1id: FL1 queue id or 0xffff if no attached FL1
 *
 * Frees an ingress queue and its associated FLs, if any.
 */
int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
	       unsigned int fl0id, unsigned int fl1id)
{
	struct fw_iq_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
				  V_FW_IQ_CMD_VFN(vf));
	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
	c.iqid = cpu_to_be16(iqid);
	c.fl0id = cpu_to_be16(fl0id);
	c.fl1id = cpu_to_be16(fl1id);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 * t4_eth_eq_free - free an Ethernet egress queue
 * @adap: the adapter
 * @mbox: mailbox to use for the FW command
 * @pf: the PF owning the queue
 * @vf: the VF owning the queue
 * @eqid: egress queue id
 *
 * Frees an Ethernet egress queue.
 */
int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
		   unsigned int vf, unsigned int eqid)
{
	struct fw_eq_eth_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
				  V_FW_EQ_ETH_CMD_PFN(pf) |
				  V_FW_EQ_ETH_CMD_VFN(vf));
	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 * t4_handle_fw_rpl - process a FW reply message
 * @adap: the adapter
 * @rpl: start of the FW message
 *
 * Processes a FW message, such as link state change messages.
 */
int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
{
	u8 opcode = *(const u8 *)rpl;

	/*
	 * This might be a port command ... this simplifies the following
	 * conditionals ...  We can get away with pre-dereferencing
	 * action_to_len16 because it's in the first 16 bytes and all messages
	 * will be at least that long.
	 */
	const struct fw_port_cmd *p = (const void *)rpl;
	unsigned int action =
		G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));

	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
		/* link/module state change message */
		int speed = 0, fc = 0, i;
		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
		struct port_info *pi = NULL;
		struct link_config *lc;
		u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
		int link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
		u32 mod = G_FW_PORT_CMD_MODTYPE(stat);

		if (stat & F_FW_PORT_CMD_RXPAUSE)
			fc |= PAUSE_RX;
		if (stat & F_FW_PORT_CMD_TXPAUSE)
			fc |= PAUSE_TX;
		if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
			speed = ETH_LINK_SPEED_100;
		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
			speed = ETH_LINK_SPEED_1000;
		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
			speed = ETH_LINK_SPEED_10000;
		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
			speed = ETH_LINK_SPEED_40G;

		for_each_port(adap, i) {
			pi = adap2pinfo(adap, i);
			if (pi->tx_chan == chan)
				break;
		}
		lc = &pi->link_cfg;

		if (mod != pi->mod_type) {
			pi->mod_type = mod;
			t4_os_portmod_changed(adap, i);
		}
		if (link_ok != lc->link_ok || speed != lc->speed ||
		    fc != lc->fc) {                    /* something changed */
			if (!link_ok && lc->link_ok) {
				static const char * const reason[] = {
					"Link Down",
					"Remote Fault",
					"Auto-negotiation Failure",
					"Reserved",
					"Insufficient Airflow",
					"Unable To Determine Reason",
					"No RX Signal Detected",
					"Reserved",
				};
				unsigned int rc = G_FW_PORT_CMD_LINKDNRC(stat);

				dev_warn(adap, "Port %d link down, reason: %s\n",
					 chan, reason[rc]);
			}
			lc->link_ok = link_ok;
			lc->speed = speed;
			lc->fc = fc;
			lc->supported = be16_to_cpu(p->u.info.pcap);
		}
	} else {
		dev_warn(adap, "Unknown firmware reply %d\n", opcode);
		return -EINVAL;
	}
	return 0;
}

void t4_reset_link_config(struct adapter *adap, int idx)
{
	struct port_info *pi = adap2pinfo(adap, idx);
	struct link_config *lc = &pi->link_cfg;

	lc->link_ok = 0;
	lc->requested_speed = 0;
	lc->requested_fc = 0;
	lc->speed = 0;
	lc->fc = 0;
}

/**
 * init_link_config - initialize a link's SW state
 * @lc: structure holding the link state
 * @caps: link capabilities
 *
 * Initializes the SW state maintained for each link, including the link's
 * capabilities and default speed/flow-control/autonegotiation settings.
 */
static void init_link_config(struct link_config *lc,
			     unsigned int caps)
{
	lc->supported = caps;
	lc->requested_speed = 0;
	lc->speed = 0;
	lc->requested_fc = 0;
	lc->fc = 0;
	if (lc->supported & FW_PORT_CAP_ANEG) {
		lc->advertising = lc->supported & ADVERT_MASK;
		lc->autoneg = AUTONEG_ENABLE;
	} else {
		lc->advertising = 0;
		lc->autoneg = AUTONEG_DISABLE;
	}
}

/**
 * t4_wait_dev_ready - wait till to reads of registers work
 *
 * Right after the device is RESET is can take a small amount of time
 * for it to respond to register reads.  Until then, all reads will
 * return either 0xff...ff or 0xee...ee.  Return an error if reads
 * don't work within a reasonable time frame.
 */
static int t4_wait_dev_ready(struct adapter *adapter)
{
	u32 whoami;

	whoami = t4_read_reg(adapter, A_PL_WHOAMI);

	if (whoami != 0xffffffff && whoami != X_CIM_PF_NOACCESS)
		return 0;

	msleep(500);
	whoami = t4_read_reg(adapter, A_PL_WHOAMI);
	return (whoami != 0xffffffff && whoami != X_CIM_PF_NOACCESS
			? 0 : -EIO);
}

struct flash_desc {
	u32 vendor_and_model_id;
	u32 size_mb;
};

int t4_get_flash_params(struct adapter *adapter)
{
	/*
	 * Table for non-Numonix supported flash parts.  Numonix parts are left
	 * to the preexisting well-tested code.  All flash parts have 64KB
	 * sectors.
	 */
	static struct flash_desc supported_flash[] = {
		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
	};

	int ret;
	unsigned int i;
	u32 info = 0;

	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
	if (!ret)
		ret = sf1_read(adapter, 3, 0, 1, &info);
	t4_write_reg(adapter, A_SF_OP, 0);               /* unlock SF */
	if (ret < 0)
		return ret;

	for (i = 0; i < ARRAY_SIZE(supported_flash); ++i)
		if (supported_flash[i].vendor_and_model_id == info) {
			adapter->params.sf_size = supported_flash[i].size_mb;
			adapter->params.sf_nsec =
				adapter->params.sf_size / SF_SEC_SIZE;
			return 0;
		}

	if ((info & 0xff) != 0x20)             /* not a Numonix flash */
		return -EINVAL;
	info >>= 16;                           /* log2 of size */
	if (info >= 0x14 && info < 0x18)
		adapter->params.sf_nsec = 1 << (info - 16);
	else if (info == 0x18)
		adapter->params.sf_nsec = 64;
	else
		return -EINVAL;
	adapter->params.sf_size = 1 << info;

	/*
	 * We should reject adapters with FLASHes which are too small. So, emit
	 * a warning.
	 */
	if (adapter->params.sf_size < FLASH_MIN_SIZE) {
		dev_warn(adapter, "WARNING!!! FLASH size %#x < %#x!!!\n",
			 adapter->params.sf_size, FLASH_MIN_SIZE);
	}

	return 0;
}

/**
 * t4_prep_adapter - prepare SW and HW for operation
 * @adapter: the adapter
 *
 * Initialize adapter SW state for the various HW modules, set initial
 * values for some adapter tunables, take PHYs out of reset, and
 * initialize the MDIO interface.
 */
int t4_prep_adapter(struct adapter *adapter)
{
	int ret, ver;
	u32 pl_rev;

	ret = t4_wait_dev_ready(adapter);
	if (ret < 0)
		return ret;

	pl_rev = G_REV(t4_read_reg(adapter, A_PL_REV));
	adapter->params.pci.device_id = adapter->pdev->id.device_id;
	adapter->params.pci.vendor_id = adapter->pdev->id.vendor_id;

	/*
	 * WE DON'T NEED adapter->params.chip CODE ONCE PL_REV CONTAINS
	 * ADAPTER (VERSION << 4 | REVISION)
	 */
	ver = CHELSIO_PCI_ID_VER(adapter->params.pci.device_id);
	adapter->params.chip = 0;
	switch (ver) {
	case CHELSIO_T5:
		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
		adapter->params.arch.sge_fl_db = F_DBPRIO | F_DBTYPE;
		adapter->params.arch.mps_tcam_size =
						NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
		adapter->params.arch.mps_rplc_size = 128;
		adapter->params.arch.nchan = NCHAN;
		adapter->params.arch.vfcount = 128;
		break;
	default:
		dev_err(adapter, "%s: Device %d is not supported\n",
			__func__, adapter->params.pci.device_id);
		return -EINVAL;
	}

	ret = t4_get_flash_params(adapter);
	if (ret < 0)
		return ret;

	adapter->params.cim_la_size = CIMLA_SIZE;

	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);

	/*
	 * Default port and clock for debugging in case we can't reach FW.
	 */
	adapter->params.nports = 1;
	adapter->params.portvec = 1;
	adapter->params.vpd.cclk = 50000;

	return 0;
}

/**
 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information
 * @adapter: the adapter
 * @qid: the Queue ID
 * @qtype: the Ingress or Egress type for @qid
 * @pbar2_qoffset: BAR2 Queue Offset
 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
 *
 * Returns the BAR2 SGE Queue Registers information associated with the
 * indicated Absolute Queue ID.  These are passed back in return value
 * pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
 *
 * This may return an error which indicates that BAR2 SGE Queue
 * registers aren't available.  If an error is not returned, then the
 * following values are returned:
 *
 *   *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
 *   *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
 *
 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
 * require the "Inferred Queue ID" ability may be used.  E.g. the
 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
 * then these "Inferred Queue ID" register may not be used.
 */
int t4_bar2_sge_qregs(struct adapter *adapter, unsigned int qid,
		      enum t4_bar2_qtype qtype, u64 *pbar2_qoffset,
		      unsigned int *pbar2_qid)
{
	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
	u64 bar2_page_offset, bar2_qoffset;
	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;

	/*
	 * T4 doesn't support BAR2 SGE Queue registers.
	 */
	if (is_t4(adapter->params.chip))
		return -EINVAL;

	/*
	 * Get our SGE Page Size parameters.
	 */
	page_shift = adapter->params.sge.hps + 10;
	page_size = 1 << page_shift;

	/*
	 * Get the right Queues per Page parameters for our Queue.
	 */
	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS ?
			      adapter->params.sge.eq_qpp :
			      adapter->params.sge.iq_qpp);
	qpp_mask = (1 << qpp_shift) - 1;

	/*
	 * Calculate the basics of the BAR2 SGE Queue register area:
	 *  o The BAR2 page the Queue registers will be in.
	 *  o The BAR2 Queue ID.
	 *  o The BAR2 Queue ID Offset into the BAR2 page.
	 */
	bar2_page_offset = ((qid >> qpp_shift) << page_shift);
	bar2_qid = qid & qpp_mask;
	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;

	/*
	 * If the BAR2 Queue ID Offset is less than the Page Size, then the
	 * hardware will infer the Absolute Queue ID simply from the writes to
	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
	 * from the BAR2 Page and BAR2 Queue ID.
	 *
	 * One important censequence of this is that some BAR2 SGE registers
	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
	 * there.  But other registers synthesize the SGE Queue ID purely
	 * from the writes to the registers -- the Write Combined Doorbell
	 * Buffer is a good example.  These BAR2 SGE Registers are only
	 * available for those BAR2 SGE Register areas where the SGE Absolute
	 * Queue ID can be inferred from simple writes.
	 */
	bar2_qoffset = bar2_page_offset;
	bar2_qinferred = (bar2_qid_offset < page_size);
	if (bar2_qinferred) {
		bar2_qoffset += bar2_qid_offset;
		bar2_qid = 0;
	}

	*pbar2_qoffset = bar2_qoffset;
	*pbar2_qid = bar2_qid;
	return 0;
}

/**
 * t4_init_sge_params - initialize adap->params.sge
 * @adapter: the adapter
 *
 * Initialize various fields of the adapter's SGE Parameters structure.
 */
int t4_init_sge_params(struct adapter *adapter)
{
	struct sge_params *sge_params = &adapter->params.sge;
	u32 hps, qpp;
	unsigned int s_hps, s_qpp;

	/*
	 * Extract the SGE Page Size for our PF.
	 */
	hps = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
	s_hps = (S_HOSTPAGESIZEPF0 + (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) *
		 adapter->pf);
	sge_params->hps = ((hps >> s_hps) & M_HOSTPAGESIZEPF0);

	/*
	 * Extract the SGE Egress and Ingess Queues Per Page for our PF.
	 */
	s_qpp = (S_QUEUESPERPAGEPF0 +
		 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf);
	qpp = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
	sge_params->eq_qpp = ((qpp >> s_qpp) & M_QUEUESPERPAGEPF0);
	qpp = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
	sge_params->iq_qpp = ((qpp >> s_qpp) & M_QUEUESPERPAGEPF0);

	return 0;
}

/**
 * t4_init_tp_params - initialize adap->params.tp
 * @adap: the adapter
 *
 * Initialize various fields of the adapter's TP Parameters structure.
 */
int t4_init_tp_params(struct adapter *adap)
{
	int chan;
	u32 v;

	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
	adap->params.tp.tre = G_TIMERRESOLUTION(v);
	adap->params.tp.dack_re = G_DELAYEDACKRESOLUTION(v);

	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
	for (chan = 0; chan < NCHAN; chan++)
		adap->params.tp.tx_modq[chan] = chan;

	/*
	 * Cache the adapter's Compressed Filter Mode and global Incress
	 * Configuration.
	 */
	t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
			 &adap->params.tp.vlan_pri_map, 1, A_TP_VLAN_PRI_MAP);
	t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
			 &adap->params.tp.ingress_config, 1,
			 A_TP_INGRESS_CONFIG);

	/*
	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
	 * shift positions of several elements of the Compressed Filter Tuple
	 * for this adapter which we need frequently ...
	 */
	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, F_VLAN);
	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
	adap->params.tp.port_shift = t4_filter_field_shift(adap, F_PORT);
	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
							       F_PROTOCOL);

	/*
	 * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
	 * represents the presense of an Outer VLAN instead of a VNIC ID.
	 */
	if ((adap->params.tp.ingress_config & F_VNIC) == 0)
		adap->params.tp.vnic_shift = -1;

	return 0;
}

/**
 * t4_filter_field_shift - calculate filter field shift
 * @adap: the adapter
 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
 *
 * Return the shift position of a filter field within the Compressed
 * Filter Tuple.  The filter field is specified via its selection bit
 * within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
 */
int t4_filter_field_shift(const struct adapter *adap, unsigned int filter_sel)
{
	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
	unsigned int sel;
	int field_shift;

	if ((filter_mode & filter_sel) == 0)
		return -1;

	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
		switch (filter_mode & sel) {
		case F_FCOE:
			field_shift += W_FT_FCOE;
			break;
		case F_PORT:
			field_shift += W_FT_PORT;
			break;
		case F_VNIC_ID:
			field_shift += W_FT_VNIC_ID;
			break;
		case F_VLAN:
			field_shift += W_FT_VLAN;
			break;
		case F_TOS:
			field_shift += W_FT_TOS;
			break;
		case F_PROTOCOL:
			field_shift += W_FT_PROTOCOL;
			break;
		case F_ETHERTYPE:
			field_shift += W_FT_ETHERTYPE;
			break;
		case F_MACMATCH:
			field_shift += W_FT_MACMATCH;
			break;
		case F_MPSHITTYPE:
			field_shift += W_FT_MPSHITTYPE;
			break;
		case F_FRAGMENTATION:
			field_shift += W_FT_FRAGMENTATION;
			break;
		}
	}
	return field_shift;
}

int t4_init_rss_mode(struct adapter *adap, int mbox)
{
	int i, ret;
	struct fw_rss_vi_config_cmd rvc;

	memset(&rvc, 0, sizeof(rvc));

	for_each_port(adap, i) {
		struct port_info *p = adap2pinfo(adap, i);

		rvc.op_to_viid = htonl(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
				       F_FW_CMD_REQUEST | F_FW_CMD_READ |
				       V_FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
		rvc.retval_len16 = htonl(FW_LEN16(rvc));
		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
		if (ret)
			return ret;
		p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
	}
	return 0;
}

int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
{
	u8 addr[6];
	int ret, i, j = 0;
	struct fw_port_cmd c;

	memset(&c, 0, sizeof(c));

	for_each_port(adap, i) {
		unsigned int rss_size = 0;
		struct port_info *p = adap2pinfo(adap, i);

		while ((adap->params.portvec & (1 << j)) == 0)
			j++;

		c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
					     F_FW_CMD_REQUEST | F_FW_CMD_READ |
					     V_FW_PORT_CMD_PORTID(j));
		c.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(
						FW_PORT_ACTION_GET_PORT_INFO) |
						FW_LEN16(c));
		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
		if (ret)
			return ret;

		ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
		if (ret < 0)
			return ret;

		p->viid = ret;
		p->tx_chan = j;
		p->rss_size = rss_size;
		t4_os_set_hw_addr(adap, i, addr);

		ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
		p->mdio_addr = (ret & F_FW_PORT_CMD_MDIOCAP) ?
				G_FW_PORT_CMD_MDIOADDR(ret) : -1;
		p->port_type = G_FW_PORT_CMD_PTYPE(ret);
		p->mod_type = FW_PORT_MOD_TYPE_NA;

		init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
		j++;
	}
	return 0;
}